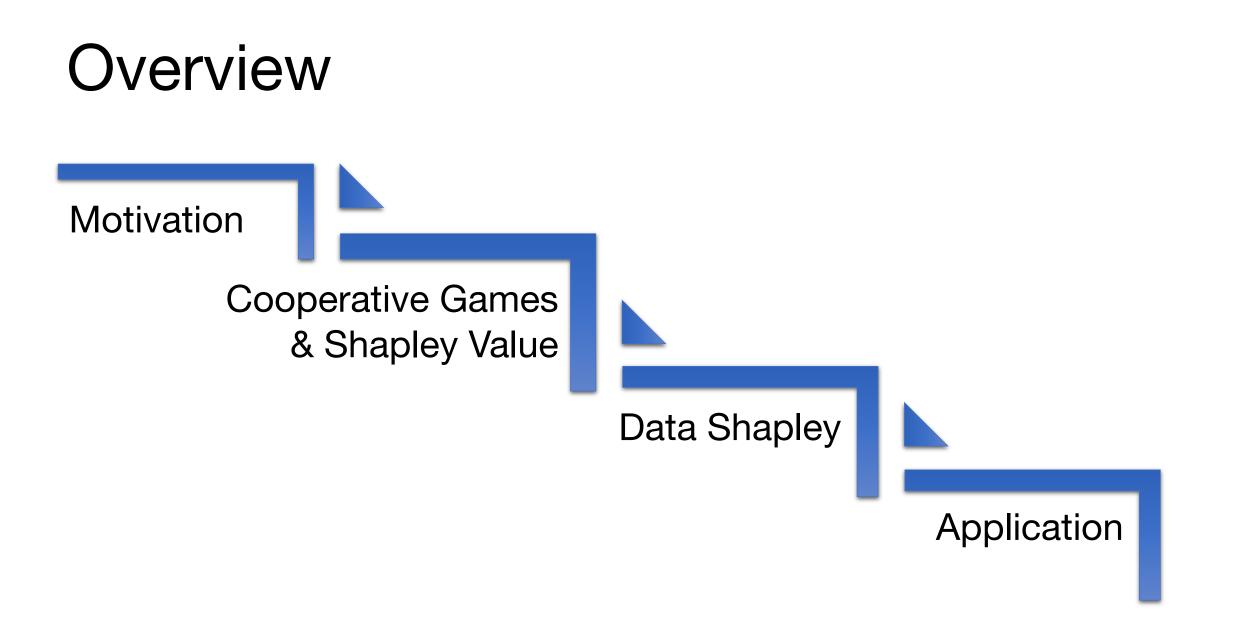
Data Shapley:

Equitable Valuation of Data for Machine Learning

Amirata Ghorbani, Michael P. Kim, James Zou 2019

1×



Collaborative Machine Learning

- Data is the fuel powering machine learning.
- Where does data come from?

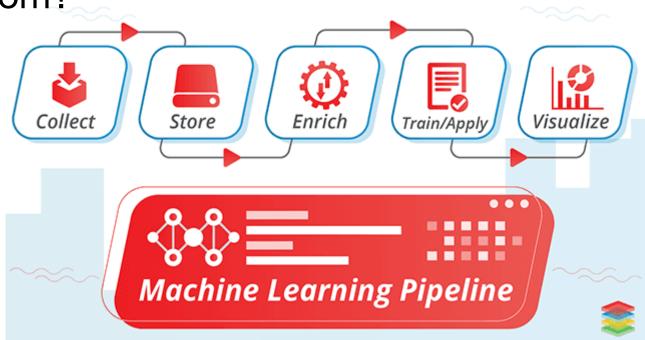


Figure: Machine Learning Pipeline (Gill, 2022).

Collaborative Machine Learning

• Data is the fuel powering machine learning.

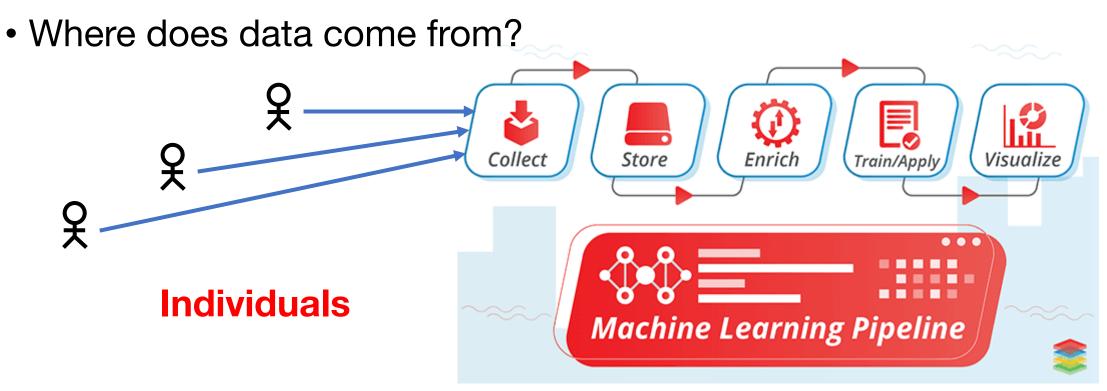


Figure: Machine Learning Pipeline (Gill, 2022).

Motivation	Cooperative Games	Data Shapley	Application	T
------------	-------------------	--------------	-------------	---

General Data Protection Regulation

• Data are properties. Properties are not free for use.

