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Abstract

As the world is getting data-intensive while memory space remains limited, streaming algorithms
become increasingly important since they process data in a stream-like, space-efficient manner. More
than often, people not only require the final output of a stream, but also wish to track its intermediate
outputs to understand the real-time trends (e.g., in stock markets) and make decisions. In such scenarios,
future streaming data can be affected by past decisions. This drives the need for streaming algorithms
to be adversarially robust, which guarantees a good approximation with high probability even if the
stream is manipulated by an adversary. In this write-up, we give an introduction to adversarially robust
streaming algorithms and comprehensively explain two such algorithms, SKETCHSWITCHING and RO-
BUSTSKETCH, and analyze their theoretical guarantees. We also discuss some potential future directions
in this field.

1 Introduction

In this era of information, a huge number of data are transmitted, received, and analyzed frequently. Stock
prices change and traders make decisions within seconds; banks handle massive numbers of transactions
while identifying fraudulent acts. A naı̈ve solution is to store all past data for future analysis and decision
making. However, the complexity of real-world problems usually results in data that are exceptionally
costly to store. Therefore, streaming algorithms emerge to provide an approximated answer based on a
summary or “sketch” of the data stream using limited space. Streaming algorithms are prevalently applied
in the real world because data are always received and processed in a streaming manner. For example,
website managers can use the heavy hitter algorithm [1] to identify IP addresses that frequently access their
websites as potentially malicious.

Classic streaming algorithms target streams with “fixed” data (i.e., unknown fixed randomness). Particularly,
the order of tokens in the input streams is independent of the algorithm’s output. However, the future
depends on the past in many real-life scenarios. For example, traders’ decisions affect future stock prices
and Instagram users’ viewing histories affect their future feeds. Under these circumstances, the desirable
guarantee given by streaming algorithms may not hold any more. This gives rise to adversarially robust
streaming algorithms that strive to provide approximation with high probability guarantee even when the
future inputs depend on previous outputs.

In this paper, we investigate how to construct adversarially robust streaming algorithms. We first introduce
some essential preliminary backgrounds in Sec. 2. Next, we introduce in Sec. 3 the SKETCHSWITCHING
algorithm [2], one of the most fundamental adversarially robust streaming algorithms. In Sec. 4, we elu-
cidate the ROBUSTSKETCH algorithm [3] which improves upon SKETCHSWITCHING and uses differential
privacy [4] to achieve more efficient bounds. We also provide examples on how the two algorithms work on
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F2-approximation, a classical streaming problem. Then we end with a discussion on the two algorithms and
some future directions in Sec. 5.

2 Preliminaries

2.1 Streaming Algorithms

Let [n] denote the set {1, 2, · · · , n}. For each i ∈ [n], let fi denote the frequency (i.e., number of occur-
rences) of element i. A general turnstile stream of length T can be represented by a sequence of tokens
(it, ct) where it ∈ [n] and ct ∈ Z such that each token updates the frequency of element it, fit , to fit + ct.
Such a stream is insertion-only if ct ≥ 0 for all t ∈ [T ]. Let g : Rn → R be the function that maps the
frequency vector f =

[
f1 f2 · · · fn

]
to our ideal output. We call g our objective function. For example,

if we are interested in the second frequency moment (F2) of the stream, then g(f) =
∑

i∈[n] |fi|2. Since it
is space expensive to store f in full, we may use streaming algorithms to obtain an approximation to g(f)
instead. Commonly, we aim to devise an (ϵ, δ)-approximation algorithm such that its output is no more than
ϵ · g(f) away from the true quantity g(f) with probability at least 1− δ for some ϵ > 0 and δ ∈ (0, 1).

Common streaming tasks include counting distinct elements, approximating frequency moments, spotting
heavy hitters, etc. We refer the readers to [1] for a detailed explanation of corresponding streaming algo-
rithms to these tasks.

