Multi-Armed Bandit and Its Application in Recommender Systems

Team: P21

Fan Jue	A0221578B	E0559110
Nadia Victoria Aritonang	A0314698N	E1505949
Reiner Anggriawan Jasin	A0314502W	E1503344
Tian Xiao	A0220592L	E0555784

Overview

- Stochastic Bandits
- Contextual Bandits
- Implementation
- Evaluation

NUS National University of Singapore

A total of *K* slot machines.

Each machine gives <u>unknown</u>, <u>random</u> rewards.

A total of *K* slot machines.

I have *T* tokens. How can I maximize my <u>total reward</u>?

Each machine gives <u>unknown</u>, <u>random</u> rewards.

A total of *K* slot machines.

Stochastic Bandit: B = (A, R)

I have *T* tokens. How can I maximize my <u>total reward</u>?

Each machine gives <u>unknown</u>, <u>random</u> rewards.

A total of Kslot machines actions A = (a_1, \dots, a_K) .

Stochastic Bandit: B = (A, R)

I have *T* tokens. How can I maximize my total reward?

action a_k Each machine gives <u>unknown</u>, <u>random</u> rewards. $R_k \sim p_{R_k}(\cdot)$

A total of Kslot machines actions A = (a_1, \dots, a_K) .

Stochastic Bandit: B = (A, R)

rounds I have T tokens. How can I maximize my <u>total reward</u>?

action a_k Each machine gives <u>unknown</u>, <u>random</u> rewards. $R_k \sim p_{R_k}(\cdot)$

A total of Kslot machines actions A = (a_1, \dots, a_K) .

Application: Movie Recommendation

SHUTTER ISLAND

Movie recommender

Actions a_1, \cdots, a_K

Users

NUS

National University

<image>

Shawshank

Application: Movie Recommendation

ational Universit of Singapore

Application: Movie Recommendation

of Singapore

• Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is **to always choose the best action** a^* with the highest \bar{r}^* .

• Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is **to always choose the best action** a^* with the highest \bar{r}^* .

- But I don't know...

f Singapore

- Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is **to always choose the best action** a^* with the highest \bar{r}^* .
 - But I don't know...
- We use *(cumulative) regret* to measure how good a bandit algorithm is:

$$\rho_T = \mathbb{E}\left[\sum_{t=1}^T R_{a^*} - \sum_{t=1}^T R_{a_t}\right]$$
$$= \sum_{t=1}^T \left(\bar{r}^* - \bar{r}_{a_t}\right).$$
Computing

Good if we can bound the regret!

- Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is **to always choose the best action** a^* with the highest \bar{r}^* .
 - But I don't know...
- We use *(cumulative) regret* to measure how good a bandit algorithm is:

$$\rho_T = \mathbb{E}\left[\sum_{t=1}^T R_{a^*} - \sum_{t=1}^T R_{a_t}\right]$$
$$= \sum_{t=1}^T \left(\bar{r}^* - \bar{r}_{a_t}\right).$$
Computing

W.p. 1 - ϵ , choose the best (<u>exploit</u>)

of Singapore

• At later rounds, the **very bad** actions can still be selected.

- At later rounds, the **very bad** actions can still be selected.
 - Use a decaying ϵ .

- At later rounds, the **very bad** actions can still be selected.
 - Use a decaying ϵ .
- No uncertainty quantification.

- At later rounds, the **very bad** actions can still be selected.
 - Use a decaying ϵ .
- No uncertainty quantification.
 - Involve a confidence term.

• Each action is associated with a **mean** and a **confidence term**.

• Each action is associated with a **mean** and a **confidence term**.

- Each action is associated with a **mean** and a **confidence term**.
- Hoeffding bound:

$$\Pr\left[\left|\frac{1}{n}\sum_{\tau=1}^{\mathcal{T}} X_{\tau} - \mathbb{E}\left[X\right]\right| \ge (b-a)\sqrt{\frac{\log(2/\delta)}{2\mathcal{T}}}\right] \le \delta.$$

- Each independent X_t is bounded between [a, b].

- Each action is associated with a **mean** and a **confidence term**.
- Hoeffding bound:

$$\Pr\left[\left|\frac{1}{n}\sum_{\tau=1}^{\mathcal{T}} X_{\tau} - \mathbb{E}\left[X\right]\right| \ge (b-a)\sqrt{\frac{\log(2/\delta)}{2\mathcal{T}}}\right] \le \delta.$$

- Each independent X_t is bounded between [a, b].
- For a fixed δ , the bound gets smaller when \mathcal{T} is larger.

