
Differentially Private Machine Learning

Jue Fan (A0221578B)∗, Xiao Tian (A0220592L)*

National University of Singapore
{jue.fan, xiao.tian}@u.nus.edu

Abstract

Machine learning may involve the use of sensitive data such
as clinical records. Such data can leak from trained machine
learning models through privacy attacks such as member-
ship inference attacks, resulting in a breach of data owners’
privacy. Thus, differentially private machine learning tech-
niques emerge to protect privacy by making it unclear from
the trained model whether any particular datum is involved in
model training (i.e., achieving a desirable privacy objective
called differential privacy). Instead of inventing new machine
learning models from scratch, these techniques make ade-
quate changes to the training mechanism of existing models.
In this report, we give a detailed introduction to the field of
differentially private machine learning. We first provide nec-
essary backgrounds on the definition, properties and mecha-
nisms of differential privacy. Then we explain in depth how
existing machine learning models, including deep learning
models, are adapted to achieve differential privacy. We also
include a brief discussion of the implications of such tech-
niques.

1 Introduction
In machine learning (ML), a model owner fits a statistical
model to a dataset comprising a number of data (i.e., trains
the model). The model captures the hidden patterns or trends
behind the data so that it can be used to predict the be-
haviours of new data or future trends when deployed. For
example, hospitals can use past patients’ data to train an
ML model and predict the progression of disease for new
patients; finance companies can use market data to predict
future trends of stocks. The data used for ML can thus be
sensitive (e.g., personally identifiable information (PII), dis-
ease records) or valuable (e.g., business secrets). Therefore,
model owners are more than often obligated to ensure the
confidentiality of these data and thus privacy of the data
owners.

The earliest techniques to protect privacy lie in remov-
ing the personally identifiable features from the dataset or
grouping similar entries into bins (e.g., a feature POSTAL-
CODE can be replaced with DISTRICTNAME such that mul-
tiple data with different POSTALCODE now share the same
DISTRICTNAME and become indistinguishable). However,

*The authors have made equal contribution to this report.

the identity of data owners can still be revealed through link-
ing attacks [34], where attackers compare the dataset with
another available dataset and search for the common infor-
mation between the two. Therefore, model owners should
not release any version of their training datasets, even
if the datasets have been processed through the aforemen-
tioned techniques. When data owners do not trust that model
owner will not release or leak their data, they can also adopt
federated learning [27], where the model owner does not
have direct access to the training data.

Unfortunately, even if attackers have no access to the
training dataset, they are still able to reconstruct the train-
ing data using only the trained ML model through privacy
attacks. A well-known privacy attack is membership infer-
ence attack [33], where attackers use the trained ML model
to train an attack model that reliably outputs whether an in-
put datum is contained in the training dataset or not. Such
attacks entail that privacy should not be treated equivalently
as keeping training datasets confidential. Instead, privacy
should be injected algorithmically into the ML model
training mechanism such that attackers cannot “invert” the
trained ML model and recover the training data.

It is worth noting that absolute privacy is impossible:
some information about the training data must be present
in the trained ML model to make it useful and capture the
correct patterns. However, it is possible to achieve privacy
with high probability when model owners use a random-
ized training mechanism. Therefore, a probabilistic quantifi-
cation of privacy, differential privacy (DP) [15], is widely
adopted to assess how likely a randomized training mecha-
nism may leak the information about the training data. The
core intuition behind DP is that the privacy of a datum is
protected if the trained ML models are (probabilistically)
indistinguishable when the datum is present or absent in
the training dataset. In other words, attackers are uncertain
about whether any particular datum is contained in the train-
ing dataset or not.

Differentially private machine learning (DP-ML) refers
to ML training mechanisms that achieve DP. This is typi-
cally done by injecting artificial noises at various stages of
existing ML training mechanisms (see Fig. 1) such that it
is not certain that the trained ML model is an outcome of
data or noises. In this report, we will explain in depth how
DP-ML is achieved in various types of existing ML models.

1

Figure 1: Overview of DP-ML mechanisms. ML aims to
update model parameters θ to the optimum θ∗ that mini-
mizes some training objective function (e.g., mean squared
loss between predicted labels and actual ones). DP-ML gen-
erally works by injecting noises () at various stages of ex-
isting ML mechanisms, including the input dataset D (input
perturbation InPert), training objective function (objective
perturbation ObjPert), intermediate values used to update
θ such as gradients (update perturbation UpPert) and out-
put model parameters θ∗ (output perturbation OutPert).

This report is organized as follows: in Sec. 2 we intro-
duce necessary background knowledge related to ML and
DP. Sec. 3 focuses on conventional ML models and how
DP is achieved for each of them. Then, we illustrate dif-
ferentially private deep learning and summarize two foun-
dational works in Sec. 4. Finally, we conclude with a discus-
sion about the implication of DP-ML in Sec. 5.

2 Backgrounds
2.1 Machine Learning
In this section, we present a formulation of ML problems
and mechanisms in general. We do not cover specific ML
models here; instead, they will be introduced later together
with their DP versions. The notations introduced in this sec-
tion will be used consistently in this report.

Let D ∈ D represent the training dataset consisting of n
data. In supervised ML, dataset D takes the form (X,y),
where X = {x1, ...,xn} represents the features/attributes
of each datum and y = {y1, ..., yn} represents the label
to each datum (i.e., the i-th datum is (xi, yi)). We also use
(x, y) to represent any non-specific datum. Each x consists
of m features x1, · · · , xm. The model owner aims to rep-
resent the relationship between x and y through a model
F with parameters θ, that is, y = Fθ(x). To achieve this,
they need to find the θ that minimizes the difference between
the model output Fθ(xi) and actual label yi for each datum
(xi, yi), that is,

θ∗ = argmin
θ

n∑
i=1

L (Fθ(xi), yi) , (1)

where θ∗ is the trained model parameters and L is the loss
function that we use to measure the difference (e.g., mean

squared loss). The training mechanism M : D → Θ rep-
resents the algorithm that the model owner uses to find the
optimal θ∗, i.e., θ∗ =M(D).

Supervised ML can be categorized into classification and
regression problems based on the nature of label y. In the
case of classification, y takes value from a set of classes C =
{c1, c2, · · · , c|C|}. For example, each datum from a dataset
of animals is labelled as one of C = {PIG, RABBIT, CAT}.
In binary classification problems, each datum is either pos-
itive or negative, i.e., C = {1,−1} (e.g., whether a patient
has a disease). On the other hand, regression problems deal
with data where label y is continuous, i.e., y ∈ R.

In practice, the dataset D unavoidably contains noises
possibly in both features x and label y. As a result, a com-
mon yet undesirable problem in supervised ML is overfit-
ting, where the trained model Fθ∗ is more than necessar-
ily complex and therefore fits to every datum (xi, yi) in D
perfectly, including the noises. Such models do not repre-
sent the actual relationship between x and y well and can
make significant prediction errors when deployed. To ad-
dress this issue, regularization techniques are often used to
limit model complexity. Such techniques include an addi-
tional regularizer termR(θ) in the objective function which
penalizes the complexity of θ, that is,

θ∗ = argmin
θ

n∑
i=1

L (Fθ(xi), yi) + C · R(θ), (2)

where the regularization parameter C controls the magni-
tude of penalty. A common regularizer is the L2 norm of
model parameters, i.e.,R(θ) = ∥θ∥2. This prevents any en-
try of ∥θ∥2 from getting too large. For example, consider the
linear model Fθ(x) = θ⊤x. If a particular entry of θ, say
θk is too large, it means that a noise in the corresponding
feature xk would have a large impact, which is undesirable
and can be mitigated through regularization.

Another type of ML is unsupervised learning, where data
have no label. The model owner aims to understand the im-
plicit structures of the data so as to extract useful informa-
tion about the data distribution (e.g., clusters, effective di-
mensions) and even generate new data in future. Formally,
dataset D takes the form X = {x1, ...,xn}. The model with
parameters θ now represents some structure of the entire
dataset D such that the objective function Fθ(D) represents
the goodness of the structure (smaller Fθ(D) means better
structure). Mathematically,

θ∗ = argmin
θ

Fθ(D). (3)

Deep Learning Deep learning (DL) is a sub-field of ML
where the model structure is very complex, the number of
model parameters is very large, and the number of data and
their features is also large (e.g., images where each pixel is
a feature). The fundamental ML model used for DL is the
neural network (NN) model, which will be explained in de-
tail in Sec. 4.1. Famous variants of NN include convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
generative adversarial networks (GANs) and transformers.
CNNs are intensively used for image data in computer vi-
sion; RNNs are commonly used for sequential data such as

2

natural language data or time series data; GANs involve two
NN models that compete against each other to generate more
authentic data for image or 3D object generation; transform-
ers capture the implicit relationships among certain features
(e.g., context of speech where each word is a feature), which
is the backbone of large language models such as GPT-4.