2.2 Tracking Algorithms

Conventional streaming algorithms satisfy approximation guarantees at one single query after all updates
are processed. In contrast, tracking algorithms are another group of streaming algorithms that aim to output
accurate (temporary) approximations after every update. The performance of a tracking algorithm is ensured
through the notion of strong tracking guarantee [5], which means that at every timestamp t (where the
frequency vector is f (t)), the algorithm outputs an approximation that is close to the true (temporary) quantity
given by the objective function g, g

(
f (t)

)
. Formally,

Definition 1 (Strong Tracking Guarantee). For timestamp t ∈ [T ], let the frequency vector after the t-th
update be f (t). A randomized algorithm A is said to provide (ϵ, δ)-strong g-tracking if, at every timestamp
t ∈ [T ], A outputs an estimate R(t) such that∣∣R(t) − g

(
f (t)

)∣∣ ≤ ϵ ·
∣∣g (f (t))∣∣ ,

with probability at least 1− δ, for some ϵ > 0 and δ ∈ (0, 1).

Example. Indyk’s 2-stable sketch [6] is a strong tracking algorithm for F2-approximation1 for insertion-only

streams, which aims to estimate g
(
f (t)

)
=

∑
i∈[n]

∣∣∣f (t)
i

∣∣∣2 for each t ∈ [T ]. It uses a matrix Π ∈ Rd×n whose
entries are sampled from a 2-stable distribution [7] (i.e., for any independent random variables X,Y, Z
following the distribution and any a, b ∈ R, aX + bY and (|a|p + |b|p)1/pZ follow identical distributions)
such as Gaussian distribution. As the stream tokens arrive, we maintain a vector Πf (t) such that Πf (t) =
Πf (t−1) + ctΠeit ,

2 where eit ∈ Rn denotes the vector whose it-th element is 1 and other elements are 0.
At the end of each timestamp t, the algorithm outputs the median of Πf (t) as the F2-approximation. [8]
shows that Indyk’s 2-stable sketch achieves (ϵ, δ)-strong g-tracking guarantee using Õ

(
ϵ−2 log T log(1/δ)

)
1In general, Indyk’s p-stable sketch can be used for Fp-approximation.
2Thus, it is also a linear sketch.
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space. Later on, we will give examples on how to convert this sketch into adversarially robust streaming
algorithms.

2.2.1 Adversarial Robustness of Tracking Algorithms

At each update t ∈ [T ], the tracking algorithm publishes its temporary approximation of g
(
f (t)

)
to the

adversary. Upon observing the latest output, the adversary adaptively chooses the next token to be passed
to the algorithm. The goal of the adversary is to eventually trigger an incorrect output from the streaming
algorithm. The interactions between a (randomized) streaming algorithm A and an adversary Adversary
are modeled as a two-player game. The two players take turns to make decisions upon observing the other
player’s previous behavior. Formally,

1. Adversary chooses a token (it, ct), which may depend on the previous tokens and outputs of A,
and passes the token to A.

2. A processes (it, ct) and outputs R(t) as the current approximation.

3. Adversary observes R(t) and proceeds to the next round.

A tracking algorithm is said to be adversarially robust if it still satisfies strong tracking guarantee (Def. 1)
even if the stream is updated by an adaptive adversary.

Remark. In general, linear sketches such as Indyk’s 2-stable sketch are not adversarially robust [9].

2.3 Differential Privacy

In this section, we will introduce a separate branch of studies, differential privacy (DP) [4], and explain
why it can be associated with adversarially robustness of streaming algorithms. Consider an (randomized)
algorithm A : D → Θ that takes in a dataset D ∈ D and returns an output θ ∈ Θ. DP is actually a
measurement of how private A is (i.e., how likely an attacker can reconstruct the input dataset D). It works
by comparing the outputs when A takes in a pair of neighboring datasets D and D′ that differ by only one
element. Intuitively, if the two outputs are close to each other, the attacker is unlikely to tell whether the
element by which the two datasets differ is used in the input; if the outputs for all such neighboring datasets
are close, the attacker is unlikely to tell whether any element is used in the input and thus the algorithm is
private. Formally,

Definition 2 (Differential Privacy [4]). An algorithm A : D → Θ is said to be preserve (α, β)-differential
privacy ((α, β)-DP) if for any pair of neighboring datasets D,D′ ∈ D and any subset of outputs O ⊆ Θ,

Pr[A(D) ∈ O] ≤ eα · Pr[A (D′) ∈ O] + β.

