
Inverse Analysis of Heat Transfer in Blast Furnaces

Xiao Tian (23R51042)
Tokyo Institute of Technology

Japan 152-8550
tian.x.af@m.titech.ac.jp

Abstract

When direct measurement of quantity of interest is not fea-
sible, one can resort to inverse analysis - measuring some
accessible resultant quantities and recovering the unknown
quantity by inverting the causal process. This applies to blast
furnaces: One needs to gauge and control the internal temper-
ature to ensure stable chemical reaction, but cannot measure
it directly due to the intense temperature. In this report, we re-
visit and examine the inverse analysis approach to this prob-
lem: One can instead measure the relatively low temperature
within a refractory beneath the blast furnace, and retrieve the
internal temperature by inverting the heat transfer process.
We reinstate the theoretical underpinning of this technique
and verify its practicality using simulated data.

1 Introduction
Molten iron, an intermediate product in iron-making that can
be subsequently used to generate iron and steel, is typically
produced in blast furnaces using iron ores, coke and oxygen-
enriched air [20]. The chemical reaction among the afore-
mentioned ingredients takes place at around 1500�C and it
is thus important to know and control the temperature inside
blast furnaces to maintain a stable reaction. However, direct
measurement is impracticable since the internal temperature
of blast furnaces can reach around 2000�C [23]. Therefore,
a surrogate technique to infer the internal phenomenon of
blast furnaces from some indirect measurement is essential.

The phenomena of heat transfer has been well studied
[17] and heat is typically modelled as a partial differential
equation (PDE) of time and position. Therefore, we can al-
ternatively measure the temperature at a separate position
where heat can transfer from the internal of blast furnaces to
that position, then recover the internal temperature by “in-
verting” the heat transfer process. As an example, we can
place a pair of thermocouples within a refractory below the
blast furnace (Fig. 1a).

The surrogate technique as described above is actually an
inverse problem which contains three elements: unknown,
measurement and model (Fig. 1b; we will discuss how to
formulate the three elements in Sec. 2). To solve an inverse
problem, we fit our measurements to a strategically chosen
inverse model to find out the unknown quantities. In this
project, we explore the possibility of the surrogate technique
as described above - to recover the internal phenomena

(a) Demonstration of the sur-
rogate measurement. A pair
of thermocouples are placed
within a refractory below the
blast furnace where the temper-
ature is less high yet still depen-
dent on the internal temperature
through heat transfer.

(b) Illustration of an inverse
problem. An inverse problem
contains an unknown quantity
of interest, measurements of
another accessible quantity, a
well-understood direct model,
and an inverse model to which
we fit the measurements.

Figure 1: Physical and logical overview of the problem.

through an inverse problem approach. Instead of conduct-
ing real-life experiments using actual blast furnaces, we pro-
pose (in Sec. 3) to simulate the process by choosing an arbi-
trary input heat flux and calculating the temperatures at the
positions of the thermocouples as a result of heat transfer.
Such simulation would make our project more customizable,
efficient and resource-saving. We then recover the input heat
flux using the inverse problem approach and compare it with
the actual heat flux (in Sec. 4).

2 Problem Formulation
In this section, we discuss how to formulate our goal as an
inverse problem. To simplify our problem, we model the
heat transfer within the refractory as a 2-dimensional (i.e.,
time and 1-dimensional displacement) boundary value prob-
lem, where the temperature u at any point is related to its
displacement from the heat source (i.e., blast furnace) x
(with domain [0, L = 4 m]) and the time t (with domain
[0, T = 30 d]). The positions of thermocouples are shown
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Figure 2: Heat transfer within the refractory is simplified to
1-dimensional in space1. The boundary between the blast
furnace and the refractory is set as x = 0, and the boundary
between the refractory and the ground has to satisfy temper-
ature u = 0 for the heat to successfully cool down.

in Fig. 2 as TC1 and TC2. The relationship between tem-
perature u, time t and displacement x is governed by the
well-known Heat equation [6]:

@u

@t
=

k

⇢ · C⇢

@2u

@x2
, (1)

where k = 21.20W/(mK) denotes the thermal conductivity

of the refractory, ⇢ = 2300kg/m3 denotes the density of the
refractory and C⇢ = 712 J/(kgK) denotes the specific heat

capacity of the refractory. For simplicity, let ↵ = k
⇢·C⇢

=

1.29⇥ 10�5 Wm2 denote the constant coefficient.
There are also three obvious conditions:

• (Initial condition) When there is no input heat, the tem-
perature is equal to 0 at any distance, i.e.,

8x 2 [0, L] [u(x, 0) = 0]; (2)

• (Dirichlet condition) The temperature is always equal to
0 at the cooling surface, i.e.,

8t 2 [0, T ] [u(4, t) = 0]. (3)

• (Neumann condition) The input heat flux at the source,
h, changes over the time. By Fourier’s law [3], we have

8t 2 [0, T ]


@u

@x
(0, t) = �1

k
· h(t)

�
. (4)

With the above modelling of heat transfer, we proceed to
define the unknown, measurement and model of our in-
verse problem.

Unknown. The unknown quantity in our inverse problem
is clearly the input heat flux at the source, h(·).
Measurement. The measurements in our inverse problem
are the temperatures measured by thermocouples TC1 and
TC2 every �t = 3 hours over T = 30 days. For simplicity,
we denote each timestamp when measurement takes place
as t0 = 0, t1, t2, · · · , tM = 30. We further denote the tem-
peratures measured by TC1 as a vector TC1 with elements
TC1m (m = 1, 2, · · · ,M = 24 h

3 h · 30 d = 240)2, and
the temperatures measured by TC2 as a vector TC2 with
elements TC2m. Specifically, the measurements TC1 and
TC2 will be simulated according to the Heat equation (1).
More details are given in Sec. 3.

1Fig. 2 is a 90� anti-clockwise rotated view of a blast furnace.
2The first measurement at t = 0 is trivial and thus omitted.

Model. Let xTC1 and xTC2 denote the locations of ther-
mocouples TC1 and TC2. Our measurements represent
the temperature at these two locations, i.e., u(xTC1, ·)
and u(xTC2, ·) (if not discretized). There exists a map-
ping L from each possible input heat flux h(·) to
[u(xTC1, ·);u(xTC2, ·)] by solving the Heat equation (1).
Therefore, the (conceptual) direct model is

[u(xTC1, t);u(xTC2, t)] = L(h(t)), (5)

and the (conceptual) inverse model is L�1. More concrete
forms (i.e., integral and matrix forms) of the direct and in-
verse models are derived in the following subsections.

2.1 Green’s Function
The Green’s function [22] is a useful tool in PDEs to analyze
a localized response to a point source. Define G(x, ⇠; t, ⌧) to
be the Green’s function that satisfies

@G

@t
� ↵ · @

2G

@2x
= �(x� ⇠)�(t� ⌧), (6)

where �(·) represents the Dirac delta function [13]. Then
G(x, ⇠; t, ⌧) represents the response at position x and time
t caused by the heat source at position ⇠ and time ⌧ . For
example, G(xTC1, 0; t, 0) represents how TC1 at time t is
affected by the initial heat flux h(0) from the source.

By Superposition principle [11], the actual temperature
u(x, t) is the sum of individual responses caused by the heat
source at every position (in our setting, only x = 0) and
time. It is thus an integral of each response. For example,
the temperature at TC1 at time t is

u(xTC1, t) =

Z t

0
G(xTC1, 0; t, ⌧)h(⌧) d⌧. (7)

It is difficult to invert the integral equation (7) for us to
recover h(·) from u(xTC1, ·). Therefore, we discretize it and
convert it into a matrix equation in the following subsection.

2.2 Discretization
By considering the discretized timestamps t0, t1, · · · , tM
defined earlier, the integral equation (7) is transformed into
the following equation for any m = 1, · · · ,M :

u(xTC1, tm) =
mX

i=1

"Z ti

ti�1

G(xTC1, 0; tm, ⌧) d⌧

#
·hi, (8)

where hi = h
⇣

ti�1+ti
2

⌘
denotes the value of h at

the midpoint of each time interval. Let h be the vector
(h1, h2, · · · , hM ). Let G1 be an M ⇥ M matrix whose
(m, i)-th element G1m i =

R ti
ti�1

G(xTC1, 0; tm, ⌧)d⌧ when
m � i and 0 otherwise. We can now replace Eq. (8) with the
matrix equation

TC1 = G1h. (9)
In the same manner, we can define a matrix equation for TC2
as follows (the notations are similar to those of TC1):

TC2 = G2h. (10)
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(a) Hyperbolic input heat flux
function h(·) with periodic fluc-
tuations on a weekly basis.