2.2 Differential Privacy
As introduced in Sec. 1, differential privacy (DP) assesses
a randomized mechanism M (not limited to ML) by how
indistinguishable M’s outputs are when each datum is
present or absent in the dataset. We call such pair of train-
ing datasets, with only one datum differing, neighboring
datasets.

Formally, letM : D → Θ be the mechanism that takes in
a dataset D ∈ D and produces randomized output θ ∈ Θ.
In the context of ML, M is the training mechanism and θ
refers to the vector of trained model parameters. Consider
a pair of neighboring datasets D,D′ ∈ D. If the output
model parametersM(D) andM(D′) approximately follow
the same distribution, then attackers cannot tell whether the
output is produced from D or D′, and thus whether the da-
tum by which D and D′ differ even exists in the training
dataset. Therefore, the definition of DP follows:
Definition 1. [ϵ-Differential Privacy] A randomized mech-
anismM : D → Θ satisfies ϵ-differential privacy (ϵ-DP) if
for any pair of neighboring datasets D,D′ ∈ D and for any
O ⊆ Θ, it holds that

Pr(M(D) ∈ O) ≤ eϵ · Pr(M(D′) ∈ O). (4)

The constant ϵ is called the privacy level of mechanism
M, or privacy budget of data owners, which represents how
much privacy loss they can tolerate from mechanism M.
When a small ϵ is chosen, the difference between M(D)
and M(D′) is small and data owners enjoy better privacy
(lower risk of privacy breach), yet probably at the cost of a
less useful ML model.

Properties The simplicity of DP’s definition (Eq. (4))
brings some useful properties to ease the use of DP mecha-
nisms. Firstly, since exp(ϵ1 + ϵ2) = exp(ϵ1) · exp(ϵ2), we
can easily measure the privacy level of the combination of
two DP mechanisms:
Proposition 1. [Composition] When two independent DP
mechanisms M1 and M2, which satisfy ϵ1 and ϵ2 respec-
tively, are applied to the same dataset D to produce a com-
bined output (θ1,θ2), the combined mechanism satisfies
(ϵ1 + ϵ2)-DP.

Secondly, since the mechanism output θ already preserves
privacy, any postprocessing of θ without using the original
dataset D will also preserve privacy, that is,
Proposition 2. [Postprocessing-Robustness] If M : D →
Θ satisfies ϵ-DP, then for any postprocessing function f with
domain Θ the composed mechanism f ◦M satisfies ϵ-DP.

In the context of ML privacy attacks, the postprocessing-
robustness property ensures that any attack that the attackers
perform on the trained ML model will not cause any further
privacy loss beyond the desirable privacy budget.

Relaxation In some applications, ϵ-DP is considered to
be too strong to even produce any useful ML model [13].
Therefore, a less strong version, called (ϵ, δ)-DP [16], is
sometimes preferred over the original ϵ-DP:
Definition 2. [(ϵ, δ)-Differential Privacy] A randomized
mechanismM : D → Θ satisfies (ϵ, δ)-differential privacy
((ϵ, δ)-DP) if for any pair of neighboring datasets D,D′ ∈
D and for any O ⊆ Θ, it holds that

Pr(M(D) ∈ O) ≤ eϵ · Pr(M(D′) ∈ O) + δ. (5)

In other words, it tolerates a small probability δ (e.g., 1%)
of privacy violation (i.e., the difference in mechanism out-
puts for neighboring datasets is larger than the factor ϵ).

Despite its practicality, analysis of the (ϵ, δ)-DP for com-
posed mechanisms can sometimes be harder because the
aforementioned composition property (Prop. 1) no longer
holds due to the introduction of δ.

Noise Addition Mechanism The most common mecha-
nism to achieve DP is to inject random artificial noise e to
the mechanism output θ: if the noise e is extremely large,
then the distribution of any perturbed output θ̃ ← θ + e is
indistinguishable from the noise distribution. Yet, one cer-
tainly does not prefer a mechanism whose output looks like
noises.

How large should the injected noise be? Intuitively, it
should be comparable to the difference in the outputs pro-
duced from neighboring datasets, preferably every pair of
them. Therefore, we define the following:
Definition 3. [Sensitivity] For a randomized mechanism
M : D → Θ, the Lp sensitivity ofM is

∆p = max
D,D′

∥M(D)−M(D′)∥p (6)

for all neighboring datasets D,D′ ∈ D, where ∥ · ∥p refers
to the Lp norm, i.e., its Lp distance from the origin1.

Dwork [15] proves that adding a noise e proportional to
exp(−∥e∥1/a) gives (∆1/a)-DP. Thus, one can achieve ϵ-
DP by injecting Laplacian noise e of scale (∆1/ϵ) (and
mean 0) (i.e., the Laplacian mechanism):

θ̃ ← θ∗ + Lap

(
∆1

ϵ

)
, (7)

where Lap(a) has probability density function p(e) =
(1/2a) exp (−∥e∥1/a).

In the case of (ϵ, δ)-DP, Dwork and Roth [17] show that
for any ϵ ∈ (0, 1) and δ ∈ (0, 1), one can achieve (ϵ, δ)-DP
by injecting Gaussian noise to the mechanism output (i.e.,
the Gaussian mechanism):

θ̃ ← θ∗ +N
(
0,

2 ln(1.25/δ)∆2
2

ϵ2

)
. (8)

For simplicity we will use ∆ to represent sensitivity in
general and it defaults to ∆1 for Laplacian mechanism and
∆2 for Gaussian mechanism.

1For example, the L2 norm of a r-sized vector ∥θ∥2 =√
θ21 + θ22 + · · ·+ θ2r .

3

3 DP Mechanisms for Machine Learning
In this section, we introduce DP-ML mechanisms for
some traditional ML algorithms. In particular, we will dis-
cuss supervised learning models including linear models
(Sec. 3.1), naı̈ve Bayes models (Sec. 3.2) and decision trees
(Sec. 3.3) and unsupervised learning models including K-
means clustering (Sec. 3.4) and principal component analy-
sis (Sec. 3.5). We give a brief explanation about each model,
focusing on what objective it aims to optimize and what
the model parameters θ are, before proceeding to the DP
mechanisms.

Almost all DP-ML mechanisms are based on the noise
addition mechanism introduced in Sec. 2.2 to achieve DP.
Therefore, we need to answer a few questions for each ML
model: Where should we inject noise? What form of noise
should we add? What is the sensitivity of the training mech-
anism (so that we know how much noise to add)?

3.1 Linear Models
A linear model with parameters θ = [θx θ0] aims to asso-
ciate label y with an affine (i.e., linear with offset) transfor-
mation of features x: θ⊤

x x+ θ0 ∈ R. In binary classification
problems with y = {y1, y2, · · · , yn} ∈ {1,−1}n, a linear
classification (LinC) model takes the form

Fθ(x) = sign
(
θ⊤
x x+ θ0

)
, (9)

where sign(a) = a/|a| outputs the sign of the input. The
hyperplane θ⊤

x x + θ0 = 0 serves as the decision bound-
ary separating the positive and negative data. LinC may use
Hinge loss as its loss function, that is,

L (Fθ(x), y) = max
(
0, 1− y

(
θ⊤
x x+ θ0

))
. (10)

Logistic regression (LogR) is another linear model used
for classification problems. LogR aims to output the likeli-
hood that the label to a datum x is y = 1:

Fθ(x) = Pr(y = 1 | x) = σ
(
θ⊤
x x+ θ0

)
, (11)

where σ(a) = 1/(1+exp (−a)) is the sigmoid function that
maps the affine transformation θ⊤

x x+θ0 ∈ R to a likelihood
in [0, 1]. LogR uses logistic loss as its loss function, that is,

L (Fθ(x), y) = log
(
1 + exp

(
−y
(
θ⊤
x x+ θ0

)))
. (12)

Linear regression (LinR) is used for regression problems.
It directly takes the form

Fθ(x) = θ⊤
x x+ θ0, (13)

which associates y with x through an affine relationship.
LinR commonly uses mean squared loss (L2 loss) as its loss
function, i.e.,

L (Fθ(x), y) =
(
y −

(
θ⊤
x x+ θ0

))2
. (14)

In all the aforementioned linear models, regularization
(see Sec. 2.1) is typically done by penalizing the L2 norm of
model parameters θ to avoid overfitting. Therefore, a general
form of linear models’ objective function can be written as

θ∗ = argmin
θ

n∑
i=1

L (Fθ(xi), yi) + C · ∥θ∥22. (15)

Differentially Private Linear Models Lei [26] proposes
a simple InPert DP mechanism that applies to LinR and
LogR. It works by creating a synthetic dataset based on the
perturbed histogram of the original dataset. However, it only
works for low-dimensional problems and may lead to poor
accuracy on large-scale datasets [22]. Interested readers may
refer to App. B.3 to learn more about this method.