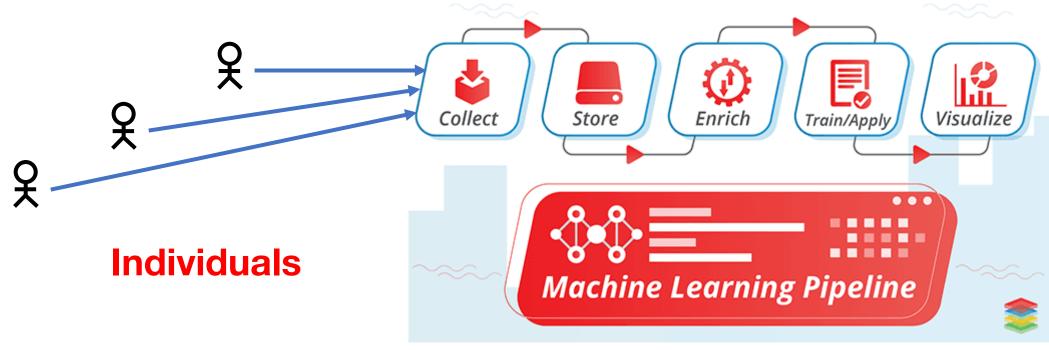
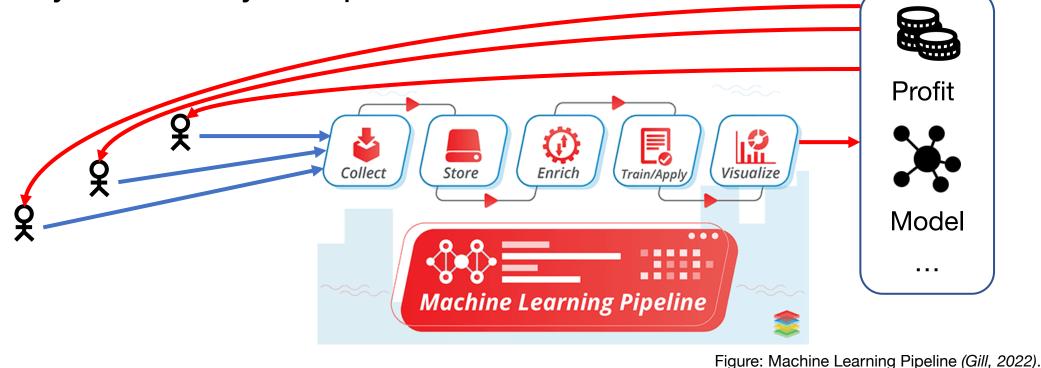


Figure: Machine Learning Pipeline (Gill, 2022).

Motivation	Cooperative Games	Data Shapley	Application	T
------------	-------------------	--------------	-------------	---

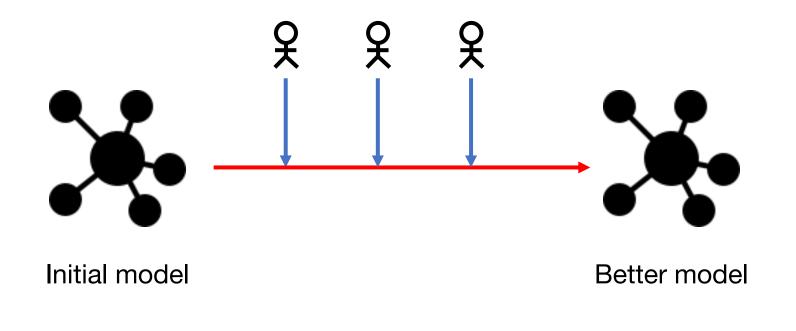
Data Valuation

 Need to assign a value to each individual's data so that everyone is fairly compensated.



A cooperative game!

• Through cooperation, we obtain a **better** model than without cooperation.



Evaluation metrics

- Accuracy
- MSE

. . .

٠

- F1 score
- Information gain

Motivation

Data Shapley

T_×

Game Theory

Traditional

- Players are rational and selfish.
- "Prisoner's Dilemma": Both prisoners will eventually choose to **defect** because whatever the other prisoner choose, to defect gives the better outcome.

Figure: Prisoner's Dilemma (Forsythe, 2012).

Motivation

Cooperative Games

Data Shapley



Game Theory

Traditional

- Players are rational and selfish.
- "Prisoner's Dilemma": Both prisoners will eventually choose to **defect** because whatever the other prisoner choose, to defect gives the better outcome.

But this is not the best outcome!

Figure: Prisoner's Dilemma (Forsythe, 2012).

Cooperative Games

Data Shapley

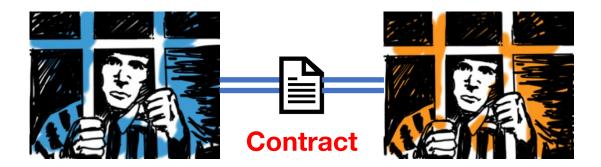
Game Theory

Traditional

- Players are rational and selfish.
- "Prisoner's Dilemma": Both prisoners will eventually choose to **defect** because whatever the other prisoner choose, to defect gives the better outcome.

Cooperative

- Players have common interests, information exchange and compulsory contract.
- Both prisoners should **not** defect to gain mutual benefits.