- Each action is associated with a **mean** and a **confidence term**.
- Hoeffding bound:

$$\Pr\left[\frac{1}{n}\sum_{\tau=1}^{\mathcal{T}}X_{\tau} - \mathbb{E}\left[X\right]\right| \ge (b-a)\sqrt{\frac{\log(2/\delta)}{2\mathcal{T}}} \le \delta$$
$$\hat{u}_{a_{k}}^{t}$$

- Each independent X_t is bounded between [a, b].
- For a fixed δ , the bound gets smaller when \mathcal{T} is larger.

- Each action is associated with a **mean** and a **confidence term**.
- Hoeffding bound:

$$\Pr\left[\frac{1}{n}\sum_{\tau=1}^{\mathcal{T}}X_{\tau} - \mathbb{E}\left[X\right]\right| \ge (b-a)\sqrt{\frac{\log(2/\delta)}{2\mathcal{T}}} \le \delta$$
$$\hat{u}_{a_{k}}^{t}$$

- Each independent X_t is bounded between [a, b].
- For a fixed δ , the bound gets smaller when \mathcal{T} is larger.
- At each round *t*, choose the action that maximizes

$$\mathrm{UCB}_{a_k}^t := \hat{\mu}_{a_k}^t + c \cdot \hat{u}_{a_k}^t.$$

• At each round *t*, choose the action that maximizes

$$\mathrm{UCB}_{a_k}^t := \hat{\mu}_{a_k}^t + c \cdot \hat{u}_{a_k}^t.$$

Theorem

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$\rho_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right).$$

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$\mathcal{O}_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

• Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t - \mu_{a_k}| \leq \hat{u}_{a_k}^t].$

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$o_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$\varphi_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $UCB_{a_k}^t \ge UCB_{a^*}^t$.

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$p_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $UCB_{a_k}^t \ge UCB_{a^*}^t$.
 - LHS = empirical mean + confidence \leq true mean + confidence + confidence (of a_k).

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$p_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $\text{UCB}_{a_k}^t \ge \text{UCB}_{a^*}^t$.
 - LHS = empirical mean + confidence \leq true mean + confidence + confidence (of a_k).
 - RHS \geq true mean (of a^*).

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$p_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $\text{UCB}_{a_k}^t \ge \text{UCB}_{a^*}^t$.
 - LHS = empirical mean + confidence \leq true mean + confidence + confidence (of a_k).
 - RHS \geq true mean (of a^*).
 - If Δ_{a_k} is large, for LHS to be larger than RHS, confidence of a_k cannot be too small!

Theorem

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$p_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \; [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $\text{UCB}_{a_k}^t \ge \text{UCB}_{a^*}^t$.
 - LHS = empirical mean + confidence \leq true mean + confidence + confidence (of a_k).
 - RHS \geq true mean (of a^*).
 - If Δ_{a_k} is large, for LHS to be larger than RHS, confidence of a_k cannot be too small!
 - Used to bound the number of each action $a_k \neq a^*$ being selected.

Theorem

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$\varphi_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \ [|\hat{\mu}_{a_k}^t \mu_{a_k}| \leq \hat{u}_{a_k}^t].$
 - Distance between the true mean and the empirical mean is at most our confidence.
- An action $a_k \neq a^*$ is selected over a^* because $UCB_{a_k}^t \ge UCB_{a^*}^t$.
 - LHS = empirical mean + confidence \leq true mean + confidence + confidence (of a_k).
 - RHS \geq true mean (of a^*).
 - If Δ_{a_k} is large, for LHS to be larger than RHS, confidence of a_k cannot be too small!
 - Used to bound the number of each action $a_k \neq a^*$ being selected.
- Factor in the probability the event does not happen and sum up everything.

Theorem

Suppose there are K Bernoulli arms with gaps $\Delta_{a_k} \coloneqq \bar{r}_{a^*} - \bar{r}_{a_k}$ and we set c = 1 and $\delta_t = \frac{1}{t}$, then the total regret

$$p_T = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$

- Consider the high-probability event $\forall a_k, t \; [|\hat{\mu}_d^t]$
 - Distance between the true mean and the empirical mean
- An action $a_k \neq a^*$ is selected over a^* because
 - LHS = empirical mean + confidence ≤ true mean + confi
 - RHS \geq true mean (of a^*).
 - · If Δ_{a_k} is large, for LHS to be larger than RHS, confidence or a_k cannot be too small:
 - Used to bound the number of each action $a_k \neq a^*$ being selected.
- Factor in the probability the event does not happen and sum up everything.
- AY2024/25 Sem2 CS4246/CS5446

Alternatively, we can use

$$\rho_T = \mathbb{E}\left[\sum_{a_k \neq a^*} \Delta_{a_k} T_{a_k}\right]$$

directly to achieve another bound:

$$\rho_T = \mathcal{O}\left(\sqrt{KT\log T}\right).$$

Algorithm: <u>Upper Confidence Bound</u> (UCB)

- Each action is associated with a **mean** and a **confidence term**.
- We use a quantity that needs a bound [*a*, *b*] to quantify uncertainty.