Here α > 0 represents the privacy level of the algorithm, where a smaller α indicates higher privacy;
β ∈ [0, 1) is an absolute tolerance term which represents a very small probability of privacy breach. In
particular, (α, 0)-DP is abbreviated as α-DP.

To achieve DP, the most common technique is noise addition, where we add some certain type of noise that
is properly scaled to the algorithm output, such that the attacker is unlikely to tell whether a particular output
he sees is due to the algorithm output or the added noise. To determine the appropriate scale of the added
noise, we define the sensitivity of algorithm A as follows:
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Definition 3 (Sensitivity). The sensitivity of an algorithm A : D → Θ is defined as the maximum change
of its output when it takes in a pair of neighboring datasets, that is,

∆(A) := maxneighboringD,D′∈D |A(D)−A (D′)| .

For any algorithm A (either deterministic or randomized), we can then achieve ϵ-DP by adding Laplacian
noise proportional to A’s sensitivity:

Theorem 1. For any algorithmA : D → Θ, define a new randomized algorithm Ã such that for any D ∈ D,

Ã(D) := A(D) + Lap
(
∆(A)
α

)
,

where Lap(·) denotes a randomly sampled Laplacian noise with mean 0 and scale ·. The new algorithm Ã
satisfies α-DP.

Differentially private algorithms can be adaptively composed together, that is, a latter DP algorithm Ã2 may
use not only dataset D but also the (private) output of an earlier algorithm Ã1(D). The resulting algorithm
is still differentially private:

Theorem 2. When k algorithms satisfying α-DP are adaptively composed together, the resulting algorithm
satisfies (α′, β)-DP, where α′ =

√
2k log(1/β) · α+ 2kα2.

DP implies adversarial robustness. For tracking algorithms, the adversary can adaptively choose the
next token based on its inference of the internal state of the algorithm. Conversely, if the internal state is
protected with DP, the adversary will be uncertain about the exact internal state and thus which token to
choose. This would make the algorithm adversarially robust.

3 Adversarial Robustness via Sketch Switching

We focus on converting non-robust strong tracking algorithms to adversarially robust algorithms. Specifi-
cally, we use L(ϵ, δ) to denote the space required by an (ϵ, δ)-strong g-tracking algorithm or sketch, which
we use as our base algorithm.

In the adversarial setting described in Sec. 2.2.1, the Adversary observes intermediate outputs and strate-
gically decides the next token in the input stream. To avoid being targeted by the Adversary, an intuitive
solution is to change the streaming algorithm every time after an output is made. However, this solution
requiresO(T ·L(ϵ, δ)) space, which can be very expensive when the stream length T is large. Alternatively,
at timestamp t, if the most recent output R̂ρ is within an acceptable distance from the estimate R(t)

ρ given by
the current algorithm Aρ, then we continue to output R̂ρ. Otherwise, we output R(t)

ρ and switch to the next
algorithm Aρ+1. This is the intuition behind the SKETCHSWITCHING algorithm shown in Alg. 1.

The total space complexity of this algorithm is O(λ · L(ϵ/10, δ/λ)), which is linearly dependent on the
parameter λ. Intuitively, we would want λ to be as small as possible. The flip number defined below is used
to provide a tight lower bound for λ which ensures a sufficient number of sketches.

Definition 4 (Flip Number). Let ϵ ≥ 0 and ȳ = (y1, y2, . . . , yT ) be a sequence of real numbers. The ϵ-flip
number ϕϵ(ȳ) of ȳ is the maximum number k ∈ N where there exists i0 = 0 < i1 < · · · < ik ≤ T such
that |yij − yij+1 | > ϵ · yij+1 for all j ∈ {0, 1, 2, . . . , k − 1}.
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Algorithm 1 The SKETCHSWITCHING algorithm.
1: Initialize λ (ϵ/10, δ/λ)-strong g-tracking sketches A1, · · · ,Aλ with independent randomness
2: ρ← 1; R̂1 ← A1(0)
3: for token (it, ct) in stream do
4: Feed (it, ct) to all sketches A1, . . . ,Aλ