Cooperative Games

Data Shapley

A game is uniquely defined by a set function

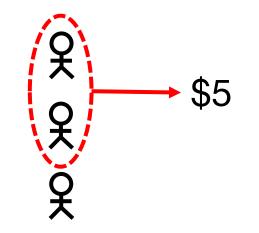
$$V: 2^N \to \mathbb{R}$$
 aka Value Function

Coalition
$$(\begin{array}{c} & & \\$$

Motivation	Cooperative Games	Data Shapley	Application	T
------------	-------------------	--------------	-------------	---

• A game is uniquely defined by a set function

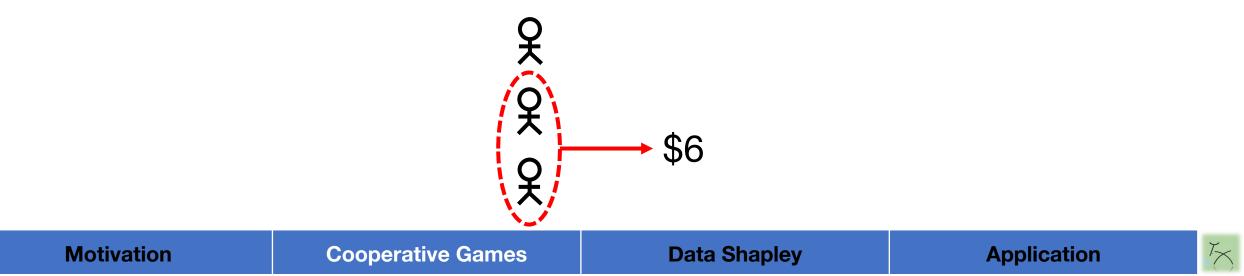
$$V: 2^N \to \mathbb{R}$$
 aka Value Function



Motivation	Cooperative Games	Data Shapley	Application	T.
------------	-------------------	--------------	-------------	----

• A game is uniquely defined by a set function

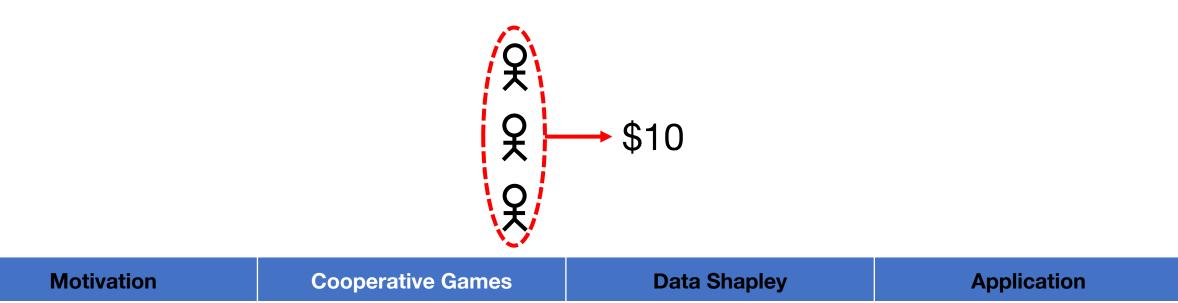
$$V: 2^N \to \mathbb{R}$$
 aka Value Function



• A game is uniquely defined by a set function

$$V: 2^N \to \mathbb{R}$$
 aka Value Function

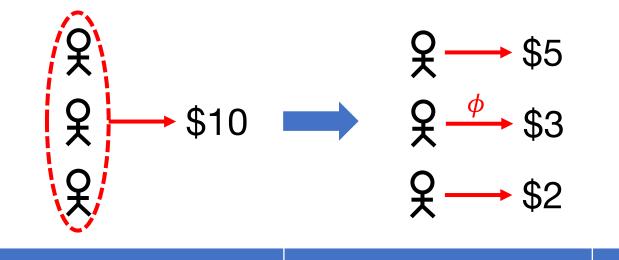
T_×



Contribution Function

• To measure the contribution of each player, we define

$$\phi_V: N \to \mathbb{R}$$



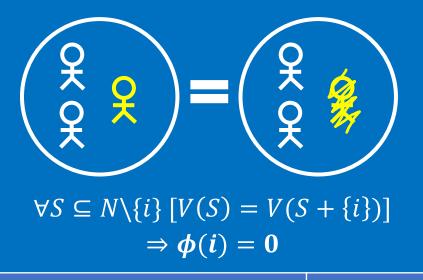
ПЛ	otiv	ati	<u>n</u>
		au	

Fair Measure of Contribution

Analogy: Measure the value of a new colleague in the workplace.

Null Player

When player *i* joins any existing work group, he does not add value to that group.



Motivation

Data Shapley

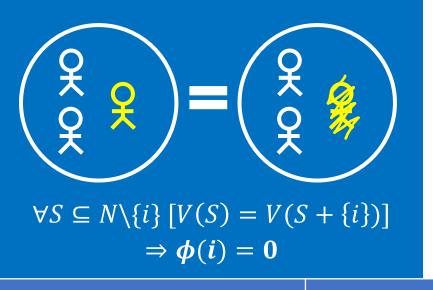
T_×

Fair Measure of Contribution

Analogy: Measure the value of a new colleague in the workplace.

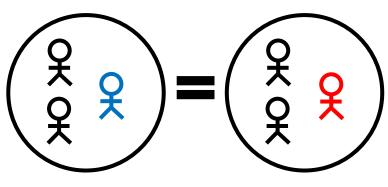
Null Player

When player *i* joins any existing work group, he does not add value to that group.



Symmetry

When player *i* and *j* join any existing work group, they add the same value to that group.