A Bayesian View: Bayesian Bandit

• Each action is associated with a **distribution** (i.e., our belief).

A Bayesian View: Bayesian Bandit

- Each action is associated with a **distribution** (i.e., our belief).
- Whenever we try a new action, our belief is updated using Bayes' rule:

$$p(\theta_{a_t}|r_{a_t}) = \frac{p(\theta_{a_t})p(r_{a_t}|\theta_{a_t})}{p(\theta_{a_t})}.$$

A Bayesian View: Bayesian Bandit

- Each action is associated with a **distribution** (i.e., our belief).
- Whenever we try a new action, our belief is updated using Bayes' rule:

$$p(\theta_{a_t}|r_{a_t}) = \frac{p(\theta_{a_t})p(r_{a_t}|\theta_{a_t})}{p(\theta_{a_t})}.$$

• Goal: Minimize *Bayesian regret*:

$$\mathbb{E}_{\mathrm{prior}}[\rho_T].$$

Algorithm: Thompson Sampling

- Each action is associated with a **distribution**.
- At each round *t*, we randomly sample an (estimated) reward for each action and choose the action that maximizes it.

NUS National University of Singapore

Algorithm: Thompson Sampling

- Each action is associated with a **distribution**.
- At each round *t*, we randomly sample an (estimated) reward for each action and choose the action that maximizes it.
 - Equivalently, we are sampling from $p(a^* = a | \text{all past observations})$.

BAR

Algorithm: Thompson Sampling

- Each action is associated with a **distribution**.
- At each round *t*, we randomly sample an (estimated) reward for each action and choose the action that maximizes it.
 - Equivalently, we are sampling from $p(a^* = a | \text{all past observations})$.
- Bound on Bayesian regret:

$$\mathbb{E}_{\text{prior}}[\rho_T] = \mathcal{O}\left(\sum_{a_k \neq a^*} \frac{\log T}{\Delta_{a_k}}\right)$$
$$\mathbb{E}_{\text{prior}}[\rho_T] = \mathcal{O}\left(\sqrt{KT\log T}\right).$$

of Singapore

Different groups have different preferences.

Different groups have different preferences.

A <u>one-size-fit-all</u> solution does not work well!

National Universit of Singapore

of Singapore

National Universit

Contextual Bandit: B = (A, X, R)

National University of Singapore

Contextual Bandit: B = (A, X, R)

National University of Singapore

Contextual Bandit: B = (A, X, R)

• Modelling assumption:

$$R_{\mathbf{x}} = f(\mathbf{x}) + \xi_{\mathbf{x}}$$
$$\mathbb{E}[R_{\mathbf{x}}] = f(\mathbf{x}).$$

- Each context $\mathbf{x} \in A \times X$ contains both action and features.
- $\xi_{\mathbf{x}}$ is a zero-mean noise conditioned on \mathbf{x} .

Contextual Bandit: B = (A, X, R)

• Modelling assumption:

$$\begin{aligned} R_{\mathbf{x}} &= f(\mathbf{x}) + \xi_{\mathbf{x}} \\ \mathbb{E}[R_{\mathbf{x}}] &= f(\mathbf{x}). \end{aligned}$$

- Each context $\mathbf{x} \in A \times X$ contains both action and features.
- $\xi_{\mathbf{x}}$ is a zero-mean noise conditioned on \mathbf{x} .
- Examples:
 - Linear bandit: $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}$.
 - Generalized linear bandit: $f(\mathbf{x}) = g(\mathbf{w}^{\top}\mathbf{x})$.
 - Gaussian process bandit: $f(\mathbf{x}) = GP(\mathbf{x})$.
 - Neural bandit: $f(\mathbf{x}) = NN(\mathbf{x})$.

Algorithm

Good if we can bound the regret!

- Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is **to always choose the best action** a^* with the highest \bar{r}^* .
 - But I don't know...
- We use *(cumulative) regret* to measure how good a bandit algorithm is:

$$\rho_T = \mathbb{E}\left[\sum_{t=1}^T R_{a^*} - \sum_{t=1}^T R_{a_t}\right]$$
$$= \sum_{t=1}^T \left(\bar{r}^* - \bar{r}_{a_t}\right).$$
Computing

Algorithm

Good if we can bound the regret!

• Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is to always choose the best action a^* with the highest \bar{r}^* .

But I don't know... $a_t^* = rg \max_a \mathbb{E}[R_{\mathbf{x}}]$

• We use *(cumulative) regret* to measure how good a bandit algorithm is:

$$\rho_T = \mathbb{E}\left[\sum_{t=1}^T R_{a^*} - \sum_{t=1}^T R_{a_t}\right]$$
$$= \sum_{t=1}^T (\bar{r}^* - \bar{r}_{a_t}).$$
Computing

Algorithm

Good if we can bound the regret!