Chauduri et al. [8, 9] propose one OutPert and one
ObjPert DP mechanisms for regularized linear models
with normalized features (i.e., ∥x∥2 = 1), with the assump-
tion that both the loss function L and the regularizer are
strongly convex and differentiable (e.g., logistic loss and L2
regularizer in Eq. (15)). The sensitivity of trained model pa-
rameters θ is ∆ = 2/C roughly because the impact of the 2
data that differ in every pair of neighboring sets is restricted
by the regularization parameter C. Therefore, ϵ-DP through
OutPert can be achieved by setting

θ̃ ← θ∗ + Lap

(
2

Cϵ

)
(16)

from Eq. (7). As a different approach, one can also perturb
the minimization objective in Eq. (15), i.e.,

θ̃ = argmin
θ

n∑
i=1

L (Fθ(xi), yi) + C · ∥θ∥22 + e⊤θ, (17)

where e ∼ Lap(2/Cϵ). In other words, the derivative of
the objective function (and thus the minimizer which makes
the derivative zero) is perturbed by a Laplacian noise of the
same scale as Eq. (16). The above ObjPert mechanism ad-
ditionally requires the loss function L and regularizer to be
doubly differentiable. In practice, in order to use the above
OutPert and ObjPert mechanisms with non-differentiable
but continuous loss functions or regularizers (e.g., Hinge
loss is not differentiable at 1), one can convert it to a differ-
entiable one by “smoothening” the non-differentiable points
using piecewise functions.

Zhang et al. [40] propose a more general ObjPert mech-
anism that can be used in both standard LogR and LinR
models without regularization and regularized ones, called
the functional mechanism. In such a general setting, the
sensitivity of the original objective function is hard to mea-
sure. Therefore, one may rewrite the original logistic loss
function (12) with model parameters θ = (θ1, ..., θr) as its
unique Stone-Weierstrass approximation [21]2:

L (Fθ(x), y) =
∑

ϕ(θ)=θ
ζ1
1 θ

ζ2
2 ···θζr

r
ζ1+···+ζr≤Z

λx,y,ϕϕ(θ), (18)

which is a weighted sum of polynomials ϕ(θ) of order up to
Z (λx,y,ϕ is the weight; Z can be potentially infinite). The
sum of losses for all data in Eq. (1) that we want to mini-
mize is therefore also a weighted sum of these ϕ(θ), with
the weight of ϕ(θ) being λϕ =

∑n
i=1 λxi,yi,ϕ. To achieve

2Readers who are unfamiliar with approximation theory may
draw a parallel to power series expansion of a function. The expan-
sion serves as an approximation to the function.

4

ϵ-DP through ObjPert, one can then inject noises to these
weights, i.e., for each polynomial ϕ(θ),

λ̃ϕ ← λϕ + Lap

(
∆

ϵ

)
, (19)

where ∆ = 2maxx,y
∑

ϕ |λx,y,ϕ| is the sensitivity. Then the
objective in Eq. (1) becomes

θ̃ = argmin
θ

∑
ϕ(θ)=θ

ζ1
1 θ

ζ2
2 ···θζr

r
ζ1+···+ζr≤Z

λ̃ϕϕ(θ). (20)

In practice, the highest order of ϕθ, Z, can be forced to be
finite by taking the Taylor expansion of loss function L and
truncating it. This makes the above method computationally
feasible.

When the dataset D has larger number of data n or num-
ber of features m, it can be computationally expensive to
analytically find the minimizer θ∗ that minimizes the objec-
tive function. In such cases, iterative mechanisms such as
gradient descent are often used. We will discuss such mech-
anisms and their DP versions in Sec. 4 DP Mechanisms for
Deep Learning instead when we illustrate perceptrons and
neural networks.

3.2 Naı̈ve Bayes Model
From a probabilistic point of view, both features x =
(x1, x2, · · · , xm) and label y are observations/realizations
of some random variables X = (X1, X2, · · · , Xm) and
Y respectively. Y may take values from the set of classes
C = {c1, c2, · · · , c|C|}. The label Y to a given set of fea-
tures x follows some unknown probability distribution p(Y |
X = x) and the model aims to predict the label y as class
c ∈ C that is the most probable given features x. This is
known as the maximum a posterior estimate:

Fθ(x) = argmax
c∈C

Pr(Y = c | X = x). (21)

However, the distribution p(Y | X = x) could be diffi-
cult to estimate from the dataset D directly due to lack of
data with features x. On the other hand, the distribution of
label Y regardless of the features, p(Y), can be easily es-
timated from the label set y = {y1, · · · , yn}. For example,
for classification problems, we assume p(Y) to be a categor-
ical distribution and use the frequency of class c, nc

n , as the
probability of class c. Here nc refers to the number of data
labelled as class c.

For simplicity we will abbreviate X = x as x and Y = c
as c in probability notations from this point onwards. The
Bayes’ theorem [6] provides a way to update from the prior
distribution, p(Y), to the posterior distribution after observ-
ing x, p(Y | x). Mathematically,

Pr(c | x) = Pr(x | c) Pr(c)
Pr(x)

. (22)

Combining Eq. (21) and (22), the denominator Pr(x) be-
comes unnecessary as a constant, thus,

Fθ(x) = argmax
c∈C

Pr(x | c) Pr(c). (23)

The naı̈ve Bayes (NB) model further assumes that all fea-
tures X1, X2, · · · , Xm are conditionally independent given
the label y = c. This enables us to further break down
Pr(x | c) in Eq. (23):

Fθ(x) = argmax
c∈C

Pr(c)

m∏
j=1

Pr(xj | c), (24)

where the distribution p(Xj | c) can also be easily estimated
by looking at the features set X = {x1, ...,xn} restricted
to feature Xj and class c. In the same fashion as how we
estimate p(Y), when Xj is discrete and finite, we assume
p(Xj | c) as a categorical distribution with Pr(xj | c) being
the frequency of xj in class c,

nc,xj

nc
. Here nc,xj

refers to the
number of data whose label is y = c and j-th feature equals
xj . When Xj is continuous or infinite, we assume p(Xj | c)
as a Gaussian distribution N (µ, σ2) with mean µ and vari-
ance σ2 estimated using the sample mean and variance.

Specifically, the model parameters θ in NB refers to the
parameters of distributions p(Y) and p(Xj | c) for each fea-
ture Xj and class c. For example, it can contain the proba-
bility of each category for a categorical distribution and the
mean and variance for a Gaussian distribution.

Differentially Private Naı̈ve Bayes For NB models, ϵ-
privacy through ObjPert is achieved by injecting noises to
the parameters of distributions [37]. Consider first the cate-
gorical features. In any pair of neighboring datasets, for any
label y or feature value xj , the number of data with label
y = c, nc, or the number of data whose labels are y = c
and j-th features equal xj , nc,xj

, clearly differs by at most
1 because only 1 datum changes. Therefore, we can simply
do the following updates:

ñc ← nc + Lap

(
1

ϵ

)
; (25)

ñc,xj ← nc,xj + Lap

(
1

ϵ

)
. (26)

The perturbed parameters of distributions (i.e., frequencies)
can then be calculated by ñc

n and
ñc,xj

ñc
.

Consider now a continuous or infinite feature Xj that is
assumed to follow a Gaussian prior. Assume that all pos-
sible observed values for Xj are bounded between [lj , uj].
Considering neighboring datasets of size n and n + 1, the
sensitivity of its mean µj is ∆µj

=
uj−lj
n+1 ; the sensitivity

of its standard deviation σj is ∆σj
=
√

n(uj−lj)
n+1 . Thus the

perturbed mean and standard deviation are

µ̃j ← µj + Lap

(
∆µj

ϵ

)
; (27)

σ̃j ← σj + Lap

(
∆σj

ϵ

)
. (28)

3.3 Decision Tree Models
A decision tree (DT) model works primarily for classifica-
tion problems with discrete (or discretized continuous) fea-
tures. As its name suggests, a DT model involves a tree

5

(a) IDT training. (b) RDT training.

Figure 2: Illustration of two types of DT models. In exam-
ple 2a, when classifying a new datum with binary features
x = {x1 = 1, x2 = −1, x3 = −1}, the DT model starts
from the root node x2, followed by x1 and x3 and takes the
majority label at the leaf node, i.e., F(x) = −1.

In terms of model training, IDT (2a) builds the tree it-
eratively by selecting features according to some heuristic,
whereas RDT (2b) presets the tree structure and simply up-
dates the counters ℓν at each leaf node ν.

structure where each node represents one feature based on
whose discrete values we can split the dataset (i.e., a deci-
sion to be made), and each branch denotes a value of the
feature on its parent node.