5: R
(t)
ρ ← approximation given by Aρ

6: if R̂ρ ∈ (1± ϵ/2)R
(t)
ρ then

7: output R̂ρ

8: else
9: output R(t)

ρ

10: R̂ρ+1 ← R
(t)
ρ

11: ρ← ρ+ 1
12: end if
13: end for

Recall that g : Rn → R is the objective function that maps each frequency vector f (t) =[
f
(t)
1 f

(t)
2 · · · f

(t)
n

]
to the ideal output g

(
f (t)

)
. Let ȳ = (y1, y2, . . . , yT ) be a sequence where

yt = g
(
f (t)

)
for each t ∈ [T ]. We denote the ϵ-flip number of such a sequence ȳ as ϕϵ,g from here

onward.

Theorem 3. The SKETCHSWITCHING algorithm satisfies (ϵ, δ)-strong g-tracking guarantee even if the
stream is chosen by an Adversary, if we set λ = ϕϵ/10,g.

Proof. From Def. 4, it can be easily seen that setting λ = ϕϵ/10,g will allow the entire stream to be processed
before the algorithm halts. According to Alg. 1, all sketches are (ϵ/10, δ/λ)-strong g sketches. Thus, at
any timestamp t, denoting the value of ρ as ρ(t), Aρ(t) computes some approximation R

(t)
ρ(t) such that∣∣∣R(t)

ρ(t) − g
(
f (t)

)∣∣∣ ≤ (ϵ/10)·g
(
f (t)

)
with probability at least 1−δ/λ. The actual output at timestamp t, R̂ρ(t),

satisfies
∣∣∣R̂ρ(t) −R

(t)
ρ(t)

∣∣∣ ≤ (ϵ/2) ·R(t)
ρ(t) no matter if R̂ρ(t) is updated or not. Note that (1+ϵ/2)(1+ϵ/10) <

1 + ϵ and (1 − ϵ/2)(1 − ϵ/10) > 1 − ϵ for all ϵ ∈ (0, 1). Hence
∣∣∣R̂ρ(t) − g

(
f (t)

)∣∣∣ ≤ ϵ · g
(
f (t)

)
with

probability at least 1 − δ/λ. Since there are λ sketches in total, we can apply union bound to show that∣∣∣R̂ρ(t) − g
(
f (t)

)∣∣∣ ≤ ϵ · g
(
f (t)

)
for all timestamp t with probability at least 1 − δ. Therefore, Alg. 1 yields

an approximation with (ϵ, δ)-strong g-tracking guarantee.

3.1 Example: F2-Approximation for Insertion-Only Streams

Now we will give an example of applying the SKETCHSWITCHING algorithm to F2-approximation for
insertion-only streams. We use Indyk’s 2-stable sketch as our non-robust (ϵ/10, δ/λ)-strong g-tracking
sketch, which means L(ϵ/10, δ) = Õ

(
ϵ−2 log T log(1/δ)

)
. Then the SKETCHSWITCHING algorithm can,

with probability at least 1− δ, output at each timestamp t an estimate R̂ρ(t) such that |R̂ρ(t)−F2(f
(t))| ≤ ϵ ·

F2(f
(t)). We use the following theorem (proven in App. B.1) to further bound the flip number ϕϵ/10,g:

Theorem 4. In the insertion-only streaming model, the flip number ϕϵ,F2 is O(ϵ−1 log T ).

Therefore, choosing δ = 1/T , the total space is Õ
(
ϵ−3 log2 T

)
, which is sublinear in T .
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4 Adversarial Robustness via Differential Privacy

Although the SKETCHSWITCHING algorithm is adversarially robust, it does not seem to be space efficient
because at any timestamp t ∈ [T ], only one of the λ sketches is in use while the rest are wasted. On
the other hand, if we remove the requirement for adversarial robustness, the λ sketches could be used to
compute a median that better approximates g (i.e., the median trick [1]). Therefore, if we use DP to protect
the median from the Adversary, then we can achieve adversarial robustness while making use of all the
sketches together. Specifically, to achieve α-DP, we may add Laplacian noise Lap(1/α) to the rank of
each individual approximation according to Thm. 1. Denote this method of computing the private median
as PRIVATEMEDIAN and we have the following theorem (proven in App. B.2):

Theorem 5. Suppose we have λ real numbers R1, R2, · · · , Rλ and we use the PRIVATEMEDIAN algorithm
satisfying α-DP to obtain a private median R̂. Then with probability 1−δ, there are at least λ/2−τ numbers
that are greater than or equal to R̂ and at least λ/2 − τ numbers that are smaller than or equal to R̂, where
τ = O(α−1 log(λ/δ)).