• Assume I know the expected reward \bar{r}_k given by each action, then the best strategy is to always choose the best action a^* with the highest \bar{r}^* .

But I don't know... $a_t^* = rg \max_a \mathbb{E}[R_{\mathbf{x}}]$

• We use *(cumulative) regret* to measure how good a bandit algorithm is:

$$\rho_T = \mathbb{E}\left[\sum_{t=1}^T R_{a_t^*, \breve{\mathbf{x}}_t} - \sum_{t=1}^T R_{a_t, \breve{\mathbf{x}}_t}\right].$$

• Each weight is associated with a mean and a confidence term.

- Each weight is associated with a mean and a confidence term.
- Confidence ellipsoid bound:

$$\Pr\left[\exists t, \left\|\hat{\mathbf{w}}_{t} - \mathbf{w}^{*}\right\|_{\mathrm{M}} \geq \nu \sqrt{d \log \frac{1 + tL/\lambda}{\delta}} + \sqrt{\lambda} \|\mathbf{w}^{*}\|\right] \leq \delta.$$
$$\Pr\left[\exists t, \left\|\hat{\mathbf{w}}_{t}^{\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix} - \mathbf{w}^{*\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right\| \geq \left(\nu \sqrt{d \log \frac{1 + tL/\lambda}{\delta}} + \sqrt{\lambda} \|\mathbf{w}^{*}\|\right) \cdot \sqrt{\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}^{\top}} \mathbf{G}_{t}^{-1}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right] \leq \delta.$$

- v, L, λ are parameters specified in the assumptions.

- Each weight is associated with a mean and a confidence term.
- Confidence ellipsoid bound:

$$\Pr\left[\exists t, \|\hat{\mathbf{w}}_t - \mathbf{w}^*\|_{\mathbf{M}} \ge \nu \sqrt{d \log \frac{1 + tL/\lambda}{\delta}} + \sqrt{\lambda} \|\mathbf{w}^*\|\right] \le \delta.$$

$$\hat{\mathbf{w}}_t ullet$$

$$\Pr\left[\exists t, \left|\hat{\mathbf{w}}_{t}^{\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix} - \mathbf{w}^{*\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right| \geq \left(\nu\sqrt{d\log\frac{1+tL/\lambda}{\delta}} + \sqrt{\lambda}\|\mathbf{w}^{*}\|\right) \cdot \sqrt{\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}^{\top}} \mathbf{G}_{t}^{-1}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right] \leq \delta.$$

- v, L, λ are parameters specified in the assumptions.

- Each weight is associated with a mean and a confidence term.
- Confidence ellipsoid bound:

$$\Pr\left[\exists t, \left\|\hat{\mathbf{w}}_t - \mathbf{w}^*\right\|_{\mathcal{M}} \ge \nu \sqrt{d \log \frac{1 + tL/\lambda}{\delta}} + \sqrt{\lambda} \|\mathbf{w}^*\|\right] \le \delta.$$

$$\Pr\left[\exists t, \left|\hat{\mathbf{w}}_{t}^{\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix} - \mathbf{w}^{*\top}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right| \geq \left(\nu\sqrt{d\log\frac{1+tL/\lambda}{\delta}} + \sqrt{\lambda}\|\mathbf{w}^{*}\|\right) \cdot \sqrt{\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}^{\top}} \mathbf{G}_{t}^{-1}\begin{bmatrix}a_{k}\\\breve{\mathbf{x}}_{t}\end{bmatrix}\right] \leq \delta$$

- v, L, λ are parameters specified in the assumptions.
- At each round t, choose weight \mathbf{w} from ellipsoid and action a_k that maximize

$$\operatorname{UCB}_{a_k}^t = \mathbf{w}^\top \begin{bmatrix} a_k \\ \breve{\mathbf{x}}_t \end{bmatrix}.$$

 $\hat{\mathbf{w}}_t ullet$

• At each round t, choose weight \mathbf{w} from ellipsoid and action a_k that maximize

$$\mathrm{UCB}_{a_k}^t = \mathbf{w}^\top \begin{bmatrix} a_k \\ \breve{\mathbf{x}}_t \end{bmatrix}.$$

Theorem

Suppose we set $\delta_t = \frac{1}{t}$, then the total regret of LinearUCB satisfies

$$\rho_T = \mathcal{O}\left(d\sqrt{T\log T}\right).$$

Theorem

Suppose we set $\delta_t = \frac{1}{t}$, then the total regret of LinearUCB satisfies

$$\rho_T = \mathcal{O}\left(d\sqrt{T\log T}\right).$$

• Suppose at some round we choose w_t and a_t . Then our estimated upper bound of reward is better than the **optimal** reward:

$$\mathrm{UCB}_{a_{k}}^{t}^{*} = \mathbf{w}_{t}^{\top} \begin{bmatrix} a_{t} \\ \breve{\mathbf{x}}_{t} \end{bmatrix} \geq \mathbf{w}^{*\top} \begin{bmatrix} a_{t}^{*} \\ \breve{\mathbf{x}}_{t} \end{bmatrix}.$$