A common approach to train a DT model is the itera-
tive approach that builds an iterative decision tree (IDT)
(Fig. 2a). Starting from the root node and the entire train-
ing dataset D, in each iteration, we select one of the m fea-
tures as the current node. Each branch (i.e., value of the se-
lected feature) will only point to a subset of data and a new
child node. We then repeat this process on the subset of data
Dk ⊆ D and the child node, until (i) all the data in the sub-
set have the same label, or (ii) there is no feature we can se-
lect as the current node. We call such nodes leaf nodes (i.e.,
those without child nodes). When IDT is applied to classify
a new datum, the datum will be directed to a unique leaf
node and assigned the following label: in case (i), we just
take the common label; in case (ii), we choose the label pos-
sessed by the most data in that subset (i.e., a majority vote).
Just like any other tree structure, DT’s space complexity in-
creases exponentially with its height h (i.e., maximum num-
ber of features required to reach (i) or (ii)). Also, a smaller
and thus simpler tree is often preferred to avoid overfitting.
Thus, features are carefully selected at each node to reach
(i) as fast as possible. One well-known heuristic is to se-
lect the feature that brings the largest information gain, that
is, reduces our uncertainty about the label to the largest ex-
tent (e.g., in case (i), we are 100% certain about the label
of any datum that falls to that leaf node). Mathematically,
uncertainty about the label of a dataset D is quantified by
entropy:

Entropy(D) = −
∑
c∈C

Pr(c) log Pr(c), (29)

where (recall that) Pr(c) = Pr(Y = c) = nc/n is the
proportion of data with label c. Suppose that selecting the
j-th feature segments the dataset D to Q disjoint datasets{
D(1), D(2), · · · , D(Q)

}
, then information gain is defined

as the reduction in entropy after selecting the j-th feature:

IG(xj) = Entropy(D)−
Q∑

q=1

|D(q)|
|D|

Entropy
(
D(q)

)
.

(30)
App. B.1 gives an example of how to construct an IDT
model using information gain as the heuristic of selection.

Another approach to train a DT model is the random ap-
proach that builds a random decision tree (RDT) (Fig. 2b).
Specifically, RDT pre-selects h ≤ m features (with order)
randomly. Clearly, these features will give a RDT of height
h. Let V denote the set of leaf nodes in the RDT. Each leaf
node ν ∈ V contains a vector ℓν of length equal to the num-
ber of classes |C|. The vector ℓν represents the number of
data in leaf node ν in each class, so ℓν,c = 0 for every leaf
node ν and every class c before training. During the training
process, each datum with label y = c will be directed to a
unique leaf node ν by the selected h features and increase the
entry ℓν,c by 1. Therefore, unlike IDT which does not have
model parameters θ of fixed size, RDT has θ of size |V| · |C|
which uniquely characterizes the trained model. When ap-
plied to classify a new datum, RDT works similarly to IDT
by choosing the most common label c at the leaf nodes.

Clearly, RDT is sub-optimal compared with IDT in terms
of accuracy and size. However, it involves less computation
and thus a lot of RDT models can be combined to form an
ensemble model, which has proven to give a good perfor-
mance [19]. Moreover, since RDT has model parameters θ
of fixed size, it can be perturbed more easily to achieve DP.

Differentially Private Decision Tree To achieve ϵ-DP for
IDT, Blum et al. [7] propose to perturb the intermediate step
(UpPert) at each iteration (e.g., information gain). Since the
information gain needs to be repeatedly calculated for every
remaining feature at each iteration which consumes the pri-
vacy budget ϵ quickly, a large noise needs to be injected to
each of these information gains to ensure a small privacy
loss each time, so that the total privacy after composition
(see Sec. 2.2) does not exceed ϵ. Moreover, the IDT must
not grow too high until any datum can be uniquely identified
at any leaf node. In consequence, the shallow and noisy IDT
model can easily fail.

As a result, Jagannathan et al. [23] propose to achieve ϵ-
DP through OutPert for RDT instead. The sensitivity of
each model parameter ℓν,c is 1 because the one different da-
tum can only change a leaf node’s counter by either 0 or
1. Hence, ϵ-privacy through OutPert can be achieved by
injecting a Lap(1/ϵ) noise to each parameter ℓν,c of the
trained RDT model:

ℓ̃ν,c ← ℓν,c + Lap

(
1

ϵ

)
,∀ν ∈ V, c ∈ C. (31)

Consider an ensemble of N RDT models that are trained
with the above OutPert method. From the composition
property (Prop. 1), the ensemble model satisfies (Nϵ)-DP.
Conversely, if the data owners desire ϵ-DP, each parame-
ter ℓν,c of each RDT model should be perturbed with a
Lap(N/ϵ) noise. In fact, such idea can be applied to any
other ensemble models to achieve DP as well.

6

3.4 K-Means Clustering
K-means clustering (KMC) works for unsupervised learn-
ing problem where data labels are not available. The model
owner wishes to understand the distribution of dataset D,
specifically whether some data are closer to one another (i.e.,
they are clustered) and where the cluster centers are. For ex-
ample, a city planner may place bus terminals at each clus-
ter center such that all citizens may use a bus terminal near
them.

Mathematically, KMC aims to partition a dataset D of n
data into K clusters such that within each cluster, the sum
of variances from all data within that cluster to the cluster
centroid (i.e., center) is minimized. Let the set of K clus-
ters be C = {C1, C2..., CK} with centroids c1, c2, · · · , cK
respectively. The objective is to find the optimum C∗ such
that

C∗ = argmin
C

K∑
k=1

∑
x∈Ck

∥x− ci∥22

= argmin
C

K∑
k=1

(|Ck| ·Var(Ck)) ,

(32)

where each centroid ck is the mean of all points in cluster
Ck,

(∑
x∈Ck

x
)
/|Ck|.

To train a KMC clustering model, the K centroids are ini-
tially chosen randomly. Each training datum is assigned to
the cluster of its nearest centroid. Then, each cluster’s cen-
troid is updated based on the mean of data in each cluster.
This process is repeated until all centroids do not change
anymore.

It is clear that a trained KMC model can be uniquely de-
termined by its K cluster centroids c1, c2, · · · , cK . There-
fore, its model parameters θ are precisely a combination of
these centroids [c1 c2 · · · cK].

Differentially Private K-Means Clustering The sensi-
tivity of KMC model parameters θ = [c1 c2 · · · cK] is
hard to quantify, because changing one datum might change
the whole dataset’s pattern and lead some centroids to move
far (e.g., consider two neighboring datasets that differ by a
very far anomalous datum). Even if we are able to bound
such a large sensitivity, the trained model will be destroyed
by the corresponding noise added. Therefore, converting
plain KMC model to a DP version is not preferred.

To reduce the impact of anomalous data and thus sensi-
tivity, [29] proposes a sample-aggregate framework which
can consequently achieve ϵ-DP by OutPert. At the sam-
pling stage, the training data is randomly partitioned into q
small subsets D1, D2, ..., Dq . When q is set to be sufficiently
large, it is nearly certain that only a small proportion of these
subsets contain anomalous data. If we independently train
KMC models using every subset to obtain C1,C2, · · · ,Cq

(each containing K centroids), then it is likely that most of
these centroid sets are close to one another. Following this
idea, one can simply select the centroid sets within a “ball”
of L1 diameter ∆ and omit the other centroid sets that are
likely to be off. The aggregation stage will simply output
the center of the ball, C∗. In this way, the sensitivity of the
corresponding vector θ∗ is at most ∆.

One can then follow the normal step to achieve ϵ-DP:

θ̃ ← θ∗ + Lap

(
∆

ϵ

)
. (33)

3.5 Principal Component Analysis
Principal component analysis (PCA) is an unsupervised
learning model commonly used to reduce high-dimensional
data to a new coordinate system of lower dimensions struc-
tured by the orthogonal vectors called principal components
(PCs). The first PC is the direction along which the data have
the highest variance, thus retaining the highest information
from the original data. All subsequent PCs capture the next
highest variance within the data and must be orthogonal to
all previous PCs to ensure that all PCs are not correlated.

Mathematically, PCA starts from the m × m feature co-
variance matrix Σ = (1/n)X⊤X of the dataset. One can
then compute Σ’s eigenvectors (PCs) and the corresponding
eigenvalues which reflects the amount of variance in each
PC. Ranking all the eigenvectors according to their eigen-
values yields the PCs in the order of significance.

In PCA models, the model parameters θ contain each PC
in order.