 $\forall S \subseteq N \setminus \{i, j\} [V(S + \{i\})] = V(S + \{j\})] \Rightarrow \boldsymbol{\phi}(\boldsymbol{i}) = \boldsymbol{\phi}(\boldsymbol{j})$

Motivation

Cooperative Games

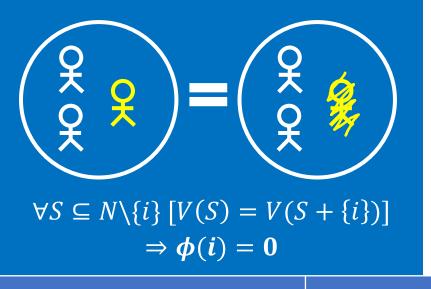
Data Shapley

Fair Measure of Contribution

Analogy: Measure the value of a new colleague in the workplace.

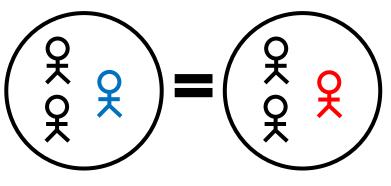
Null Player

When player *i* joins any existing work group, he does not add value to that group.



Symmetry

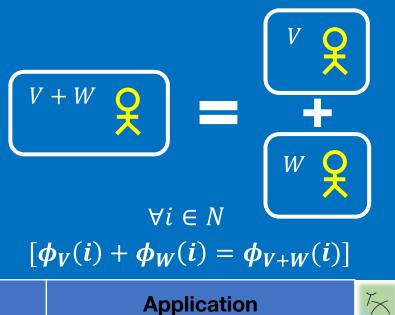
When player *i* and *j* join any existing work group, they add the same value to that group.



 $\forall S \subseteq N \setminus \{i, j\} [V(S + \{i\})]$ $= V(S + \{j\})] \Rightarrow \phi(i) = \phi(j)$

Linearity

We have two scores V and W for each work group. We take the combined score as V + W.



Cooperative Games

Shapley Value

• Shapley found such a value:

$$\phi(i) = \frac{1}{|N|} \sum_{S \subseteq N \setminus \{i\}} \frac{V(S + \{i\}) - V(S)}{\binom{n-1}{|S|}}$$

- Besides Null Player, Symmetry and Linearity, the Shapley value is special such that it is the only one that satisfies **Efficiency**:

$$\sum_{i\in N}\phi(i)=V(N)$$

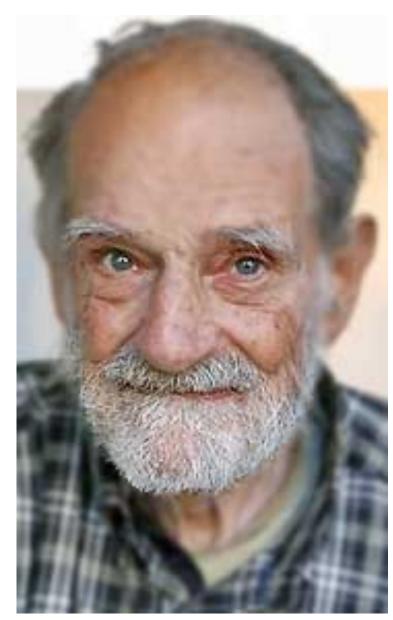


Figure: Lloyd S. Shapley (Moreno et al., 2018).

Data Shapley

T.X

Shapley Value Marginal contribution

• Shapley found such a value:

$$\phi(i) = \frac{1}{|N|} \sum_{S \subseteq N \setminus \{i\}} \frac{V(S + \{i\}) - V(S)}{\binom{n-1}{|S|}}$$

- Besides Null Player, Symmetry and Linearity, the Shapley value is special such that it is the only one that satisfies **Efficiency**:

$$\sum_{i\in N}\phi(i)=V(N)$$

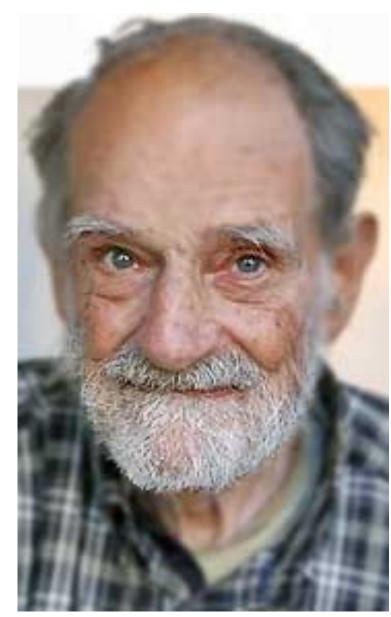
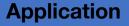


Figure: Lloyd S. Shapley (Moreno et al., 2018).

