
Data Valuation for Machine Learning

XIAO TIAN, National University of Singapore, Singapore

In the era of data explosion, machine learning becomes increasingly prevalent. Model owners train their
models with huge amount of data from various data sources. With the development of data protection and
regulation policies, data valuation becomes essential for model owners to understand the contribution of each
data source to their models and how much they should compensate the data owners. As a result, accurate and
efficient data valuation techniques are required in many use cases such as model interpolation, collaborative
learning and domain adaption. In this survey paper, we classify current research on data valuation into 3
categories based on their methodologies: statistical methods, game-theoretic methods and meta learning
methods. We discuss and evaluate the key approach used by each method in order to summarize the current
state of research and provide possible directions for future works.
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1 INTRODUCTION
Over the years, machine learning (ML) has been a prevalent technology to solve data-driven
problems such as natural language processing, image recognition and personalization. ML is the
process of training a model to learn the governing concept behind a given dataset so that it can deal
with further tasks including prediction and classification. In recent ages, information sharing has
become increasingly important for model owners to obtain enough data to train their models. There
are two key questions that arise from the sharing process:Who owns the data? and How good are the
data?. The first question asks about the data owners, who need to be compensated for their data; the
second question asks about the data quality, which directly determines the final model performance.
Both questions are related to the value of data, with which we can fairly compensate the data
owners based on the impact of their data on the model performance. Therefore, it is important for
us to develop suitable data valuation methods in order to accurately measure the value of data.

Classical data valuationmethods are built on statistical studies, and are commonly used nowadays.
There are also modern data valuation methods that provide more accurate data valuation based
on advancement in other fields such as game theory and deep learning. All these methods make
various assumptions or work with certain models and are hence suitable for certain use cases.
Below are the major use cases of data valuation.
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Model Interpretation. Data valuation explains how each data point contributes to the final model.
Since higher value implies higher contribution to the model performance, we can improve the
model performance by removing the group of data with lowest values and retraining the model
using the rest of data with their values as weights. Recent works have empirically verified its
possibility [15, 38, 46].

Collaborative ML. Collaborative ML involves the collaboration of multiple parties through data
sharing, such as federated learning. After the model is trained, rewards such as monetary profits
or part of the model itself should be fairly allocated among each participants. Recent works have
developed various reward allocation schemes using data valuation [37, 39, 44, 47].

Domain Adaption. The distribution of data in the training set might be different from those in the
validation and testing sets. This may cause existing ML methods to fail [12, 16]. Hence, we can
value the data based on both their contributions to model performance and the suitable distribution
so that we can resample the useful data based on their values [28, 31, 46].

In this survey paper, we summarised 3 major categories of data valuation methods based on their
methodologies and discussed their pros, cons and suitable use cases.

2 METHODOLOGIES
2.1 Statistical Methods
Statisticians are interested in robust statistical methods so that the predicted model parameters are
not largely affected by outliers. To quantitatively identify outliers, several methods to represent the
influence of each data point to the model parameter have been developed, such as Cook’s Distance
[8] and Influence function [17].

2.1.1 Cook’s Distance. In regression analysis, the influence of a data point represents the effect of
its deletion on the regression line. In 1977, Cook [8] proposed Cook’s distance which quantifies
the influence of a data point by calculating the Euclidean distance between the prior and posterior
model when the data point is deleted. This distance is commonly used in linear regression problems
with ordinary least-squares solutions.

Though being well established and relatively scalable, the use of Cook’s distance is limited to
Linear Regression models in the area of ML. Even for Linear Regression models, recent research
has shown that Cook’s distance is outperformed by other state-of-the-art (SOTA) data valuation
techniques for both high value and low value observations [15, 20].

2.1.2 Influence Function. Hampel [17] discovered the Influence curve to quantify the influence of
each data point in a statistics model and Cook and Weisberg [9] developed the Influence function
to quantify influence empirically. Koh and Liang [21] applied the first-order Taylor expansion of
the Influence Function to simple ML models like logistic regression and showed that it can give
accurate valuation of data even with a relatively large perturbation to the model. Basu et al. [4]
argued that the change in model parameters can be large when a group of data points is removed
and proposed the use of second-order Taylor expansion for group data removal.
However, Ghorbani et al. [13] has shown that the Influence Function used in neural networks

gives vastly different valuation of data with systematic perturbation and adversarial attack. Basu
et al. [3] also showed that the Influence function is fragile when used in deep learning models.
Moreover, Koh et al. [22] argued that the Influence Function becomes less accurate in measuring
the value of groups of data points.
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Despite the robustness issues, recent research has extended the use of Influence function from
directly valuing data to being used in the approximation of other data valuation techniques such as
Cook’s distance [43] and the Shapley value [19].