Theorem

Suppose we set $\delta_t = \frac{1}{t}$, then the total regret of LinearUCB satisfies

$$\rho_T = \mathcal{O}\left(d\sqrt{T\log T}\right).$$

• Suppose at some round we choose w_t and a_t . Then our estimated upper bound of reward is better than the **optimal** reward:

$$\mathrm{UCB}_{a_{k}}^{t}^{*} = \mathbf{w}_{t}^{\top} \begin{bmatrix} a_{t} \\ \breve{\mathbf{x}}_{t} \end{bmatrix} \geq \mathbf{w}^{*\top} \begin{bmatrix} a_{t}^{*} \\ \breve{\mathbf{x}}_{t} \end{bmatrix}.$$

From the confidence ellipsoid bound, distance between UCB^t_{ak} * and our actual reward w^{*}[⊤] [^{at}_{Xt}] is bounded.
 NUS | Computing

Theorem

Suppose we set $\delta_t = \frac{1}{t}$, then the total regret of LinearUCB satisfies

$$\rho_T = \mathcal{O}\left(d\sqrt{T\log T}\right).$$

• Suppose at some round we choose w_t and a_t . Then our estimated upper bound of reward is better than the **optimal** reward:

$$\mathrm{UCB}_{a_{k}}^{t}^{*} = \mathbf{w}_{t}^{\top} \begin{bmatrix} a_{t} \\ \breve{\mathbf{x}}_{t} \end{bmatrix} \geq \mathbf{w}^{*\top} \begin{bmatrix} a_{t}^{*} \\ \breve{\mathbf{x}}_{t} \end{bmatrix}.$$

From the confidence ellipsoid bound, distance between UCB^t_{ak} * and our actual reward w^{*[⊤]} [^{at}_{Xt}] is bounded.
 So regret is bounded!
 NUS | Computing

A Bayesian View: Bayesian Contextual Bandit

- Model parameters now follow a **distribution** (i.e., our belief).
- Whenever we try a new action, our belief is updated using Bayes' rule:

$$p(\mathbf{w}|r_{a_t,\mathbf{\breve{x}}_t}) = \frac{p(\mathbf{w})p(r_{a_t,\mathbf{\breve{x}}_t}|\mathbf{w})}{p(r_{a_t,\mathbf{\breve{x}}_t})}.$$

• Goal: Minimize *Bayesian regret*:

$$\mathbb{E}_{\mathrm{prior}}[\rho_T].$$

Algorithm: LinearTS

- Model parameters now follow a **distribution** (i.e., our belief).
- At each round t, we randomly sample a weight w from its distribution and choose the action that maximizes the estimated reward: w^T [ak] <u>x</u>t].

NUS National University of Singapore

Implementation based on Paper

Contextual bandits to increase user prediction accuracy in movie recommendation system. Yizhe Chen (2025)

- Utilizes Contextual Bandit to make movie recommendation
- makes distinction between *online* and *offline* recommendations to mitigate cold-start problem which is usually encountered by conventional recommendation system.
- The *offline* recommendation uses **collaborative filtering** which leverages knowledge about the user based on similarity with other users to create recommendations.
- This *offline* recommendations does encounter the *cold-start* **problem**, as we might expect.

Online Recommendation

- The *online* recommendation uses Contextual Bandit to provide the system with context about the user with minimum data (cold users).
- The online recommendation is intended to replace the early stage of collaborative filtering until users have enough data which patches the cold-start problem.
- Utilizes LinUCB (linear disjoint models) to make movie recommendation.
- In the paper, Chen also compared the performance between the LinUCB contextual bandit and other multi-armed strategies.

Algorithm 1 LinUCB with disjoint linear models.		
0: Inj	puts: $\alpha \in \mathbb{R}_+$	
1: for $t = 1, 2, 3,, T do$		
2:	Observe features of all arms $\alpha \in \mathcal{A}_t : \mathbf{x}_{t,a} \in \mathbb{R}^d$	
3:	for all $a \in \mathcal{A}_t$ do	
4:	if a is new then	
5:	$\mathbf{A}_{a} \leftarrow \mathbf{I}_{d}$ (<i>d</i> -dimensional identity matrix)	
6:	$\mathbf{b}_a \leftarrow 0_{d \times 1}$ (d-dimensional zero vector)	
7:	end if	
8:	$\widehat{\boldsymbol{\theta}}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a$	
9:	$p_{t,a} \leftarrow \widehat{\boldsymbol{\theta}}_a^{T} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{T} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}}$	
10:	end for	
11:	Choose arm $a_t = \operatorname{argmax}_{a \in \mathcal{A}_t} p_{t,a}$ with ties broken arbi-	
	trarily, and observe a real-valued payoff r_t	
12:	$\mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{T}$	
13:	$\mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}$	
14: en	14: end for	

source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf iwadi2024 01018.pdf

Cold Start Problem in Recommendation System

- Chen's proposed solution is to predict whether the user is "Cold" or not.
- The prediction results will decide whether the user will receive an *online* or *offline* recommendation.
- The process of *online* recommendations with *LinUCB* Contextual Bandit will run repetitively as long as the user is still "Cold".