Differentially Private Principal Component Analysis
Blum et al. propose the SuLQ framework [7] which achieves
DP through UpPert. SuLQ perturbs every entry in the co-
variance matrix Σ to obtain Σ̃. However, the perturbed ma-
trix Σ̃ may not be symmetric, which means that the eigen-
vectors and corresponding eigenvectors may be complex
(i.e., not real). Such results are useless for PCA.

To address this, [10] proposes the PPCA mechanism to
achieve ϵ-DP, making use of the exponential mechanism
[28] of DP. The exponential mechanism is a generalized ver-
sion of the Laplacian mechanism, which can directly mod-
ify mechanismM to produce a differentially private output
M̃(D), instead of injecting noises to its output3. For exam-
ple, in PPCA, the PCs can be directly sampled from a per-
turbed distribution in the form of the matrix Bingham distri-
bution Bmf(nϵΣ/2) [11].

4 Mechanisms for Deep Learning
Recall from Sec. 2.1 that the neural network (NN) model
is the core of DL. In this section, we will first explain the
structure and training of NN models (Sec. 4.1). We focus on
the most fundamental and important type: perceptron neu-
ral networks (PNNs). In fact, all current NN models are vari-
ants of PNNs.

We then proceed to explain two major, if not the only two,
DP mechanisms to train NN models privately, namely differ-
entially private stochastic gradient descent (Sec. 4.2) and
private aggregation of teacher ensembles (Sec. 4.3).

3We will not give a detailed explanation of the exponential
mechanism for the purpose of this report since it requires much
additional knowledge on DP and is rarely used in existing DP-ML
literatures. Interested readers may refer to [24] which gives a good
explanation of the exponential mechanism.

7

(a) A perceptron. (b) A (P)NN model.

Figure 3: Illustration of PNNs. A PNN model (3b) com-
prises of layers of perceptrons (3a).

4.1 Neural Network Model
Perceptrons Perceptrons are the basic building blocks of
PNNs, similar to neurons in human brains. As shown in
Fig. 3a, a perceptron with parameters θ = [θx θ0] and
input x is essentially a LinR model with an additional acti-
vation function g (which can be non-linear):

Fθ = g
(
θ⊤
x x+ θ0

)
. (34)

Examples of common activation functions g include ReLU
(g(a) = max(0, a)), sigmoid (g(a) = 1/(1 + exp(−a)))
and Swish (g(a) = a/(1 + exp(−a))). The activation func-
tions provide non-linearity and therefore (theoretically) al-
low PNNs (i.e., composition of many perceptrons) to repre-
sent any unknown relationship between features x and label
y.

Perceptrons use similar loss functions L (e.g., mean
squared loss) to LinR models. Training a perceptron is to
minimize the sum of losses over all data (xi, yi) ∈ D:

θ∗ = argmin
θ

n∑
i=1

L (Fθ(xi), yi) . (35)

The sum of losses in Eq. (35) is called the objective function
and often assumed to be convex and differentiable. There-
fore, its gradient at θ∗ should equal zero, that is,

n∑
i=1

∇L (Fθ∗(xi), yi) = 0, (36)

where∇ is the vector differentiation operator.

Gradient Descent Solving Eq. (36) analytically requires
matrix inversion, which is computationally infeasible when
the dataset D is large. Therefore, one has to resort to iterative
optimization techniques instead, where θ is updated at each
step until converging to θ∗.

Gradient descent (GD) is a commonly used iterative op-
timization technique. It works by updating θ in the oppo-
site direction to the gradient at θ. For example, consider the
simple convex function f(θ) = θ2 with minimizer θ∗ = 0.
When θ is positive, the gradient 2θ is positive and we need
to decrease θ, vice versa.

Algorithmically, GD starts with an initial θ (0 or ran-
dom) and a preset learning rate η which controls how far

we should update θ each time. At each iteration, GD com-
putes the average4 gradient of the objective function over all
data (xi, yi) ∈ D to update the parameters:

θ ← θ − η · 1
n

n∑
i=1

∇L (Fθ(xi), yi) . (37)

Sometimes one may prefer a learning rate that decays over
the number of iterations as we are getting closer to the min-
imum.

However, computing gradients using all data becomes ex-
pensive when the dataset D is large. Moreover, when the
objective function is not necessarily convex, GD may even-
tually stop at a local minimum 5. Thus a variant of GD called
stochastic GD (SGD) works differently by randomly sam-
pling one datum (xi, yi) ∈ D and calculating the gradient
for only this datum in each iteration:

θ ← θ − η · ∇L (Fθ(xi), yi) . (38)

Despite its stochasticity, SGD has been proven to converge
for most of the time. Therefore, when the dataset D is large,
SGD is preferred because of its time efficiency.

Mini-batch GD is another variant of GD which combines
the advantages of GD and SGD: In each iteration, a random
subset (mini-batch) of size b is sampled instead of a single
datum. The gradient is computed by averaging the gradients
for only the data in the mini-batch.

Neural Networks and Backpropagation As shown in
Fig. 3b, a PNN is made up of several layers of perceptrons.
Outputs of perceptrons in the previous layer are inputs of
perceptrons in the next layer. Through such composition of
non-linear functions, PNNs are capable of representing very
complex relationships between features x and label y.

PNNs are trained through backpropagation [25]. In each
iteration, the input x first passes through all the layers to
get the output Fθ(x) and loss L(Fθ(x), y). This is called a
forward propagation. Computing the gradients for the last
layer of perceptrons is as easy as doing so for a single per-
ceptron model. The gradients for the second last layer of
perceptrons can be computed based on the last layer through
the chain rule (see App. B.2 for more detailed explanation
and examples). By repeating this process until the gradients
for the first layer (and therefore all layers) of perceptrons are
calculated, one can then update all model parameters θ us-
ing GD. Since the gradients are computed backwards layer
by layer, this technique is called backpropagation.

4.2 Differentially Private Stochastic Gradient
Descent

Unlike traditional ML models listed in Sec. 3 whose param-
eters θ’s sensitivity is easy to measure, NN models are too
complex to break down to quantify their sensitivity directly.

4Note that the sum of gradients can also be used instead of the
average. Averaging can avoid the impact of number of data, espe-
cially when a mini-batch of data instead the entire dataset is used
to compute the gradient.

5Local minima are points which are not minimizers but have
zero gradient

8

Algorithm 1: DP-SGD.
Input: Noise scale σ, sample size b, gradient norm
bound G, number of iterations T , learning rate η =
(η1, η2, · · · , ηT).
Output: Trained model parameters θ(t) after T itera-
tions.

1: Initialize θ(0) randomly
2: for t = 0, 1, 2, · · · , T − 1 do
3: Take a random sample Dt of size b with sampling

probability b/n
4: for each {x, y} ∈ Dt do
5: Gradient gt(x)← ∇θ(t)L (Fθ(t)(x), y)
6: end for
7: Clipped gradient ḡt(x) = gt(x)/max

(
1, ∥gt(x)∥2

G

)
8: Noisy gradient g̃t= 1

b

(∑
x∈Dt

ḡt(x)+N (0, σ2G2I)

)
9: New parameters θ(t+1) = θ(t) − ηtg̃t

10: end for
11: return θ(T)

An alternative methodology is to treat NN as a black box and
analyze its input-output behavior. However, NN models usu-
ally demonstrate intricate behavior again due to their com-
plex structures. Therefore, it is hardly possible to achieve DP
through OutPert, unless one injects an unreasonably large
noise which results in a useless model. Meanwhile, InPert
and ObjPert are also regarded as impractical [38].

Therefore, one may resort to UpPert by practising DP in
each iteration of GD or SGD. Precisely, [5] develops UpPert
for GD and [1] develops UpPert for SGD. A special advan-
tage of practising UpPert for SGD over GD is because of its
stochasticity: since random data are chosen in each iteration,
the privacy of each datum is amplified because each datum
has a probability of never being used [4]. For this reason we
will focus on explaining the differentially private SGD (DP-
SGD) algorithm in this section. It is also worth noting that
(ϵ, δ)-DP is preferred over ϵ-DP since the former provides
more relaxed constraint and thus less sacrifice in model per-
formance. This is especially meaningful to iterative training
mechanisms including SGD since the noises will accumu-
late across iterations.

A complete pseudocode for the DP-SGD mechanism is
given in Alg. 1. In each iteration, we select a random sample
Dt ⊆ D of size b to calculate and average the gradients (i.e.,
a mini-batch GD). To ensure each datum’s privacy, we do
not want any particular datum to have too much impact on
the average gradient, thus we “clip” (i.e., scale) each gradi-
ent in line 7 such that each gradient’s norm does not exceed
a preset constant G. We then take the average gradient and
add a Gaussian noise based on the Gaussian mechanism in-
troduced in Sec. 2.2 in line 8. Finally, we apply the descent
in line 9.