(b) Mesh according to which the
whole refractory is split into fi-
nite elements.

Figure 3: Customization of boundary value problem.

Eq. (9) and (10) serve as the direct model in our prob-
lem, whereas solving Eq. (9) and (10) serves as the inverse
model in our problem. For example, if G1 is invertible, we
can simply recover h from TC1 by

h = G1�1TC1. (11)

We will discuss further on how to obtain G1 and G2 and
solve the linear system (9) and (10) in Sec. 4.

3 Simulation of Heat Transfer
In this section, we will explain how we simulate the heat
transfer process within blast furnaces and generate the phan-
tom data that corresponds to the measurements at thermo-
couples TC1 and TC2 (i.e., vectors TC1 and TC2).

We first arbitrarily choose the form of input heat flux h(·).
Fig. 3a gives an example of a customized h(·). With this the
boundary condition (4) is set and the boundary value prob-
lem is complete and solvable.

We then proceed to solving the boundary value problem
as defined by Eq. (1), (2), (3) and (4). While an analytical so-
lution is hard to find, we employ numerical methods, specifi-
cally finite element method (FEM) [21], to obtain an approx-
imate solution. FEM discretizes the refractory into smaller
elements by constructing a mesh of it (Fig. 3b), approxi-
mates the temperature function u over each element and re-
combines the element equations to form the whole approxi-
mated function. In this project, we utilize the Partial Differ-
ential Equation Toolbox in MATLAB as an implementation
of FEM. Fig. 4a shows the final temperature after T = 30
days solved with the toolbox.

To reflect the real-life situation where there might be mea-
surement errors, imperfect heat transfer or external interfer-
ences that affect the temperature measurements, we inject
artificial random noises to the simulated temperature mea-
surements at TC1 and TC2. Existing literatures diverge on
the choice of suitable noise level (e.g., [25] chooses less
than 3%, while [16] prefers more than 5%). Therefore, we
moderately adopt Gaussian noises with mean 0 and standard
deviation 1.94% of each measured temperature such that
over 87% of the temperatures have noise level less than 3%
and 99% of the temperatures have noise level less than 5%.
The finalized temperature measurements with such noises
are shown in Fig. 4b.

(a) Final transient temperature
distribution within the refrac-
tory after T = 30 days..

(b) Simulated temperature mea-
surements at TC1 and TC2 with
artificial random noises.

Figure 4: Simulated results.

(a) Gaussian approximation to
an impulse at t = 0. We shade
the region under the curve for
better visualization.

(b) Simulated temperature mea-
surements at TC1 and TC2 (i.e.,
local responses) without artifi-
cial noises.

Figure 5: Simulated impulse and response used to approxi-
mate Green’s function.

4 Solving the Inverse Problem
4.1 Approximation of G1 and G2

Before solving the linear systems (9) and (10), we have to
quantify matrices G1 and G2 as defined by Eq. (6) and (8).
Recall that G(xTC1, 0; t, 0) represents how TC1 at time t is
affected by the initial heat flux h(0) from the source. There-
fore, it is possible to approximate G(xTC1, 0; t, 0) at differ-
ent time t by simply replacing the input heat flux h(·) as
a Dirac delta function of position and time, �(x � 0)�(t �
0) (Fig. 5a). We then repeat the simulation procedures in
Sec. 3 without adding the noises3. Fig. 5b shows the sim-
ulated temperature measurements, which are also graphs of
G(xTC1, 0; t, 0) and G(xTC2, 0; t, 0).