Data Shapley



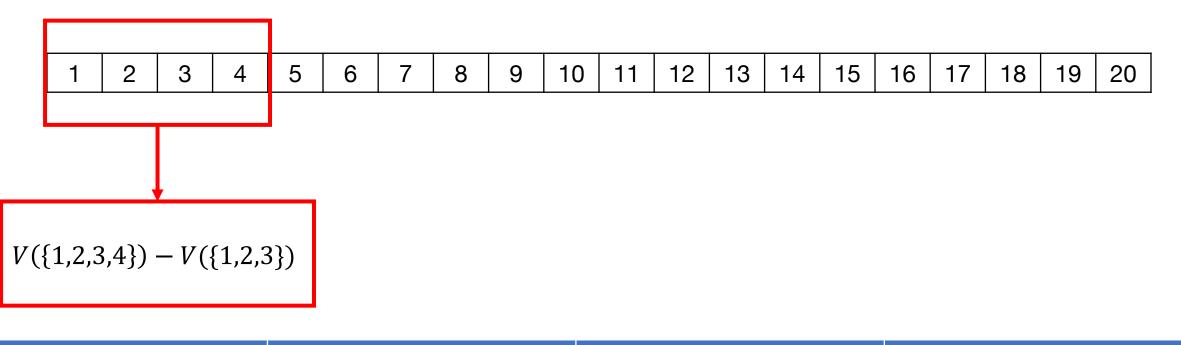
T.X

Data Shapley

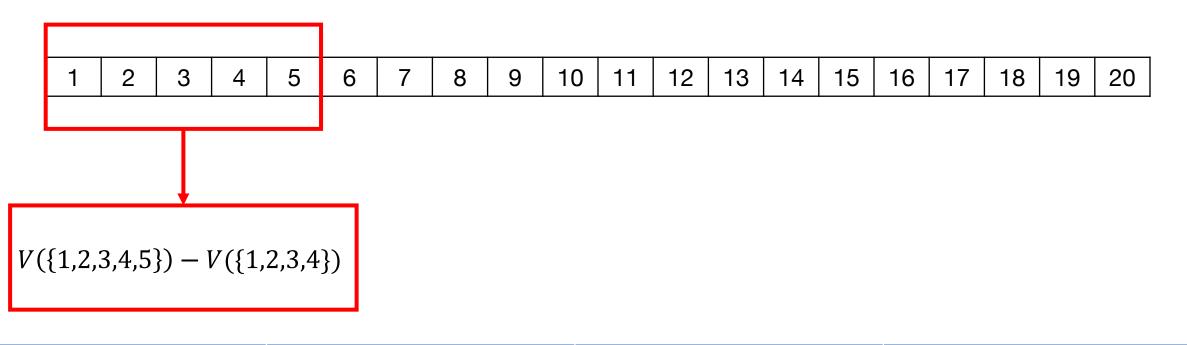
$$\phi(i) = \mathbf{C} \sum_{S \subseteq N \setminus \{i\}} \frac{V(S + \{i\}) - V(S)}{\binom{n-1}{|S|}}$$

• *S* is every subset of *N*, leading to **very high computational cost** (in machine learning, we usually have millions of data!).

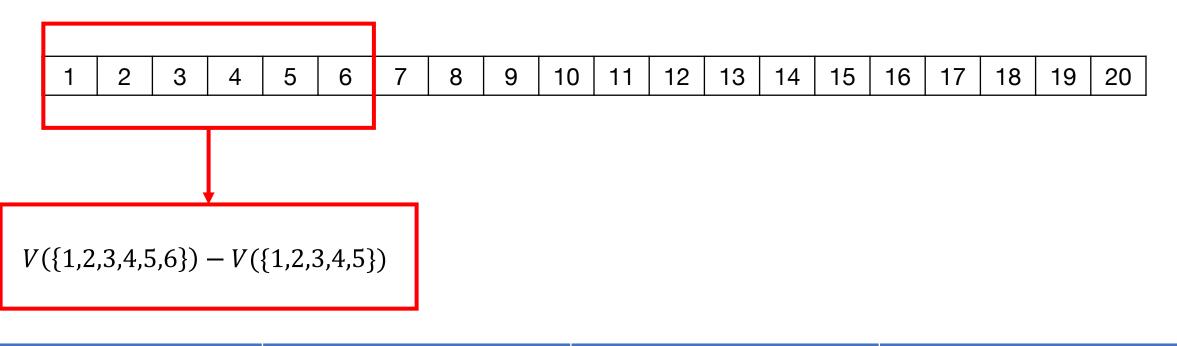
Motivation



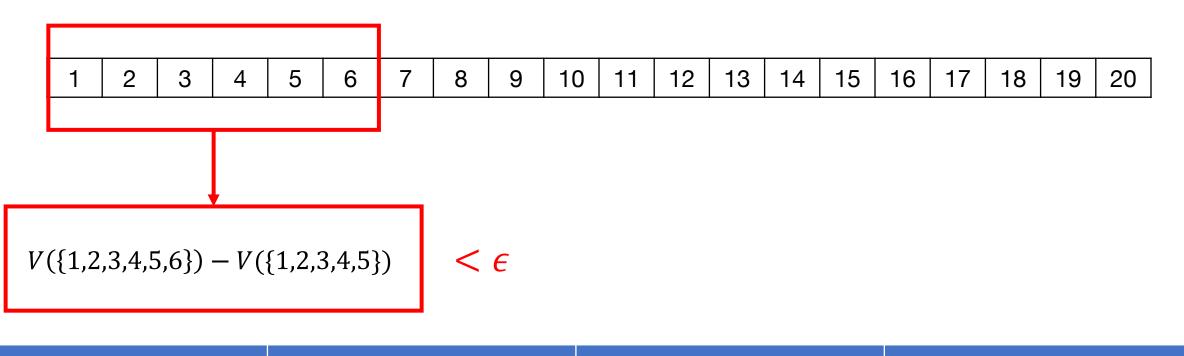
Motivation	Cooperative Games	Data Shapley	Application	T~
------------	-------------------	--------------	-------------	----



Motivation	Cooperative Games	Data Shapley	Application	Tress .
------------	-------------------	--------------	-------------	---------