Although a single run of PRIVATEMEDIAN is highly private, from Thm. 2 we know that if we repeat PRI-
VATEMEDIAN for T times, the composed privacy level is

√
2T log(1/β)α+2Tα2, which can be large (and

thus no longer private or adversarially robust) if T is large (which is reasonable for streaming tasks). Hence,
we need to run PRIVATEMEDIAN as few as possible. Inspired by the SKETCHSWITCHING algorithm, we
know that it suffices to output the private median for ϕϵ/10,g (i.e., flip number) times, given that we only
output a new median when the previous output is not in the range (1± ϵ/2) of the new median. Let R̂ρ de-
termine the ρ-th output private median. At some timestamp t where R̂ρ is the currently released output, we
need to determine whether R̂ρ is within (1± ϵ/2) of the median of R(t)

1 , R
(t)
2 , · · · , R(t)

λ . The Adversary
will know this information too by checking whether our algorithm still outputs R̂ after t. Therefore, we
still need to apply DP to protect this information. Despite so, to achieve α-DP, we do not need to add noise
to the rank of every individual approximation as in PRIVATEMEDIAN. Instead, it suffices to add noise to
the number of individual approximations whom R̂ρ is not within (1 ± ϵ/2) of, because we only need to
check whether this number is smaller than λ/2. This, together with the PRIVATEMEDIAN algorithm, forms
the ROBUSTSKETCH algorithm as given in Alg. 2. By Thm. 2, we can show that the ROBUSTSKETCH
algorithm satisfies (1/100, δ)-DP (see App. B.3).

Theorem 6. The ROBUSTSKETCH algorithm satisfies (ϵ, δ)-strong g-tracking guarantee even if the stream
is chosen by an Adversary, if we set

λ = Ω
(√

ϕ ϵ
10

,g log
1
δ · log

T
ϵδ

)
.

Proof. For t ∈ [T ], let R(t) be the random variable representing the approximation to g
(
f (t)

)
given by a

random (ϵ/10, 1/10)-strong g-tracking sketch. Let I(t) := 1
[
R(t) ∈ (1± ϵ/10)g

(
f (t)

)]
be the indicator

variable that equals 1 when the approximation R(t) is within (1 ± ϵ/10) of the exact value. For j ∈ [λ],
define I

(t)
j := 1 if R(t)

j ∈ (1 ± ϵ/10)g
(
f (t)

)
and 0 otherwise (i.e., each I

(t)
j is a realization of I(t)j ). By the

generalization property (App. A.2) of DP, we have for any t ∈ [T ]

Pr
[∣∣∣E [

I(t)
]
− 1

λ

∑λ
j=1 I

(t)
j

∣∣∣ ≤ 1
10

]
≥ 1− 100δ = 1−O(δ). (1)

By definition of strong tracking algorithm (Def. 1), the probability that I(t) = 1 is at least 9/10 for all t ∈
[T ]. Hence E

[
I(t)

]
≥ 9/10. Hence by Eq. (1) with probability at least 1−O(δ), (1/λ)

∑λ
j=1 I

(t)
j ≥ 8/10,
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Algorithm 2 The ROBUSTSKETCH algorithm via differential privacy.
1: Initialize λ (ϵ/10, 1/10)-strong g-tracking sketches A1, · · · ,Aλ with independent randomness

2: α← 1/
(
400

√
2ϕϵ/10,g log(1/δ)

)
; ρ← 1; R̂1 ← g(0)

3: repeat at most ϕϵ/10,g times
4: ℓ̂← k/2 + Lap(2/α)
5: repeat
6: Receive token (it, ct)

7: R
(t)
j ← approximation given by Aj for all j ∈ [λ]

8: if
∣∣∣R(t)

j : R̂ρ /∈ (1± ϵ/2)R
(t)
j

∣∣∣+ Lap(4/α) < ℓ̂ then

9: output R̂ρ

10: else
11: break
12: end if
13: end
14: ρ← ρ+ 1

15: R̂ρ ← PRIVATEMEDIAN
(
R

(t)
1 , R

(t)
2 , · · · , R(t)

λ

)
16: output R̂ρ

17: end

which means that (§) at least 8/10 of I(t)j ’s are equal to 1. Note that we can achieve probability at least
1− δ (instead ofO(δ)) by tightening the δ used in the algorithm by a constant factor (e.g., 100 in this case).