The approximation of G1 and G2 is possible with the
discrete values of G. We follow the Trapezium rule [5], e.g.,

G1M i =

Z ti

ti�1

G(xTC1, 0; tM , ⌧) d⌧

⇡ c�t · G(xTC1, 0; tM , ti�1) +G(xTC1, 0; tM , ti)

2
,

(12)

3Refrain from setting the mean of Gaussian function at exactly
t = 0 where the integral is reduced by half and the approximation
would be inaccurate.
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Figure 6: Heatmaps of G1 and G2. Note that the “N/A re-
gion” corresponds to the 0 entries in the matrices, because
an impulse happening at ti later than tm will not trigger a
response at tm.

where c�t is the normalized time interval with regards to to-
tal time.

It is also straightforward that for any ⌧ 2 [0, t],
G(x, 0; t, ⌧) is simply a translation of G(x, 0; t, 0), i.e.,

G(xTC1, 0; t, ⌧) = G(xTC1, 0; t� ⌧, 0); (13)
G(xTC2, 0; t, ⌧) = G(xTC2, 0; t� ⌧, 0). (14)

Therefore, we can set other G1m i (1  m < M ) by itera-
tively setting

G1m i =

⇢
0 , if i = m;
G1m+1 i+1 , otherwise.

(15)

Fig. 6 shows the heatmaps of G1 and G2. A brighter re-
gion indicates a stronger effect from the impulse at the heat
source at time ti to the response at TC1 and TC2 at time tm.
There are two intuitive trends:
• When i < m, the brightest region lies close to the i = m

line. This corresponds to the peak in Green’s function G
(Fig. 5b).

• The heatmap of G1 is in general brighter than that of G2
because TC1 is closer to the heat source than TC2.

4.2 Solving the Linear System
We first assemble the two matrix equations (9) and (10) into
one: 

TC1
TC2

�
=


G1
G2

�
h. (16)

For simplicity, let TC =


TC1
TC2

�
and G =


G1
G2

�
. TC is a

2M ⇥ 1 vector while G is a 2M ⇥M matrix.

Vanilla Least Squares Method (LSM). The value of h
can be approximated through LSM:

ĥ =
�
G>G

��1
G>TC, (17)

where ĥ denotes the least squares approximation of h. How-
ever, the matrix G>G has a very large condition number

4

4A tool to diagnose matrix singularity.

(a) Vanilla LSM. (b) TR with too small ⇢.

(c) TSVD with too small r. (d) TR with too large ⇢.

Figure 7: Effect of numerical errors. (7a) and (7b) demon-
strate overfitting while (7c) and (7d) demonstrate underfit-
ting. (7b), (7c) and (7d) implies poorly chosen regularization
parameters.

[7] 4.506⇥ 1021 and is thus nearly singular. The inverse has
significant numerical errors and in our case, makes the result
h almost a zero vector (Fig. 7a). Therefore, we need to adopt
suitable regularization techniques, which are discussed fur-
ther in the next section.

4.3 Regularization
In this section, we discuss and compare a few common regu-
larization techniques: truncated singular value decompo-
sition (TSVD) [12], Tikonov regularization (TR) [8] and
maximum likelihood estimation (MLE) [18].

TSVD. Singular value decomposition decomposes the ma-
trix G into the product of three matrices:

G = USV, (18)
where S is a diagonal matrix whose diagonal element repre-
sents the importance of each singular vector in U and V. In
TSVD, we drop the smaller values in S which corresponds
to unimportant vectors causing numerical issues, and only
keep the largest r values. Denote the truncated matrix S as
Strunc. The solution to the linear system h is then approxi-
mated as

ĥ = VStruncU
>TC. (19)

Note that Gĥ = GVStruncU>TC gives the predicted
temperature measurements. Define Q = GVStruncU> to
be the smoother matrix that maps the actual temperature
measurements to the predicted ones. The trace of Q, tr(Q),
represents the effective degree of freedom (i.e., effective
number of parameters or model complexity) of the regular-
ized model. For example, a larger r for TSVD would result
in a less general model and thus larger tr(Q). It is also worth
noting that tr(Q) = r for TSVD.
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TR. TR is another regularization technique whose cen-
tral idea is that large solutions are results of overfitting the
noises. Therefore, it adds a penalty term to the objective
function to prevent large solutions, i.e.,

ĥ = argmin
h

�
kGh�TCk22 + ⇢2khk22

�

=
�
G>G+ ⇢2I

��1
G>TC.