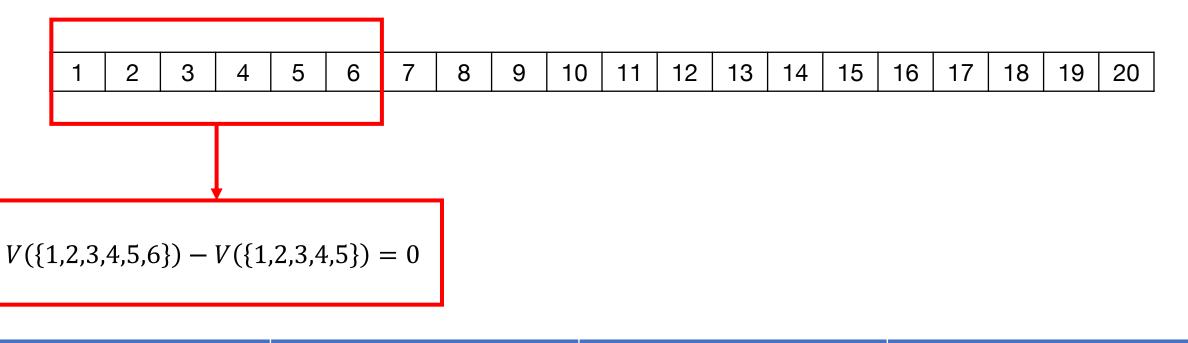
• General idea I: Take a random permutation of data and calculate the marginal contribution in a **rolling** basis.



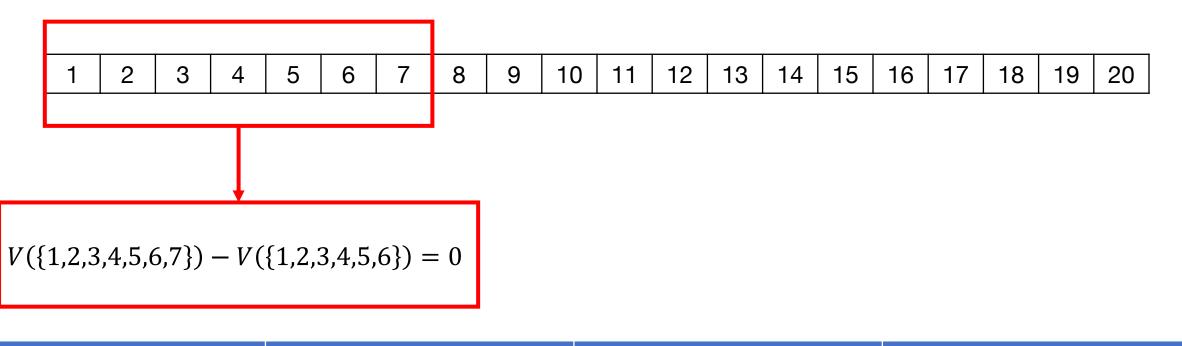
Motivation				
IVIULIVALIUII	ΝЛ	Ativ	natin	n
	IVI	ULIV		

1×

• General idea II: When the marginal contribution becomes very small, mark all the remaining contribution as 0.

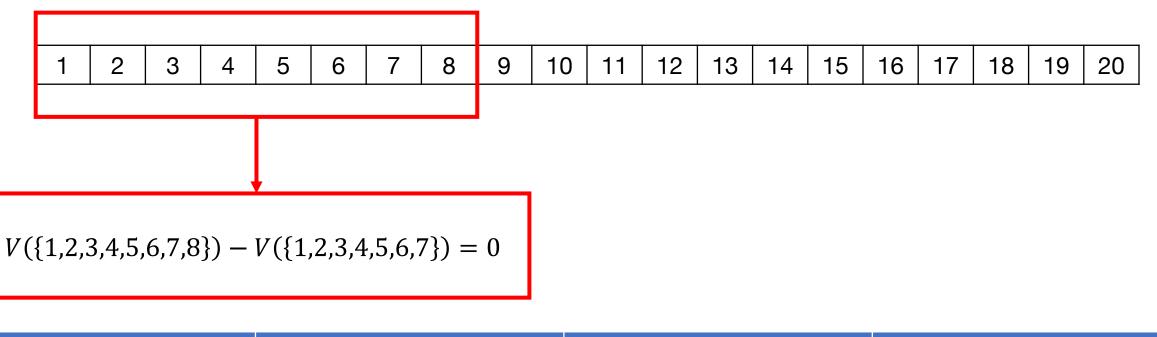


• General idea II: When the marginal contribution becomes very small, mark all the remaining contribution as 0.



Motivation	Cooperative Games	Data Shapley	Application	T.
------------	-------------------	--------------	-------------	----