source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf

Dataset Description

- As in contextual bandit, the agent is allowed to have partial knowledge about the environment in order to reduce the needs for exploration.
- Dataset: MovieLens (Non-commercial, personalized movie recommendations).
- Chen utilizes 79 context observed from the dataset:
 - User Age, Gender, Occupation
 - Movie Genre, Tag, Average Rating
 - etc.

• Vectorized as feature vector used for the *LinUCB*.

Our Methodology

- For this project, we limited our research scope to focus on the implementation of LinUCB contextual bandits and compare it with contextual epsilon-greedy bandits.
- Initially, we tried to replicate Chen's approach which uses the user-movie-rating pairs clustering as the contextual vector.
- However, this approach includes user-movie-rating data into clustering. This approach feeds information about how users will rate certain movies which leaks future predictions. Therefore, it causes the problem to not purely be a cold-start problem.
- After further discussion and consideration, we decided to use the user's demographic information and the movie's genre as the context vector.

Our Methodology

• We suspect that Chen's NDCG matrix score is heavily influenced by the Collaborative Filtering as the number shows an outstanding score with minimum variance rate.

Table 3. NDCG & Cumulative Regrets $(T = 15, N = 50, k = 10)$							
	NDCG	std	Cumulative Regret	std			
UCB	0.984250784	±0.00280675	3.50778381	±1.09590408			
TS	0.97747411	± 0.0036339	3.50726015	±1.07879191			
LinUCB	0.97619576	±0.00349322	3.23152054	± 1.08066565			
<i>e</i> -greedy	0.97721851	± 0.0036943	3.50118035	± 1.15437115			

AY2024/25 Sem2 CS4246/CS5446

source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf

N: Number of movie clusters -> Number of arms

	N = 3	N = 5	N = 10	N = 20	N = 50		
LinUCB							
a = 0.001	87.80	174.80	281.20	135.80	177.80		
a = 0.5	96.20	218.00	373.00	342.80	711.00		
a = 1	107.60	267.60	535.40	691.80	1695.40		
Contextual ɛ-greedy							
ε = 0.001	94.20	179.20	284.00	137.80	185.20		
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00		
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00		

N: Number of movie clusters -> Number of arms

	N = 3	N = 5	N = 10	N = 20	N = 50		
LinUCB							
a = 0.001	87.80	174.80	281.20	135.80	177.80		
a = 0.5	96.20	218.00	373.00	342.80	711.00		
a = 1	107.60	267.60	535.40	691.80	1695.40		
Contextual ɛ-greedy							
ε = 0.001	94.20	179.20	284.00	137.80	185.20		
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00		
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00		

N: Number of movie clusters -> Number of arms

	N = 3	N = 5 N = 10		N = 20	N = 50	
LinUCB						
a = 0.001	87.80	174.80	281.20	135.80	177.80	
a = 0.5	96.20	218.00	373.00	342.80	711.00	
a = 1	107.60	267.60	535.40	691.80	1695.40	
Contextual ɛ-greedy						
ε = 0.001	94.20	179.20	284.00	137.80	185.20	
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00	
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00	

N: Number of movie clusters -> Number of arms

	N = 3	N = 5	N = 10	N = 20	N = 50	
LinUCB	· · · · · ·			I		
a = 0.001	87.80	174.80	281.20	135.80	177.80	
a = 0.5	96.20	218.00	373.00	342.80	711.00	
a = 1	107.60	267.60	535.40	691.80	1695.40	
Contextual ɛ-greedy						
ε = 0.001	94.20	179.20	284.00	137.80	185.20	
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00	
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00	

N: Number of movie clusters -> Number of arms

	N = 3	N = 5	N = 10	N = 20	N = 50		
LinUCB							
a = 0.001	87.80	174.80	281.20	135.80	177.80		
a = 0.5	96.20	218.00	373.00	342.80	711.00		
a = 1	107.60	267.60	535.40	691.80	1695.40		
Contextual ɛ-greedy							
ε = 0.001	94.20	179.20	284.00	137.80	185.20		
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00		
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00		

N: Number of movie clusters -> Number of arms

	N = 3	N = 5 N = 10		N = 20	N = 50		
LinUCB							
a = 0.001	87.80	174.80	281.20	135.80	177.80		
a = 0.5	96.20	218.00	373.00	342.80	711.00		
a = 1	107.60	267.60	535.40	691.80	1695.40		
Contextual ɛ-greedy							
ε = 0.001	94.20	179.20	284.00	137.80	185.20		
ε = 0.5	2409.00	3225.00	3575.40	3576.60	3738.00		
ε = 0.1	4784.00	6248.40	6804.60	7003.80	7133.00		

LinUCB achieved a lower cumulative regret compared to contextual epsilon greedy.