2.1.3 Leave-One-Out. The Leave-One-Out (LOO) method is another popular method in data
valuation. The LOO score of a data source 𝑖 is defined as the difference in the model performance
with and without data source 𝑖 in the dataset 𝐷 . Mathematically,

𝐿𝑂𝑂 (𝑖) = 𝑣 (𝐷) − 𝑣 (𝐷 \ {𝑖}), (1)

where 𝑣 denotes the evaluation metrics. The LOO score is a generalisation of the idea of Cook’s
Distance so that it can be used in any form of ML models besides Linear Regression. From Equation
(1), the computation of LOO score requires |𝐷 | number of model evaluations, which is relatively
costly with large-scale datasets. Wang et al. [41] provided an efficient approximation of the LOO
score using the Influence function and gradient of the loss function. However, this method is still
costly when the Hessian of the loss function is hard to approximate [46].

Although LOO is a commonly used technique in data valuation, it is outperformed by most SOTA
techniques and is usually used as the benchmark algorithm in related research.

2.2 Game-theoretic Methods
This group of data valuation methods is based on existing solutions to 𝑛-person cooperative games,
where each data source is viewed as a player in the game. A finite cooperative game is uniquely
defined by a set function 𝑣 : 2𝑁 → R with 𝑣 (∅) = 0, where 𝑁 denotes the finite set of players. This
function measures the utility of each subset of players, i.e. coalition of players, and in our case,
the evaluation metrics. The goal is to find a function 𝜙 such that 𝜙𝑣 : 𝑁 → R fairly measures the
contribution of player 𝑖 in 𝑁 . Dubey et al. [11] introduced 4 axioms to define fairness: Linearity,
Symmetry,Monotonicity and Projection and discovered a collection of functions, namely semivalues,
that satisfy these axioms. The mathematical expression of a semivalue is as follows:

(𝜙𝑣) (𝑖) =
∑︁

𝑆⊆𝑁 \𝑖
𝑤𝑠 [𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] . (2)

The term 𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆) represents the marginal contribution of player 𝑖 to coalition 𝑠 , and𝑤𝑠

represents the weight assigned to each marginal contribution to coalitions of size 𝑠 . Note that𝑤

needs to satisfy
𝑛−1∑
𝑠=0

(
𝑛 − 1
𝑠

)
𝑤𝑠 = 1, where 𝑛 denotes the number of players in 𝑁 . The notations

used in Equation (2) will be consistent throughout the rest of this paper.
Most data valuation methods based on cooperative game theory (CGT) focus on finding the most

appropriate semivalue under certain problem setting by adjusting the value of𝑤 . Meanwhile, the
marginal contributions are extremely costly to compute, hence another major research direction is
to efficiently approximate the semivalues. Table 1 summarises the current algorithms to efficiently
approximate the actual values.

2.2.1 Data Shapley. Ghorbani et al. [15] and Jia et al. [19] extended the definition of fairness to
the equitable valuation of data sources and formulated their data valuation function based on the

Shapley Value (SV). SV is a type of semivalue where𝑤𝑠 =
1
𝑛

(
𝑛 − 1
𝑠

)−1
in Equation (2) [33]. Followed

from SV, the Data Shapley value is defined as follows:

𝜙𝑖 = 𝐶
∑︁

𝑆⊆𝐷\{𝑖 }

(
𝑛 − 1
|𝑆 |

)−1
[𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)], (3)
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Table 1. Computational cost of various game-theoretic data valuation algorithms applied on a dataset of size
𝑛. LOO method is also included for reference.