Proposition 3. [Privacy of DP-SGD [1]] There exists con-
stants C1 and C2 such that for any ϵ < C1(b/n)

2T , DP-
SGD satisfies (ϵ, δ)-DP for any δ > 0 if we set the noise

scale σ ≤ C2b
√
T log(1/δ)/(nϵ).

The above Prop. 3 is proven by a novel moment account
method, which provides a bound for the privacy loss in each
iteration. Roughly, after we set the noise scale σ, each SGD
iteration will cost some bounded amount of privacy such that
after a computable number of iterations, our privacy budget ϵ
will be exhausted. In particular, the moment account method
provides a better privacy bound than the vanilla composition
theorem for (ϵ, δ)-DP.

Meanwhile, the utility (i.e., model performance) of NN
models trained through DP-SGD can also be ensured. In
fact, it can be proven in a similar fashion to how the utility
of plain SGD is guaranteed, where the latter has been thor-
oughly analyzed (e.g., [32]). Intuitively, assume the objec-
tive function is convex. If we perform gradient descent using
the average gradient of all data (i.e., GD), then it is guaran-
teed that θ will converge to the minimizer θ∗. In the case
of SGD, the expectation of the gradient of the randomly
sampled data is equal to the average gradient in GD, thus in
the expected sense θ will still converge to the minimizer θ∗.
In the case of DP-SGD, the expectation of the perturbed
gradient of the randomly sampled data is still equal to the
average gradient in GD (though with a larger variance), so it
is expected that θ will still converge to the minimizer θ∗.

Due to the simplicity, privacy and utility guarantee of DP-
SGD, it has become the most prevalent DP mechanism for
DL. It has also been implemented on trending DL libraries
such as Tensorflow Privacy.

4.3 Private Aggregation of Teacher Ensembles
In Sec. 4.2 we have discussed that NN models are com-
plex and the sensitivity is hard to quantify. Similar to what
is done for KMC models in Sec. 3.4, one can again make
the sensitivity easier to bound by sampling of the training
data D1, D2, · · · , Dq and train NN models using each sub-
set. Motivated by this, Papernot et al. [30] propose a general
framework called Private Aggregation of Teacher Ensem-
bles (PATE) to achieve DP.

Fig. 4 shows the design of PATE framework. The training
dataset D is first randomly partitioned into disjoint subsets
D1, D2, ..., Dq , and each subset is used to train a teacher
modelFθ1

,Fθ2
, ...,Fθq

. Aggregation of these q teachers are
done through majority vote: given a new set of features x,
each teacher will predict a label y, with qc of them predict-
ing y = c (recall that class c ∈ C). When 1 datum in train-
ing dataset changes, only one of D1, D2, ..., Dq will change
(since they are disjoint). Thus, there will be at most 1 teacher
changing its predicting and thus a maximum of 2 qc’s chang-
ing: one increases by 1 and the other decreases by 1. Thus
the sensitivity for predicting the label to x is 2. Therefore,
one can inject noises to each qc to obtain the perturbed ag-
gregate teacher:

q̃c ← qc + Lap

(
2

ϵ

)
,∀c ∈ C. (39)

The above mechanism satisfies ϵ-DP for the particular query
x. It does not mean that the perturbed aggregate teacher it-
self satisfies ϵ-DP, but rather mean that a privacy of ϵ is cost

9

Figure 4: Illustration of the PATE framework.

whenever the perturbed aggregate teacher predicts the label
to a new query.

The next stage of PATE is for a student model to learn
from the perturbed aggregate teacher. To do this, the per-
turbed aggregate teacher needs to predict the label to T new
queries in T iterations. These queries can either be pub-
lic unlabelled dataset or synthetic feature set. The student
model Fθ can therefore be trained using the newly labelled
dataset. In other words, PATE is essentially an InPert
mechanism where the perturbed aggregate teacher model
creates the synthetic input dataset. The overall privacy level
of the PATE framework can be analyzed through the afore-
mentioned moment accountant method [1] as well.

The PATE framework has been shown to have a perfor-
mance comparable to, if not better than, DP-SGD. For ex-
ample, on the standard MNIST dataset, PATE has achieved
both better privacy level (ϵ = 2.04) and accuracy (98%)
than DP-SGD (ϵ = 8, 97% accuracy). Moreover, PATE does
not restrict the type of ML/DL model used and the training
mechanism, unlike DP-SGD. Papernot et al. [30] have suc-
cessfully applied the PATE framework on GAN and random
forest models. Nevertheless, the PATE framework can only
be applied to classification problems so far (to let the sensi-
tivity be 2). It remains questionable whether the framework
can be adapted to regression problems as DP-SGD is capa-
ble of.

5 Discussions
In this section, we will make miscellaneous discussions
about DP-ML methods and their implications.

5.1 Privacy-Utility Tradeoff
All DP-ML techniques inject noises at different ML stages
to guarantee the privacy of data owners. The noises added
inevitably affect the model utility/performance (e.g., accu-
racy). Lower privacy budget (i.e., smaller ϵ) leads to a worse
utility. Such intuitions have also been theoretically proven
by Alvim et al. [2], who state that a mechanism that pro-
vides ϵ-DP induces a bound on the utility. Thus, we are inter-
ested in finding out the tradeoff between privacy and utility,
i.e., (a) what is the best utility that can be possibly achieved
given a fixed privacy budget, and (b) maximally how much
privacy budget can be guaranteed given a desired utility. In
particular, (a) has been extensively studied in the field of DP-
ML in order to achieve a model as good as possible; (b) has

(a) Differential cone. (b) Experiment.

Figure 5: Visualization of the privacy-utility tradeoff. DP-
SGD will stop at somewhere close to, but not exactly at, the
minimum (5a). It will be more likely to be accurate (i.e.,
has smaller variance) when the data owners choose a larger
private budget ϵ.

been rigorously studied as privacy accounting, which aims
to provide tighter privacy bound for given DP-ML mecha-
nisms. Besides, since the data of each data owner are differ-
ent, the difference in trained model parameters θ using two
neighboring datasets which differ by different data owners’
datum is also different. Therefore, the privacy level that a
given DP-ML mechanism provides for each data owner is
different too. Such works are known as individualized pri-
vacy accounting (e.g., [20]).

To visualize the privacy-utility tradeoff, we take DP-SGD
as an example (Fig. 5). As shown in Fig. 5a, the path taken
for θ to converge is more noisy and thus the convergence
is slower in DP-SGD than in normal SGD. Moreover, in-
stead of landing at the minimum, DP-SGD always lands at
some point inside a differential cone around the minimum
θ∗. This is not only because the gradient becomes smaller
as θ is getting closer to the minimum θ∗ and will eventually
be fully perturbed by the injected noises, but also because
DP-SGD can only take a finite number of iterations. To il-
lustrate the privacy-utility tradeoff, we also conduct a simple
experiment as shown in Fig. 5b. Specifically, we train a lin-
ear model under different privacy budgets and plot the value
of one particular entry θ1 of the trained model parameters θ.
The variance of points at each privacy budget corresponds
to the size of differential cone. It can be seen clearly that
when a smaller privacy budget ϵ is chosen, the variance is
larger, which means that the model utility is more likely to
be lower.

5.2 Privacy-Fairness Tradeoff
In ML, the dataset D used for model training is sometimes
a combination of data from different groups (e.g., gender,
race) or different classes. Due to the data collection proce-
dures or distribution of different classes within access, the
proportion of each group in dataset D can often be imbal-
anced. It is important that the trained ML model not only
achieves a high overall utility, but also a high utility for each
of the groups. Fairness studies how disparate the model util-
ity for each group is. For example, consider a certain disease
where 90% of the patients have mild symptoms and the rest
of them have severe symptoms. A trained ML model may re-
port that a certain drug is effective to 91% of patients, which

10

seems good enough. However, when broken down to groups,
it may be effective to 99% of patients with mild symptoms
but only 20% of patients with severe symptoms. Therefore,
it is not appropriate to advise those with severe symptoms to
take this drug just because of the 91% overall accuracy. In
other words, the trained ML model is biased towards those
with mild symptoms and thus unfair.

Unfortunately, DP-ML could also lead to unfairness in the
trained model. Consider a fair ML model which can per-
fectly represent both majority and minority groups. For the
minority groups to have comparable impact on the trained
model, the training mechanism must place higher impor-
tance on these data. However, in view of DP-ML, higher im-
portance on particular data would raise the overall sensitiv-
ity. While DP aims to bound sensitivity, it will try to weaken
the impact of these data and therefore be biased against them
as before.