If the output R̂ρ is updated, by Thm. 5, with probability 1 − δ we have τ = O(α−1 log(λ/δ)) ≤ λ/10

given that α = 1/
(
400

√
2ϕϵ/10,g log(1/δ)

)
and λ = Ω

(√
ϕϵ/10,g log(1/δ)) · log(T/ϵδ)

)
, that is, at least

4/10 of the λ approximations are greater than or equal to R̂ρ and at least 4/10 are smaller than or equal to
R̂ρ. By (§), R̂ρ ∈ (1± ϵ/10)g

(
f (t)

)
too.

If the output R̂ρ is not updated, then
∣∣∣R(t)

j : R̂ρ /∈ (1± ϵ/2)R
(t)
j

∣∣∣ + Lap(4/α) < λ/2 − Lap(2/α). We
bound the two Laplacian noises using the following claim:

Claim. With probability at least 1− δ, the absolute values of all the Laplacian noises sampled in Line 6 and
Line 10 of Alg. 2 are smaller than (4/α) log(2T/δ).

Proof. We know that if X ∼ Lap(4/α) then |X| ∼ Exp(α/4). Pr[|X| < (4/α) log(2T/δ)] = 1 −
exp(−(α/4)(4/α) log(2T/δ)) = 1 − δ/(2T ). Note that the number of Laplacian noises sampled in Line
6 and Line 10 is strictly smaller than 2T . Also, the probability that a Lap(2/α) noise has magnitude
smaller than (4/α) log(2T/δ) is strictly larger than the probability that a Lap(4/α) noise does so. Thus, the
probability that the absolute values of all the Laplacian noises sampled in Line 6 and Line 10 are smaller
than (4/α) log(2T/δ) is larger than (1− δ/(2T ))2T , which is at least 1− δ.

Thus,
∣∣∣R(t)

j : R̂ρ ∈ (1± ϵ/2)R
(t)
j

∣∣∣ ≥ λ/2 − 2(4/α) log(2T/δ) ≥ 4λ/10 given that α =

1/
(
400

√
2ϕϵ/10,g log(1/δ)

)
and λ = Ω

(√
ϕϵ/10,g log(1/δ)) · log(T/ϵδ)

)
. Combined with our earlier
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statement (§), there is at least one approximation R
(t)
j such that R(t)

j ∈ (1 ± ϵ/10)g
(
f (t)

)
and R̂ρ ∈

(1±ϵ/2)R
(t)
j . Now we can use a similar argument to the proof of Thm. 3: since (1+ϵ/2)(1+ϵ/10) < 1+ϵ

and (1− ϵ/2)(1− ϵ/10) > 1− ϵ, the output R̂ρ is within (1± ϵ) of the exact value g
(
f (t)

)
.

Therefore, the ROBUSTSKETCH algorithm is indeed a strong tracking algorithm even if the stream is chosen
by an ADVERSARY.

Corollary 1. The space required by the ROBUSTSKETCH algorithm is

O
(
L
(

ϵ
10 ,

1
10

)
·
√
ϕ ϵ

10
,g log

1
δ · log

T
ϵδ

)
.

Remark. One may notice that the ROBUSTSKETCH algorithm may halt before all tokens (it, ct) have arrived
(i.e., when the ϕϵ/10,g iterations are used up). However, one can show that if we set λ according to Thm. 6,
then with high probability such early halting will not happen (App. B.4).