- LinUCB selects an arm based on the highest Upper Confidence Bound (UCB)
- Contextual epsilon greedy selects arms at random

```
class ContextualEpsilonGreedy:
```

```
def __init__(self, n_arms, context_dim, epsilon):
    self.n_arms = n_arms
    self.context_dim = context_dim
    self.epsilon = epsilon
    self.A = [np.identity(context_dim) for _ in range(n_arms)]
    self.b = [np.zeros(context_dim) for _ in range(n_arms)]
```

```
random_arm = np.random.randint(self.n_arms)
scores = self.score(random_arm, x)
```

return np.argmax(scores)
else:

```
# Exploit best arm
    scores = [self.score(i, x) for i in range(self.n_arms)]
    return np.argmax(scores)
```

```
class LinUCB:
    def __init__(self, n_arms, context_dim, alpha):
        self.n_arms = n_arms
        self.context_dim = context_dim
        self.alpha = alpha
        self.A = [np.identity(context_dim) for arm in range(n_arms)]
        self.b = [np.zeros(context_dim) for arm in range(n_arms)]
    def select_arm(self, x):
```

p_vals = []
for i in range(self.n_arms):
 p = self.score(i, x)
 p_vals.append(p)
return np.argmax(p_vals)

Results Analysis

LinUCB had a lower difference of cumulative regrets when switching from a low exploration rate to a higher exploration rate, whereas contextual epsilon greedy had a more drastic difference.

- LinUCB selects an arm based on the highest Upper Confidence Bound (UCB)
- Contextual epsilon greedy selects arms at random

LinUCB		
a = 0.001	87.80	
a = 0.5	96.20	
a = 1	107.60	

Contextual <i>ɛ</i> -greedy	Contextual ɛ-greedy					
ε = 0.001	94.20					
ε = 0.5	2409.00					
ε = 0.1	4784.00					

Results: Cumulative Regret Over Time

LinUCB makes more calculated predictions and adapts over time Contextual epsilon greedy uses randomized predictions

Thank you

References

- Slivkins, A. (2019). Introduction to multi-armed bandits. *Foundations and Trends® in Machine Learning*, 12(1-2), 1-286.
- Lecture slides on Multi-armed bandits by Cathy Wu.
- Abbasi-Yadkori, Y., Pál, D., & Szepesvári, C. (2011). Improved algorithms for linear stochastic bandits. *Advances in neural information processing systems*, 24.
- Agrawal, S., & Goyal, N. (2013, May). Thompson sampling for contextual bandits with linear payoffs. In *International conference on machine learning* (pp. 127-135). PMLR.
- Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An introduction, volume 1. MIT press Cambridge.
- Auer, P. (2000). Using upper confidence bounds for online learning. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 270–279. IEEE.
- Scott, S. L. (2010). A modern Bayesian look at the multi-armed bandit. Applied Stochastic Models in Business and Industry, 26(6):639–658.
- Chen, Y. (2025). Contextual bandits to increase user prediction accuracy in movie recommendation system. ITM Web of Conferences, 73, 01018. https://doi.org/10.1051/itmconf/20257301018
- Harper, F. M., & Konstan, J. A. (2015). The MovieLens datasets. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), 19. https://doi.org/10.1145/2827872

🍐 Contextual Bandit with Movie Clustering 3 ☆ ⊘ File Edit View Insert Runtime Tools Help
mands + Code + Text
LinUCB (alpha: 0.001) - Cumulative Regret: 87.8000 LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0088 → LinUCB (alpha: 0.001) - Average NDCG: 0.7412 LinUCB (alpha: 0.5) - Cumulative Regret: 96.2000 LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0096 LinUCB (alpha: 0.5) - Average NDCG: 0.7411 LinUCB (alpha: 1) - Cumulative Regret: 107.6000 LinUCB (alpha: 1) - Average Regret per Interaction: 0.0108 LinUCB (alpha: 1) - Average Regret per Interaction: 0.0108 LinUCB (alpha: 1) - Average NDCG: 0.7407 ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 92.8000 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0093 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0093 ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 2409.0000 ContextualEpsilonGreedy (epsilon: 0.5) - Average Regret per Interaction: 0.2409 ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.7401 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 4784.0000 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 4784.0000 ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.4784 ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.7388