Take the two DP mechanisms in DL as an example. For
DP-SGD, data from minority group will normally have a
larger gradient because they are seldom learned in the train-
ing process. However, by clipping the gradient to a maxi-
mum bound G, the impact of such data is limited and there-
fore the trained model will be unfair. In PATE, the “anoma-
lous” data will be even less frequent in each of the sampled
subset to train the teacher models, and thus the aggregate
teacher itself will be unfair. Student model that learns from
the perturbed aggregate teacher will also be unfair. There-
fore, the tradeoff between privacy and fairness is a trending
research topic [3, 31]. For example, some research [36] has
shown that DP-SGD has a more severe disparate impact than
PATE.

5.3 Global and Local Differential Privacy
The DP-ML mechanisms introduced in this paper require the
model owner to inject noise to the ML model throughout the
training process. This demands that the model owner has full
access to the training dataset and therefore should be trusted
by data owners. However, as raised in Sec. 1, in some cases
data owners do not trust that the model owner will keep their
data confidential (will not directly release their data) and
prefer a more private ML setting called federated learning
(FL).

In FL, the model owner does not have access to the train-
ing data. Instead, model training is done locally by each
data owner themselves. Each data owner will report only
the trained model parameters using their data to the model
owner. The model owner will then aggregate these model
parameters as the final model parameters. Since FL ensures
data confidentiality and is easy to implement, it has been
widely used in industries involving sensitive data such as
medicine [12].

However, if data can be leaked from trained ML model
parameters, the untrusted model owner can also reconstruct
each data owner’s data, which defeats the purpose of FL.
Therefore, the idea of DP should also be cultivated into FL
such that the model owner could not differentiate the data
owners from their reported model parameters. Out of this
motivation, local differential privacy [39] is introduced as
follows:

Definition 4. [Local Differential Privacy [39]] Given data
owners DN = {d1, d2, · · · , dN}, a federated randomized
mechanism Mfed : DN → Θ satisfies ϵ-local differential
privacy (ϵ-LDP) if for any pair of data owners d, d′ ∈ DN

and for any O ⊆ Θ, it holds that

Pr(Mfed(d) ∈ O) ≤ eϵ · Pr(Mfed(d
′) ∈ O). (40)

The mechanisms to achieve LDP are similar to those for
global DP, such as the Laplacian mechanism for ϵ-LDP and
the Gaussian mechanism for (ϵ, δ)-LDP which adds the tol-
erance δ to Eq. 4.

Concluding Remarks
Currently, the significance of DP-ML continues to expand.
Laws such as General Data Protection Regulations (GDPR)
have enforced data ownership and data owners have increas-
ing control over their data. Large corporations have been de-
ploying their own DP-ML mechanisms, such as Google’s
RAPPOR [18], Apple’s DP deployments in its emojis, health
and Safari browser [35], and Microsoft’s DP mechanisms
for telemetry data [14]. In this paper, we have thoroughly
covered the basics and some advanced knowledge about
the field of DP-ML. Although both academia and industries
have made great efforts in the development and applications
of DP-ML, there are still open challenges awaiting explo-
ration.

References
[1] Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;

Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep
Learning with Differential Privacy. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS’16. ACM.

[2] Alvim, M. S.; Andrés, M. E.; Chatzikokolakis, K.;
Degano, P.; and Palamidessi, C. 2012. Differential
Privacy: On the Trade-Off Between Utility and Infor-
mation Leakage. In Barthe, G.; Datta, A.; and Etalle,
S., eds., Formal Aspects of Security and Trust, 39–54.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN
978-3-642-29420-4.

[3] Bagdasaryan, E.; Poursaeed, O.; and Shmatikov, V.
2019. Differential Privacy Has Disparate Impact on
Model Accuracy. Advances in neural information pro-
cessing systems, 32.

[4] Balle, B.; Barthe, G.; and Gaboardi, M. 2018. Pri-
vacy Amplification by Subsampling: Tight Analyses
via Couplings and Divergences. Advances in neural
information processing systems, 31.

[5] Bassily, R.; Smith, A.; and Thakurta, A. 2014. Private
Empirical Risk Minimization: Efficient Algorithms
and Tight Error Bounds. In 2014 IEEE 55th annual
symposium on foundations of computer science, 464–
473. IEEE.

[6] Berkson, J. 1930. Bayes’ Theorem. The Annals of
Mathematical Statistics, 1(1): 42–56.

11

[7] Blum, A.; Dwork, C.; McSherry, F.; and Nissim,
K. 2005. Practical Privacy: The SuLQ Frame-
work. In Proceedings of the twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, 128–138.

[8] Chaudhuri, K.; and Monteleoni, C. 2008. Privacy-
Preserving Logistic Regression. In Proc. NeurIPS, vol-
ume 21.

[9] Chaudhuri, K.; Monteleoni, C.; and Sarwate, A. D.
2011. Differentially Private Empirical Risk Minimiza-
tion. Journal of Machine Learning Research, 12(3).

[10] Chaudhuri, K.; Sarwate, A. D.; and Sinha, K. 2013.
Near-Optimal Algorithms for Differentially-Private
Principal Components. arXiv:1207.2812.

[11] Chikuse, Y. 2012. Statistics on Special Manifolds, vol-
ume 174. Springer Science & Business Media.

[12] Dayan, I.; Roth, H. R.; Zhong, A.; Harouni, A.; Gentili,
A.; Abidin, A. Z.; Liu, A.; Costa, A. B.; Wood, B. J.;
Tsai, C.-S.; et al. 2021. Federated Learning for Pre-
dicting Clinical Outcomes in Patients With COVID-19.
Nature medicine, 27(10): 1735–1743.

[13] Desfontaines, D.; and Pejó, B. 2022. SoK: Differential
Privacies. arXiv:1906.01337.

[14] Ding, B.; Kulkarni, J.; and Yekhanin, S. 2017. Col-
lecting Telemetry Data Privately. Advances in Neural
Information Processing Systems, 30.

[15] Dwork, C. 2006. Differential Privacy. In International
Colloquium on Automata, Languages, and Program-
ming, 1–12.

[16] Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov,
I.; and Naor, M. 2006. Our Data, Ourselves: Pri-
vacy via Distributed Noise Generation. In Advances
in Cryptology-EUROCRYPT 2006: 24th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May
28-June 1, 2006. Proceedings 25, 486–503. Springer.

[17] Dwork, C.; and Roth, A. 2014. The Algorithmic
Foundations of Differential Privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):
211–407.

[18] Erlingsson, Ú.; Pihur, V.; and Korolova, A. 2014. Rap-
por: Randomized Aggregatable Privacy-Preserving Or-
dinal Response. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications
security, 1054–1067.

[19] Fan, W.; Wang, H.; Yu, P. S.; and Ma, S. 2003. Is Ran-
dom Model Better? On Its Accuracy and Efficiency. In
Third IEEE International Conference on Data Mining,
51–58. IEEE.

[20] Feldman, V.; and Zrnic, T. 2021. Individual Privacy
Accounting via a Rényi Filter. Advances in Neural In-
formation Processing Systems, 34: 28080–28091.

[21] Gillespie, R. 1955. Principles of Mathematical Analy-
sis. By Walter Rudin. Pp. x, 227. 40s. 1953. (McGraw-
Hill) - Theory of Functions of Real Variable. By Henry
P. Thielman. Pp. xiv, 209. 35s. 1953. (Butterworth

Scientific Publications, London). The Mathematical
Gazette, 39(329): 258–259.

[22] Gong, M.; Xie, Y.; Pan, K.; Feng, K.; and Qin, A. K.
2020. A Survey on Differentially Private Machine
Learning. IEEE computational intelligence magazine,
15(2): 49–64.

[23] Jagannathan, G.; Pillaipakkamnatt, K.; and Wright,
R. N. 2009. A Practical Differentially Private Random
Decision Tree Classifier. In 2009 IEEE International
Conference on Data Mining Workshops, 114–121.

[24] Kamath, G. 2020. Lecture 7 — Exponential Mech-
anism. http://www.gautamkamath.com/CS860notes/
lec7.pdf. Accessed: 2024-04-04.

[25] LeCun, Y.; Touresky, D.; Hinton, G.; and Sejnowski, T.
1988. A Theoretical Framework for Back-Propagation.
In Proceedings of the 1988 connectionist models sum-
mer school, volume 1, 21–28.

[26] Lei, J. 2011. Differentially Private M-Estimators. In
Advances in neural information processing systems,
volume 24.

[27] Li, L.; Fan, Y.; Tse, M.; and Lin, K.-Y. 2020. A Review
of Applications in Federated Learning. Computers &
Industrial Engineering, 149: 106854.

[28] McSherry, F.; and Talwar, K. 2007. Mechanism Design
via Differential Privacy. In 48th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’07),
94–103. IEEE.

[29] Nissim, K.; Raskhodnikova, S.; and Smith, A. 2007.
Smooth Sensitivity and Sampling in Private Data Anal-
ysis. In Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC ’07,
75–84. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781595936318.