4.1 Example: F2-Approximation for Insertion-Only Streams

Now we will give an example of applying the ROBUSTSKETCH algorithm to F2-approximation for insertion-
only streams. Simply, we can still use Indyk’s 2-stable sketch as our non-robust (ϵ/10, 1/10)-strong g-
tracking sketch, which means L(ϵ/10, 1/10) = Õ(ϵ−2 log T ). Moreover, by Thm. 4, ϕϵ/10,g is at most
O(ϵ−1 log T ). Setting δ = 1/T and using Cor. 1, we can get that a ROBUSTSKETCH algorithm that guaran-
tees (1± ϵ)-approximation for all t ∈ [T ] with probability at least 1− 1/T requires Õ(ϵ−2.5 log4 T ) space.
As compared to the SKETCHSWITCHING algorithm in Sec. 3.1, we reduce the dependency on ϵ by a factor
of
√
ϵ at the cost of an additional log2 T factor. Therefore, the ROBUSTSKETCH algorithm is more space

efficient when a strong approximation guarantee (small ϵ) is required.

5 Discussions and Future Direction

In this writeup, we introduce the study of adversarially robust streaming algorithms and explain two impor-
tant algorithms, SKETCHSWITCHING and ROBUSTSKETCH, that achieve (ϵ, δ)-strong g-tracking guarantee
even if the stream is chosen by an Adversary. Moreover, the spaces required by the two algorithms
can still be sublinear (given that the base non-robust sketches use at most

√
T space). ROBUSTSKETCH

slightly improves on the space complexity of SKETCHSWITCHING by a factor of
√
ϕϵ/10,g through utilizing

more information from the base non-robust sketches, and it can be used in general turnstile streams whereas
SKETCHSWITCHING focuses on insertion-only streams or turnstile streams with bounded number of dele-
tions. However, it might suffer from early halting (i.e., before stream ends) with a small probability whereas
SKETCHSWITCHING will not, which is a possible area for improvement.

Some possible future directions remain. Although both flip-number-based algorithms work successfully
for a range of problems, all these problems are one-dimensional (e.g., F2-approximation, heavy hitters,
etc.), it is still unclear whether and how the concept of flip numbers can be extended to the approximation
of higher-dimensional quantities. Secondly, most works in this field (including SKETCHSWITCHING and
ROBUSTSKETCH) focus on how to adapt from non-robust algorithms and incur additional space costs during
the conversion. This leads to a gap between the optimal bounds of non-robust and robust algorithms. It is
meaningful to study whether it is possible or how to reduce such a gap. For example, one possible direction
is that the additional costs may not be needed if there exist some algorithms that are inherently adversarially
robust (works such as [10] have shown that some specific algorithms can be robust by nature).
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A Additional Preliminaries

A.1 Exponential Mechanism of Differential Privacy

The exponential mechanism is yet another mechanism for DP. Instead of releasing a noisy output, it would
like to select from a dataset a precise datum privately. Formally, we define a scoring function v : D×R → R
such that given a dataset D and an element x ∈ D, v(D,x) returns how good the element x is. For example,
if we want to know the maximum number in a dataset D, then v(D,maxD) > v(D,x) for all x ∈ D and
x ̸= maxD. The exponential mechanism states that

Theorem 7. An algorithm A : D → R is α-differentially private if given a dataset D, A outputs r ∈ R
with probability proportional to exp((αv(D, r))/(2∆(v))), where ∆(v) is the sensitivity of v as defined in
Def. 3.

In other words, the log probability of selecting a particular element from a dataset is proportional to its
score.

Connection to the noise addition mechanism. We can construct an algorithm that satisfies Thm. 7 using
Laplacian mechanism. Specifically, assume we want to know the maximum number in a dataset D. We
can define the scoring function v := rank(D), where rank(·) returns the rank of · in ascending order. The
REPORTNOISYMAX algorithm works as follows:

1. Add Laplacian noise Lap(1/α) to the score of each element in D.

2. Output the element with the highest noisy score.

[11] shows that this algorithm indeed satisfies Thm. 7 although it outputs a precise value and hence it is an
α-differentially private algorithm.

A.2 Generalization Property of Differential Privacy

The generalization property [12] of DP is rather advanced for the sake of this writeup, so we delegate it to
the appendix. Readers may also regard this as an established factor.