(20)

Similar to TSVD, the smoother matrix for TR is Q =

G
�
G>G+ ⇢2I

��1
G>.

MLE. We are also able to avoid overfitting of noises by ex-
plicitly considering the noises as a probability distribution.
We convert Eq. (16) to the following probabilistic model:

TC = Gh+ """, (21)

where """ denotes the random noises associated with each
temperature measurement. As we are not able to imply the
covariance of """ from the measurements alone, we make the
assumption that for any m = 1, 2, · · · , 2M

"m ⇠ N
�
0, (1.94%TCm)2

�
. (22)

This gives a valid estimation of """ since the signal-to-noise
ratio in this problem is rather high5. As a result, the covari-
ance of """, ⌃⌃⌃, is a 2M ⇥ 2M diagonal matrix with diagonal
element ⌃m m = (1.94%TCm)2.

MLE requires us to look for the most probable h given
the measurements TC and random noises """, i.e.,

ĥ = argmax
h

Pr[h|TC]

= argmin
h

�
(Gh�TC)>⌃⌃⌃�1(Gh�TC)

�
.

(23)

By differentiation, ĥ is the solution of the linear system

(G>⌃⌃⌃G)ĥ = G>⌃⌃⌃TC, (24)

which can again be regularized using TSVD or TR.

4.4 Tuning of Regularization Parameters
The number of diagonal elements kept r for TSVD and the
scale of penalty ⇢ for TR are called regularization param-

eters. An unsuitable regularization parameter is not able to
address the numerical issues well (see Fig. 7 for a demon-
stration of underfitting and overfitting with poorly chosen
regularization parameters). Therefore, we present several
criteria below to tune regularization parameters.

Discrepancy Principle (DP) [10]. From Eq. (22), we can
approximate the expected squared sum of noises as

2MX

m=1

(1.94%TCm)2 ⇡ 6.33⇥ 104. (25)

We follow DP to select the parameters r for TSVD and ⇢
for TR such that gives a squared error closest to Eq. (25)
through iterative grid search.

5Nevertheless, the accurate estimation of noise distribution is
important to probabilistic modelling. Real-life application may
adopt advanced techniques such as [19].

(a) Periodograms for different
regularization parameters.

(b) Parameter giving the small-
est deviation is selected.

Figure 8: Demonstration of tuning with NCP.

(a) Bias-variance tradeoff of
TSVD.

(b) Bias-variance tradeoff of
TR.

Figure 9: Demonstration of tuning with CV.

Normalized Cumulative Periodogram (NCP) [1]. NCP
uses the spectrum information of noises (i.e., the power ac-
cumulated across each frequency) (Fig. 8a) to find the regu-
larization parameter at which the prediction erros deviate the
least from the noises (i.e., the nature prediction errors shifts
from “signals” to “noises”) (Fig. 8b).

Cross Validation (CV) [4]. CV is a powerful tool to diag-
nose overfitting. We adopt k-fold CV with k = 10 following
the steps below:
• We first randomly split the dataset into k = 10 partitions.
• In each of the 10 iterations, we perform the inverse anal-

ysis with 9 partitions and validate the trained model with
the remaining 1 partition (i.e., calculate the mean squared
error between predicted temperatures and actual temper-
ature measurements).

• Find the regularization parameter that gives the small-
est mean squared error averaged across all iterations (i.e.,
mean CV error) through iterative grid search.

Fig. 9 shows the (empirical) bias-variance tradeoffs when
we adjust the regulation parameters.

Generalized Cross Validation (GCV) [9]. As a general-
ization of CV, GCV aims to find the regularization parameter
that minimizes the following objective:

GCV =
kGĥ�TCk22
(2M � tr(Q))2

, (26)

where Q represents the smoother matrix as defined in
Sec. 4.3. In other words, the GCV objective represents the
“goodness of fit” penalized by (effective) model complexity.
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(a) Stream (I). (b) Stream (II).