👍 C	Contextual Bandit with Movie Clustering 5 🛛 🛧 🖉
File	Edit View Insert Runtime Tools Help
mands	+ Code + Text
[∱]	LinUCB (alpha: 0.001) - Cumulative Regret: 174.8000 LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0175 LinUCB (alpha: 0.001) - Average NDCG: 0.6532 LinUCB (alpha: 0.5) - Cumulative Regret: 218.0000 LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0218 LinUCB (alpha: 1) - Average NDCG: 0.6501 LinUCB (alpha: 1) - Cumulative Regret: 267.6000 LinUCB (alpha: 1) - Average Regret per Interaction: 0.0268 LinUCB (alpha: 1) - Average NDCG: 0.6377 ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 179.2000 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0179 ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.6533 ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3225.0000 ContextualEpsilonGreedy (epsilon: 0.5) - Average Regret per Interaction: 0.3225 ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.6566 ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.6566
	ContextualEpsilonGreedy (epsilon: 1) – Average Regret per Interaction: 0.6248 ContextualEpsilonGreedy (epsilon: 1) – Average NDCG: 0.6575

📣 C	Context	ual Band	dit with Mo	vie Cluste	ering 1() ☆ ⊘
File	Edit V	iew Inse	ert Runtime	Tools H	lelp	
mands	s +	Code +	Text			
[∱]	LinUCB LinUCB LinUCB LinUCB LinUCB LinUCB LinUCB LinUCB Contex Contex Contex Contex Contex Contex Contex Contex Contex Contex	<pre>(alpha: (alpha: (alpha: (alpha: (alpha: (alpha: (alpha: (alpha: (alpha: tualEpsi tualEpsi tualEpsi tualEpsi tualEpsi tualEpsi tualEpsi</pre>	0.001) - 0.001) - 0.001) - 0.5) - Cu 0.5) - Av 0.5) - Av 1) - Cumu 1) - Aver 1) - Aver 1) - Aver 1) - Aver lonGreedy lonGreedy lonGreedy lonGreedy lonGreedy lonGreedy lonGreedy	Cumulativ Average M Average M mulative erage Reg erage NDC lative Re age NDCG (epsilon) (epsilon) (epsilon) (epsilon) (epsilon) (epsilon)	<pre>Ve Regr Regret NDCG: 0 Regret gret pe CG: 0.3 egret: 0.271 0.001 0.001 0.001 0.001 0.001 0.5) 0.5) 1) - 1) - 1) -</pre>	<pre>et: 281.2000 per Interaction: 0.0281 .3245 : 373.0000 r Interaction: 0.0373 020 535.4000 Interaction: 0.0535 9) - Cumulative Regret: 284.0000) - Average Regret per Interaction: 0.0284) - Average Regret per Interaction: 0.0284) - Average NDCG: 0.3245 - Cumulative Regret: 3575.4000 - Average Regret per Interaction: 0.3575 - Average NDCG: 0.3254 Cumulative Regret: 6804.6000 Average Regret per Interaction: 0.6805 Average NDCG: 0.3222</pre>

🝐 Contextual Bandit with Movie Clustering 20 🛛 🕁 🙆 File Edit View Insert Runtime Tools Help + Code + Text nmands LinUCB (alpha: 0.001) - Cumulative Regret: 135.8000 LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0136 LinUCB (alpha: 0.5) - Cumulative Regret: 342.8000 LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0343 LinUCB (alpha: 0.5) - Average NDCG: 0.1072 LinUCB (alpha: 1) - Cumulative Regret: 691.8000 LinUCB (alpha: 1) - Average Regret per Interaction: 0.0692 LinUCB (alpha: 1) - Average NDCG: 0.0666 ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 137.8000 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0138 ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.1601 ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3576.6000 ContextualEpsilonGreedy (epsilon: 0.5) - Average Regret per Interaction: 0.3577 ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.1581 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7003.8000 ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.7004 ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.1515

4	Contextual Bandit with Movie Clustering 50 🛭 🛧 🔗
File	Edit View Insert Runtime Tools Help
mand	s + Code + Text
[∱]	LinUCB (alpha: 0.001) - Cumulative Regret: 177.8000 LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0178 LinUCB (alpha: 0.001) - Average NDCG: 0.0339 LinUCB (alpha: 0.5) - Cumulative Regret: 711.0000 LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0711 LinUCB (alpha: 0.5) - Average NDCG: 0.0156 LinUCB (alpha: 1) - Cumulative Regret: 1695.4000 LinUCB (alpha: 1) - Average RDCG: 0.0124 ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 185.2000 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0185 ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0185 ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3738.0000 ContextualEpsilonGreedy (epsilon: 0.5) - Average Regret per Interaction: 0.3738 ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.0332 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7133.0000 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7133.0000 ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7133.0000 ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.7133 ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.7133 ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.0305