[30] Papernot, N.; Abadi, M.; Úlfar Erlingsson; Goodfel-
low, I.; and Talwar, K. 2017. Semi-Supervised Knowl-
edge Transfer for Deep Learning From Private Train-
ing Data. arXiv:1610.05755.

[31] Rosenblatt, L.; Stoyanovich, J.; and Musco, C. 2024.
A Simple and Practical Method for Reducing the Dis-
parate Impact of Differential Privacy. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 38, 21554–21562.

[32] Shamir, O.; and Zhang, T. 2013. Stochastic Gradient
Descent for Non-Smooth Optimization: Convergence
Results and Optimal Averaging Schemes. In Interna-
tional conference on machine learning, 71–79. PMLR.

[33] Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V.
2017. Membership Inference Attacks Against Machine
Learning Models. In 2017 IEEE Symposium on Secu-
rity and Privacy (SP), 3–18. IEEE.

[34] Sweeney, L. 2000. Simple Demographics Often Iden-
tify People Uniquely. Carnegie Mellon University,
Data Privacy.

[35] Team, D. P. 2017. Learning with Privacy at Scale Dif-
ferential.

12

[36] Uniyal, A.; Naidu, R.; Kotti, S.; Singh, S.; Kenfack,
P. J.; Mireshghallah, F.; and Trask, A. 2022. DP-SGD
vs PATE: Which Has Less Disparate Impact on Model
Accuracy? arXiv:2106.12576.

[37] Vaidya, J.; Shafiq, B.; Basu, A.; and Hong, Y. 2013.
Differentially Private Naive Bayes Classification. In
2013 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence (WI) and Intelligent Agent Tech-
nologies (IAT), volume 1, 571–576.

[38] Wang, D.; Ye, M.; and Xu, J. 2017. Differentially
Private Empirical Risk Minimization Revisited: Faster
and More General. Advances in Neural Information
Processing Systems, 30.

[39] Yang, M.; Guo, T.; Zhu, T.; Tjuawinata, I.; Zhao, J.;
and Lam, K.-Y. 2023. Local Differential Privacy and
Its Applications: A Comprehensive Survey. Computer
Standards & Interfaces, 103827.

[40] Zhang, J.; Zhang, Z.; Xiao, X.; Yang, Y.; and Winslett,
M. 2012. Functional Mechanism: Regression Analysis
under Differential Privacy. In Proceedings of the VLDB
Endowment, volume 5.

13

A Project Administration
A.1 Contributions
Overall, the two authors have contributed equally to the report.

A.2 Acknowledgement
The authors would like to extend their thanks to Assistant Professor Yong Sheng Soh for his guidance throughout the course
MA4270: Data Modelling and Computation at National University of Singapore.

B Additional Explanations and Examples of ML and DP-ML Models
B.1 Decision Tree Models
In this section, we will give an example of IDT using IG as the selection criterion.

Suppose the dataset D is as shown below, where each row is a datum and the last column FINALGRADE is the class label to
be predicted.

ATTENDLECTURES ATTENDTUTORIALS MIDTERMGRADE FINALGRADE
x1 Always Always Pass Pass
x2 Always Sometimes Fail Pass
x3 Sometimes Rarely Pass Pass
x4 Sometimes Rarely Fail Fail
x5 Rarely Sometimes Fail Fail
x6 Rarely Rarely Pass Pass

To construct a DT model, we can first calculate6 the entropy in the entire dataset D:

Entropy(D) = −Pr(Pass) log2 Pr(Pass)− Pr(Pass) log2 Pr(Pass)

= −4

6
log2

(
4

6

)
− 2

6
log2

(
2

6

)
= 0.918.

For simplicity we define h(a) = −a log2(a)− (1− a) log2(1− a) for a ∈ [0, 1], i.e., it is the entropy of a dataset with binary
labels, where the fraction of one label is a and the other is 1− a.

Next, we can compute the information gain by each attribute as follows

IG(ATTENDLECTURES) = 0.918− 2

6
h(1)− 2

6
h

(
1

2

)
− 2

6
h

(
1

2

)
= 0.918− 0− 1

3
− 1

3
= 0.252.

IG(ATTENDTUTORIALS) = 0.918− 1

6
h(1)− 2

6
h

(
1

2

)
− 3

6
h

(
2

3

)
= 0.918− 0− 1

3
− 0.459

= 0.126.

IG(MIDTERMGRADE) = 0.918− 3

6
h (1)− 3

6
h

(
1

3

)
= 0.918− 0− 0.459

= 0.459.

Since the attribute MIDTERMGRADE provides the highest information gain, this attribute is chosen as the root node. This
process is repeated at child nodes where data have different class labels until all attributes have been queried, forming the DT
model shown in Fig. 6.

6Note that since there are two classes, log2 is used so that entropy is in the range [0, 1]. Entropy equals 0 when all data belong to the same
class, i.e., no uncertainty about the classification. Entropy is 1 when class labels are half-half.

14

Figure 6: Example of a trained DT model.

B.2 Neural Network Models
In this section we will give an example of backpropagation.

Suppose we are given a dataset with only one datum with features x = (1, 2) and label y = 1. We want to build an NN
model with one hidden layer that consists of two perceptrons (Fig. 7) and no bias term θ0. Model training starts with randomly
initialized parameters θ(0) = (θ1 = 0.10, θ2 = 0.20, θ3 = 0.05, θ4 = 0.15, θ5 = 0.08, θ6 = 0.12).

We first use θ(0) and inputs to predict the label. Inputs are multiplied by weights and passed forward to the next layer:[
z1
z2

]
=

[
0.10 0.20
0.05 0.15

] [
1
2

]
=

[
0.50
0.35

]
;

Predictions
[
ŷ1
ŷ2

]
= [0.08 0.12]

[
0.50
0.35

]
= 0.082.

Now we can calculate the squared loss L(ŷ, y) = 1
2 (ŷ − y)

2 (the factor 1
2 is added to ease the calculation):

L(0.082, 1) = 1

2
(0.082− 1)2 = 0.421.

To update the weights according to the error, we use partial derivative with respect to each weight and apply chain rule. We
start from the last layer:

∂L
∂θ6

=
∂L
∂ŷ
× ∂ŷ

∂θ6

=
∂ 1

2 (ŷ − y)2

∂ŷ
× ∂(z1θ5 + z2θ6)

∂θ6

= (ŷ − y)× ∂(ŷ − y)

∂ŷ
× z2

= (ŷ − y)z2.

So θ6 can be updated by θ6 ← θ6 − η(ŷ − y)z2 for some positive learning rate η (Eq. 37). Similarly, we have ∂L
θ5

= (ŷ − y)z1
and θ5 ← θ5 − η(ŷ − y)z1. Now we can compute the partial derivative for the second last layer:

∂L
θ1

=
∂L
∂ŷ
× ∂ŷ

∂z1
× ∂z1

∂w1

= (ŷ − y)× ∂ (z1θ5 + z2θ6)

∂z1
× ∂x1θ1 + x2θ2

∂θ1
= (ŷ − y)θ5x1.

We can find the formula to update θ2, θ3, θ4 and θ5 accordingly. Suppose the learning rate is η = 0.05, after substituting in the
values, we have θ1 = 0.104, θ2 = 0.207, θ3 = 0.056, θ4 = 0.161, θ5 = 0.103 and θ6 = 0.136. The new prediction is thus[

z1
z2

]
=

[
0.104 0.207
0.056 0.161

] [
1
2

]
=

[
0.518
0.378

]
;

Predictions
[
ŷ1
ŷ2

]
= [0.103 0.136]

[
0.518
0.378

]
= 0.105,

which is closer to the actual label as compared to the previous prediction. This process continues until the loss is minimized
and all the partial derivatives equal zero.

15

Figure 7: Example of an NN model.

(a) Dataset with 2 features x1, x2. (b) Histogram.

Figure 8: Example of a dataset’s histogram which reflects its density function.

B.3 Differentially Private M-Estimators
M-estimator is a family of statistical estimators including commonly used ones such as least squares estimators (which can be
used for LinR) and maximum likelihood estimators (which can be used for LogR). The computation of M-estimators requires
post-processing of the dataset D’s density function, that is, the proportion of data in each cubic cell of dataset D. This can be
easily found from the histogram of D (Fig. 8). In any two neighboring datasets, the numbers of data in the same cubic cell
differ by at most 1 because only 1 datum changes. Therefore, to achieve ϵ-DP, one can simply add a Lap(1/ϵ) noise to each
cubic cell of the histogram. Every M-estimator computed from any synthetic dataset that follows the perturbed histogram then
satisfies ϵ-DP due to its post-processing robustness property (Prop. 2).

16