Figure 10: Comparison of Stream (I) (weak regularization)
and (II) (strong regularization) in the final results. Note that
Fig. 10a uses logarithmic-scale y-axis.

Akaike Information Criteria (AIC) [2]. AIC works by
estimating the Kullback–Leibler divergence [24] between
the actual data distribution and modelled data distribution
(i.e., the information loss) as the following objective:

AIC = 2tr(Q) + 2M log kGĥ�TCk22. (27)
Therefore, the aim is to find the regularization parameter that
minimizes the AIC objective.

Bayesian Information Criteria (BIC) [15]. BIC works
similarly to AIC but estimates the Bayes factor [14] instead:

BIC = log 2M · tr(Q) + 2M log kGĥ�TCk22. (28)
Models with higher BICs have a higher posterior probability
to be true. By comparing Eq. (27) and (28), we can also see
that BIC places a higher penalty for complex models than
AIC.

4.5 Results and Discussion
The best regularization technique(s) and parameter(s) diag-
nosed by each tuning criterion are shown in Tab. 1.

The results diverge into two main streams: (I) DP, GCV
and AIC that favour weak regularization (e.g., r = 237 for
TSVD); and (II) NCP, CV and BIC that favour strong regu-
larization (e.g., r = 12 for TSVD). To find out which stream
performs better and reduces overfitting of noises, we plot
the recovered input heat flux and compare it with the ac-
tual input heat flux in Fig. 10. Clearly, Stream (II) yields a
better recovered input heat flux whereas Stream (I) still suf-
fers from numerical issues. This is because tuning criteria in
Stream (I) places insufficient penalty on model complexity
(e.g., the coefficients of tr(Q) is constantly 2 for AIC but
log 2M for BIC). When the number of observations is large
(e.g. 2M = 480 in our setting), the penalty should also be
adjusted accordingly.

On the other hand, for each tuning criterion, the differ-
ences among the four regularization techniques seem trivial.
Therefore, all the mentioned regularization techniques are
suitable for the problem.

5 Conclusion
In this report, we have reinstated the theoretical founda-
tions and demonstrated the practicality of recovering the in-
put heat flux in blast furnaces through inverse analysis. In

Parameter Optimal Value Objective
DP: Closest SSE to the noises

TSVD, r 59 6.35⇥ 104

TR, ⇢ 3.05⇥ 10�4 6.33⇥ 104

NCP: Deviation from ideal noises
TSVD, r 23 0.39

TR, ⇢ 2.38⇥ 10�3 0.39

CV: Minimized mean CV error
TSVD, r 19 8.05⇥ 103

TR, ⇢ 1.33⇥ 10�3 8.18⇥ 103

MLE (TSVD), r 26 8.60⇥ 103

MLE (TR), ⇢ 2.50⇥ 10�4 8.61⇥ 103

GCV: Minimized GCV objective

TSVD, r 237 0.34
TR, ⇢ 8.98⇥ 10�8 0.31

MLE (TSVD), ⇢ 210 0.32
MLE (TR), ⇢ 1.39⇥ 10�7 0.33

AIC: Minimized AIC objective

TSVD, r 239 5.22⇥ 103

TR, ⇢ 5.24⇥ 10�8 5.21⇥ 103

MLE (TSVD), r 220 5.24⇥ 103

MLE (TR), ⇢ 1.39⇥ 10�7 5.38⇥ 103

BIC: Minimized BIC objective

TSVD, r 12 5.48⇥ 103

TR, ⇢ 2.85⇥ 10�3 5.51⇥ 103

MLE (TSVD), r 13 5.48⇥ 103

MLE (TR), ⇢ 2.29⇥ 10�3 5.49⇥ 103

Table 1: Results of tuning. The best regularization tech-
nique(s) and parameter(s) diagnosed by each tuning citerion
are marked red.

fact, such techniques have already been deployed in the iron-
making industry (e.g., [23]).

This report may serve as a beginner’s guide for further
research on related techniques. Possible advancements that
can be made include:
• modelling heat transfer as a more complex boundary

value problem. The 1-dimensional setting used in this re-
port might over-simplify the problem;

• better estimation of noises;
• using more advanced statistical models, regularization

techniques and tuning criteria.
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