Method Number of Model Evaluation Needed Approximation Error

LOO 𝑂 (𝑛) 0
Data Shapley 𝑂 (2𝑛) 0

TMC-Shapley [15] ≈ 𝑂 (𝑚𝑛) ≈ 𝑂 (
√︁

𝑟
𝑚
)

G-Shapley [15] ≈ TMC-Shapley -
Permutation Sampling [19] 𝑂 (𝑛2 log𝑛) (𝜖, 𝛿)

Group Testing [19] 𝑂
(
𝑛(log𝑛)2

)
(𝜖, 𝛿)

D-Shapley [14] 𝑂

(
log( 𝑛

𝛿
)

𝜖2

)
(𝜖, 𝛿)

MSR-Banzhaf [40] 𝑂

(
𝑛
𝜖2
log 𝑛

𝛿

)
(𝜖, 𝛿)

Least Core [45] 𝑂

( (
max𝑆 𝑣 (𝑆 )

min𝑆≠∅ 𝑣 (𝑆 )

)2 (log𝑛+log 1
𝛿 )

𝜖2𝛿2

)
(𝜖, 𝛿)

where 𝐶 denotes an arbitrary constant, 𝐷 denotes the dataset and other notations are same as
Equation (2).

In order to efficiently approximate the Data Shapley value, Ghorbani et al. proposed the Truncated
Monte Carlo Shapley (TMC-Shapley) algorithm and the Gradient Shapley (G-Shapley) algorithm.
Both algorithms outperform the LOO method empirically. Jia et al. proposed a different algorithm
exploiting group testing and sparsity of values, which is proven to guarantee the approximation
error. They also proposed two practical algorithms based on stable learning algorithms and influence
functions, for which the approximation error is not proven to be guaranteed.

Approximation of Data Shapley value in specific ML models has also been studied. Jia et al. [18]
proposed an algorithm for 𝑘-Nearest Neighbour classifier that runs in sublinear time. Ancona et al.
[1] proposed the DASP algorithm which requires a polynomial number of network evaluations.

2.2.2 Distributional Shapley. Ghorbani et al. [14] argued that the valuation made by Data Shapley
depends on the actual dataset, which neither accounts for the original statistical distribution of
data nor provides insights on data points outside the given dataset. Therefore, they proposed
Distributional Shapley, which values the data considering the underlying statistical distribution.

One key advantage of the Distributional Shapley framework is that the value of each data source
is stable when different datasets are sampled from the original pool of data. Moreover, unlike
Data Shapley where the value of each data source severely depends on other data sources, the
Distributional Shapley value of each data source is private to the data source itself, which provides
privacy for data owners. On the other hand, the specific algorithm for the Distributional Shapley
framework depends on the models and value functions, reducing its universality.

2.2.3 Beta Shapley. Kwon and Zou [24] proved that the choice of𝑤𝑠 in Data Shapley is suboptimal
to reflect the influence of individual data. Since the marginal contribution of each data source
to smaller coalitions tends to have larger signal-to-noise ratio, it is reasonable to assign a larger
weight to these marginal contributions. Kwon and Zou defined the Beta Shapley value as follows:

𝜙𝑖 =
∑︁

𝑆⊆𝐷\{𝑖 }

𝐵𝑒𝑡𝑎( |𝑆 | + 𝛽, 𝑛 − |𝑆 | − 1 + 𝛼)
𝐵𝑒𝑡𝑎(𝛼, 𝛽) [𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] (4)

The use of Beta distribution brings more freedom to adjust the weights. For example, when 𝛼 = 1,
𝛽 = 1, Equation (4) becomes Data Shapley. When 𝛼 ≥ 𝛽 = 1, a larger weight is assigned to marginal
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contributions to smaller coalitions. The authors empirically discovered that Beta Shapley with
𝐵𝑒𝑡𝑎(16, 1) outperforms Data Shapley and other SOTA methods.

The authors employed Monte Carlo approximation similar as what Ghorbani et al. did in Data
Shapley [15]. Such algorithm is not efficient enough for large-scale datasets in practice.

2.2.4 Data Banzhaf. Wang and Jia [40] defined robustness of data valuation as the amount of
perturbation to the model performance scores so that the order of data values does not change.
They proved that the Banzhaf index [2] uniquely gives the maximal robustness and defined Data
Banzhaf value as follows:

𝜙𝑖 =
∑︁

𝑆⊆𝐷\{𝑖 }

1
2𝑛−1

[𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] (5)

In order to efficiently approximate the Data Banzhaf value, the authors used the Maximum Sample
Reuse algorithm. This algorithm outperforms Monte Carlo method and is uniquely applicable to
valuation methods based on Banzhaf value, which marked a progress towards the empirical use of
semivalue-based data valuation methods. One possible drawback is that it put too many weights
on coalitions of size close to 𝑛

2 , which might be an over-representation of such terms.