Suppose x ∈ X follows the probability distribution pX . The generalization property states that if we
draw a random samples x1, x2, · · · , xa from X and use some differentially private algorithm to obtain
u predicates h1, h2, · · · , hu that answer some particular questions, then the empirical means of all these
privately computed predicates are all close to their expected means. Formally,

Theorem 8. For α ∈ (0, 1/3), β ∈ (0, α/4), u ∈ N and a ≥ 1/α2 log(2αu/β). Let A : Xa →
(
2X

)u be
an (α, β)-differentially private algorithm that outputs u predicts h1, . . . , hu : X → {0, 1}. Let pX be the
distribution over X and S be the a i.i.d. samples from D, and let (h1, . . . , hu) be the output of A(S). Then
the following holds:

Pr
S∼paX

h1,··· ,hu←A(S)

[
max
1≤j≤u

∣∣∣∣∣1a ∑
x∈S

hj(x)− EX∼pX [hj(X)]

∣∣∣∣∣ ≥ 10α

]
<

δ

ϵ
. (2)
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B Proofs

B.1 Proof for Theorem 4

F2 is a monotone function, and in insertion-only streaming model, f (t1) < f (t2) for all t1 < t2. Let M be a
scalar upper bound on all entries of the frequency vector. Let C = n2c, where c is some constant satisfying
M2n ≤ n2c. Note that F2(f

(1)) ≥ 1 ≥ C−1 and F2(f
(T )) ≤M2n ≤ C.

The flip number ϕϵ,F2 is upper bounded by T and equals T when F2(f
(t)) < (1 − ϵ) · F2(f

(t+1)) for all
t ∈ [T − 1]. This means that at each timestamp t, the objective value increases by a factor greater than
1/(1 − ϵ), and thus (1/(1 − ϵ))ϕϵ,F2

−1C−1 ≤ (1/(1 − ϵ))ϕϵ,F2
−1F2(f

(1)) < F2(f
(ϕϵ,F2

−1)) ≤ C. Using
the fact 1 − x ∈ [e−2x, e−x] for x ∈ (0, 3/4), after taking logarithms on both sides, we get ϕϵ,F2 =
O(ϵ−1 logC) = O(ϵ−1 log n).

B.2 Proof for Theorem 5

Consider the exponential mechanism of DP given in App. A.1. We can define the scoring function v such
that if µ is the median of dataset D, then v(D,µ) > v(D,x) for any other x ∈ D and x ̸= µ. Also,
v(D,x) > v(D, y) if the rank of x is closer to µ than y. As such, by running the REPORTNOISYMAX
algorithm and add Laplacian noise to the score, we obtain an algorithm PRIVATEMEDIAN that satisfies
Thm. 5.

B.3 Differential Privacy Guarantee of Robust Sketch

The ROBUSTSKETCH algorithm is basically an adaptive composition of at most ϕϵ/10,g PRIVATEME-
DIAN algorithms and at most ϕϵ/10,g algorithms to determine whether R̂ρ is within (1 ± ϵ/2) of the
median of approximations. Therefore, by Thm. 2, the ROBUSTSKETCH algorithm as a whole is also
differentially private. Specifically, for any δ ∈ (0, 1), the privacy level of ROBUSTSKETCH is at

most
√
4ϕϵ/10,g log(1/δ) · ϵ + 4ϕϵ/10,gϵ

2 =
√
4ϕϵ/10,g log(1/δ) ·

(
1/

(
400

√
2ϕϵ/10,g log(1/δ)

))
+

4ϕϵ/10,g

(
1/

(
400

√
2ϕϵ/10,g log(1/δ)

))2
≤ 1/100.

B.4 Early Halting of Robust Sketch

When the claim in our proof for Thm. 6 holds, whenever the output R̂ρ is updated, the exact value g
(
f (t)

)
will have changed more than (1 + ϵ/10) or less than (1− ϵ/10). Using a similar argument to App. B.1, we
know that it will not be updated more than ϕϵ/10,g. Therefore, in this case the algorithm will not halt before
the stream ends. The probability of this case is no less than 1− δ. On the other hand, if some of the sampled
Laplacian noises are surprisingly large, then early halting might happen.
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