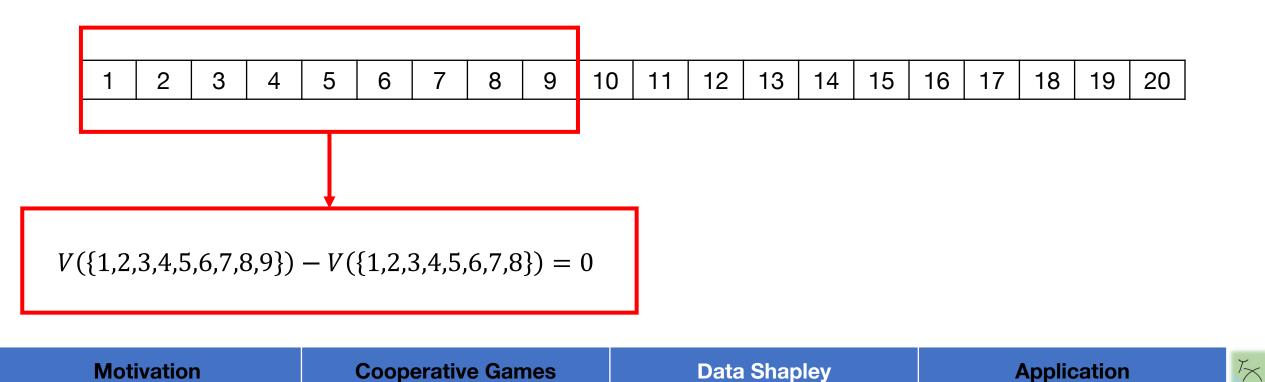
• General idea II: When the marginal contribution becomes very small, mark all the remaining contribution as 0.



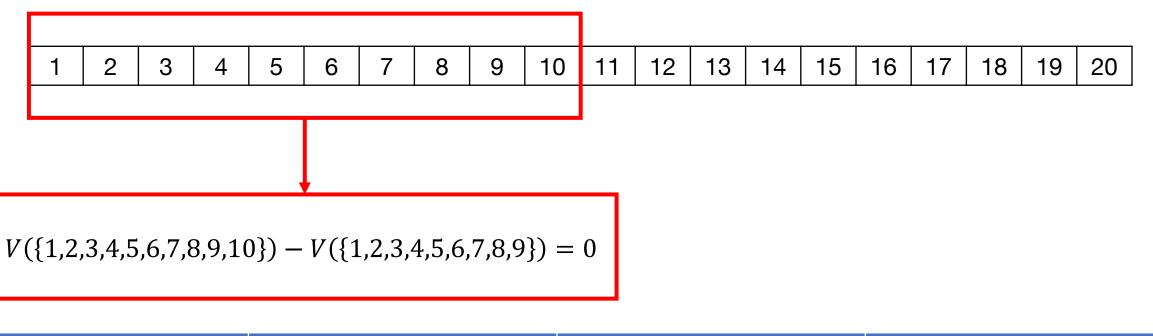
Motivation	Cooperative Games	Data Shapley	Application
------------	--------------------------	--------------	-------------

1×

• General idea II: When the marginal contribution becomes very small, mark all the remaining contribution as 0.



• General idea II: When the marginal contribution becomes very small, mark all the remaining contribution as 0.



Motivation	Cooperative Games	Data Shapley	Application	Trans
------------	-------------------	--------------	-------------	-------

Application: Low Quality Data

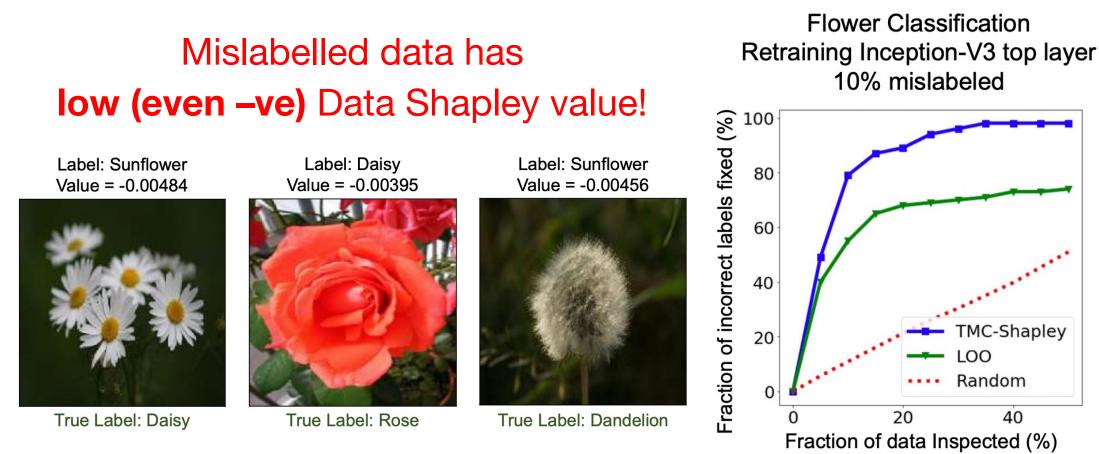


Figure: Identifying mislabelled data and correcting them (Ghorbani & Zou, 2018).

Motivation Cooperative Games	Data Shapley Application
------------------------------	--------------------------