2.2.5 Variational Index. The last two methods based on CGT are not derived from semivalues. Bian
et al. [5] introduced an energy-based [25] treatment for cooperative games, namely the Variational
Index. In order to remove the correlation between players to measure their individual values, we
need to decouple their interactions by minimising the best conceivable decoupling distance. This
minimisation problem can be solved using multilinear extension [6, 30]. The authors proved that
the Variational Index value satisfies a set of desirable axioms.
As a different game-theoretic approach, the Variational Index method empirically outperforms

other SOTA data valuation methods sometimes, and always achieves the lowest decoupling error.

2.2.6 Least Core. Another equally important concept to SV in CGT is the least core [27], which
represents the case where themaximum deficit of any coalition is minimised. Yan et al. [45] proposed
a way to compute the least core by solve the linear programming:

min 𝑒 𝑠.𝑡 .
∑︁
𝑖∈𝑁

𝜙𝑖 = 𝑣 (𝑁 ) and
∑︁
𝑖∈𝑆

𝜙𝑖 + 𝑒 ≥ 𝑣 (𝑆),∀𝑆 ⊂ 𝑁 (6)

The authors used Monte Carlo sampling as an approximation and theoretically guaranteed the
time complexity and approximation error. Their experiments showed that the Least Core method
outperforms TMC-Shapley and Group Testing Shapley in several data removal tasks. Although this
method also faces complexity issues, it provides a new perspective to value data.

2.3 Meta Learning Methods
There are past research on using meta learning to compute adaptive weights in robust learning
[7, 26, 34, 35]. However, it was only until recently that meta learning was applied to data valuation.
Unlike game-theoretic approach, meta learning methods do not make assumptions on the problem
setting.

2.3.1 Data Valuation with Reinforcement Learning. Yoon et al. [46] adapted the meta learning
methodology from robust learning to data valuation. Their proposed model, Data Valuation with
Reinforcement Learning (DVRL), aims to learn the predictor and the data valuation function
together. The predictor is trained through normal stochastic gradient descent method whereas the
non-differentiable data valuation function is trained using the REINFORCE algorithm [42].

The computational cost of DVRL is much lower than that of statistical or game-theoretic methods.
It is not related to the size of dataset but rather the number of iterations and training complexity per
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iteration. Actually, the training time of DVRL is approximately twice of the conventional training,
which is much more scalable. Meanwhile, the performance of DVRL is not worse than other SOTA
methods such as Data Shapley. DVRL outperforms Data Shapley in domain adaption and robust
learning tasks and performs similarly for other data valuation tasks.

One limitation of DVRL is that it does not entertain the various equitable valuation axioms. This
may restrict the use of DVRL in the case where equitability is important, such as reward allocation.

3 DISCUSSIONS AND FUTUREWORK

Fig. 1. Comparisons of performances of various data valuation techniques in data removal tasks [46]. Predict-
ing accuracy changes when the largest (marked as •) and smallest (marked as ×) value samples are removed.

Figure 1 shows a comparison of data valuation methods from all categories we discussed. Gener-
ally, methods based on CGT and meta learning outperform traditional methods.
As the problem settings in ML are not exactly the same as those in CGT, the desirable axioms

which the data valuation function needs to satisfy have always been under discussion. The same
set of axioms may not be optimal for all problem settings [5, 32]. Besides the original axioms of
semivalues, Covert et al. [10], Ridaoui et al. [32] and Sim et al. [36] have provided different sets
of axioms that are considered favourable in ML. This drives the need for different expression of
semivalue-based methods in different problem settings, which is a possible direction for future
work. For example, Ohrimenki et al. [29] defined Replication Robustness axiom to prevent unethical
replication of data for more rewards and developed Robust Shapley valuation function.
Another challenge faced by most statistics and game-theoretic methods is their computational

cost. Most of them requires as least𝑂 (𝑛) number of model evaluations, where 𝑛 represents the size
of dataset, and the cost is typically higher for game-theoretic methods. Such computational cost
is too high for training of complex models such as deep neural networks. Moreover, most of the
current approximation algorithms, as shown in Table 1, do not provide a theoretically bounded
approximation error. This leaves concern for the empirical use of such algorithms. Therefore,
further work can explore more efficient approximation to such value functions.
Although game-theoretic methods seem promising and works well empirically, there are some

doubts about the correct usage of such approaches. Kumar et al. [23] argued that both SV and the
core are not suitable for non-additive games, but most ML problems are taken as additive games
for granted. Further work can explore the alternatives to such concepts which can be applied to
non-additive games, in order to better generalise this category of approach.
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