Application: Differentiate Data Sources

• "All data sources are not created equal."s

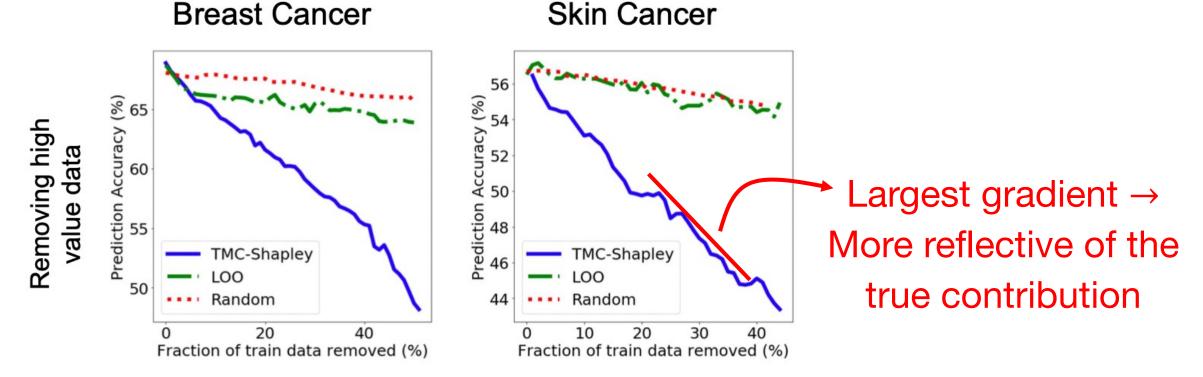


Figure: Change of prediction accuracy as high value data are removed gradually (Ghorbani & Zou, 2018).

Motivation	Cooperative Games	Data Shapley	Application	75
------------	-------------------	--------------	-------------	----

Application: Adapt to New Data

- 1. Use performance metrics on target data as value function.
- 2. Remove -ve value data.
- 3. Use value of data as **weight** when training them.

Source to Target	Prediction Task	Trained Model	Original Performance (%)	Adapted Performance (%)
Google to HAM1000	Skin Lesion Classification	Retraining Inception-V3 top layer	29.6	37.8
CSU to PP	Disease Coding	Retraining DeepTag top layer	87.5	90.1
LFW+ to PPB	Gender Detection	Retraining Inception-V3 top layer	84.1	91.5
MNIST to UPS	Digit Recognition	Multinomial Logistic Regression	30.8	39.1
Email to SMS	Spam Detection	Naive Bayes	68.4	86.4

Figure: Original performance vs Data Shapley Adapted Performance on different prediction tasks (Ghorbani & Zou, 2018).

Motivation Cooperative Games	Data Shapley	Application	T_
------------------------------	--------------	-------------	----

Related Works & Discussion

- Cook's Distance in Linear Regression
- Leverage and Influence

These quantities does not satisfy **Null Player**, **Symmetry** and **Linearity**!

Motivation

Cooperative Games

Data Shapley

1×

References

Forsythe, G. (2012, December 4). *Prisoner's Dilemma*. Flickr. <u>https://www.flickr.com/photos/gforsythe/8245423564</u>

- Ghorbani, A., & Zou, J. (2019, May). Data Shapley: Equitable Valuation of Data for Machine Learning. In International Conference on Machine Learning (pp. 2242-2251). PMLR.
- Ghorbani, A., Kim, M., & Zou, J. (2020, November). A distributional framework for data valuation. In International Conference on Machine Learning (pp. 3535-3544). PMLR.
- Gill, N. S. (2022, August 19). *Machine Learning Pipeline Deployment and Architecture*. Xenonstack. <u>https://www.xenonstack.com/blog/machine-learning-pipeline</u>
- Jia, R., Sun, X., Xu, J., Zhang, C., Li, B., & Song, D. (2019). An empirical and comparative analysis of data valuation with scalable algorithms.
- Koh, P. W., & Liang, P. (2017, July). Understanding black-box predictions via influence functions. In International conference on machine learning (pp. 1885-1894). PMLR.
- Kwon, Y., & Zou, J. (2021). Beta Shapley: a unified and noise-reduced data valuation framework for machine learning. arXiv preprint arXiv:2110.14049.
- Moreno, V., Ramírez M. E., Oliva C. D. L., & Moreno E. (2018, May 21). *Biografía de Lloyd S. Shapley*. Busca Biografías. <u>https://www.buscabiografias.com/biografia/verDetalle/9903/Lloyd%20S.%20Shapley</u>

Motivation

TX

Appendix: Leave-one-out (LOO) Value

 $LOO(i) = V(N) - V(N \setminus \{i\})$

This is actually the marginal contribution to the grand coalition without *i*!

• Leave-one-out value is much easier to compute than the Shapley value, and it is robust to clone.

T

Appendix: Limitation of Data Shapley

- Still expensive in **time**!
- Data Shapley gives each cardinality a **uniform weight** $\left(\frac{1}{|N|}\right)$. This is actually **suboptimal**!
- The 3 axioms used are not universally applicable.
- The Efficiency axiom is **not** important in ML setting ©!

Appendix: Use *C* instead of $\frac{1}{|N|}$

$$\phi(i) = \mathbf{C} \sum_{S \subseteq N \setminus \{i\}} \frac{V(S + \{i\}) - V(S)}{\binom{n-1}{|S|}}$$

- In data valuation, the **Efficiency** axiom is not that useful.
- *C* can be any arbitrary constant representing the scale since it does not affect the relative weight between data points.

Appendix: Variants of Data Shapley

$$\phi(i) = \frac{1}{|N|} \sum_{S \subseteq N \setminus \{i\}} \frac{\text{marginal contribution of } i}{\binom{n-1}{|S|}}$$

• **Banzhaf index:** $\frac{1}{2^{|N|-1}} \sum_{S \subseteq N \setminus \{i\}}$ marginal contribution of *i*

• Beta Shapley:
$$\frac{1}{|N|} \sum_{S \subseteq N \setminus \{i\}} w \cdot \frac{\text{marginal contribution of }i}{\binom{n-1}{|S|}}$$
, where $w \sim Beta(\alpha, \beta)$.

•
$$\mathfrak{D}$$
-Shapley: $\mathbb{E}_{D^{|N|}}(\phi(i))$

