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Overview

e Stochastic Bandits
 Contextual Bandits
* Implementation

e Evaluation
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Motivation

A total of K
slot machines.
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Motivation

Each machine
gives unknown,
random rewards.

| have T tokens.
How can | maximize
my total reward?

A total of K
slot machines.
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Stochastic Bandit: B = (A, R)

| have T tokens.
How can | maximize
my total reward?
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Stochastic Bandit: B = (A, R)

action ay
Each machine

gives unknown,

Rk ~ DR, ()
| have T tokens.
How can | maximize A total of K
my total reward? sletmachines
actions A =
(0,1, cee ’a’K)-
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Stochastic Bandit: B = (A, R)

action ay
Each machine

gives unknown,

rounds Rk ~ PR, ()
| have T tokens.
How can | maximize A total of K
my total reward? sletmachines
T actions A =
Zrat (al,”. ,CLK).
t=1
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Application: Movie Recommendation

Movie recommender Actions a1, ,aK Users

a2 & L2

&gty
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Application: Movie Recommendation

Movie recommender Actions a1, ,aK Users

v Click?
v/ Satisfaction?
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Application: Movie Recommendation

Movie recommender Actions a1, ,aK Users

v Click?
v/ Satisfaction?

=/ 1 | B Goal: Maximize total
e Al R RS B click rate/satisfaction.
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Algorithm

* Assume | know the expected reward 7.
given by each action, then the best
strategy is to always choose the best
action o™ with the highest 7"
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Algorithm

* Assume | know the expected reward 7. - , 2
given by each action, then the best /\ f\ /\
. ' . %a

strategy is to always choose the best

action o™ with the highest 7"
But | don’t know...
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Algorithm

* Assume | know the expected reward 7.
given by each action, then the best

strategy is to always choose the best

action o™ with the highest 7"
But | don’t know...
 We use (cumulative) regret to measure

how good a bandit algorithm is:
T T
— T Z Ry« — ZR%
= =1
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Algorithm ?

* Assume | know the expected reward 7. - , 2
given by each action, then the best /\ f\ /\
. ' . %a

Good if we can bound the regret! ]

strategy is to always choose the best

action o™ with the highest 7"
But | don’t know...
 We use (cumulative) regret to measure

how good a bandit algorithm is:
T T

=FE ZRG* - ZR%
= =1
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Algorithm: e-Greedy

\_

Already tried

Haven’t tried
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Algorithm: e-Greedy

W.p. 1 - ¢, choose the best (exploit)
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Algorithm: ¢-Greedy

W.p. 1 - ¢, choose the best (exploit) W.p. ¢, choose one randomly (explore)
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Algorithm: e-Greedy

e At later rounds, the very bad
actions can still be selected.
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Algorithm: e-Greedy

e At later rounds, the very bad
actions can still be selected.

Use a decaying c.
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¢ (explore)
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Algorithm: ¢-Greedy

* At later rounds, the very bad
actions can still be selected.

Use a decaying ¢.

* No uncertainty quantification.
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Algorithm: ¢-Greedy

e At later rounds, the very bad
actions can still be selected.

Use a decaying ¢.

* No uncertainty quantification.

Involve a confidence term.
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.

if we try more!

L More confident ]
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.

* Hoeffding bound:
log(2/6)
> (b — < 0.
= (6 a)\/ 2T }—5

y

- Each independent X, is bounded between [a, b].

1 T
~) X, —EI[X]
nrzl
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.

* Hoeffding bound:
log(2/6)
> (b — < 0.
= (6 a)\/ 2T }—5

y

Each independent X, is bounded between [a, b].
For a fixed J, the bound gets smaller when 7 is larger.

1 T
~) X, —EI[X]
n’T:l

More confident
L if we try more!
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.

* Hoeffding bound: /4 4

—
Pr { lZXT ~“E[X]| > (b—a)\/logz(g,/é) < 6.

Each independent X, is bounded between [a, b].
For a fixed J, the bound gets smaller when 7 is larger.
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.

* Hoeffding bound: /4 4

— :
1 log(2/6)
Pr{nZlXT—AlE[X] Z(b—a)\/ s i&

— Tak; - uak

- Each independent X, is bounded between [a, b].
- For afixed J, the bound gets smaller when 7T is larger.

At each round t, choose the action that maximizes

UCBz. il +c-d
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Algorithm: Upper Confidence Bound (UCB)

At each round t, choose the action that maximizes

t .t ~t
UCB,, = fig, +c- g, .

Suppose there are K Bernoulli arms with gaps A,, = T4+ — T4, and we set ¢ =1
and 6, = 1, then the total regret

,0T=O<Z loAgT).

ak7éa* ag
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Suppose there are K Bernoulli arms with gaps A, = Tgx — 7o, and we set ¢ =1
and §; = 1, then the total regret

ak7éa* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .
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Suppose there are K Bernoulli arms with gaps A, = Tgx — 7o, and we set ¢ =1
and §; = 1, then the total regret

ak7éa* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .

- Distance between the true mean and the empirical mean is at most our confidence.
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Suppose there are K Bernoulli arms with gaps A, = Tgx — 7o, and we set ¢ =1
and §; = 1, then the total regret

ak#a* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .

- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..
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Suppose there are K Bernoulli arms with gaps A, = Tgx — 7o, and we set ¢ =1
and §; = 1, then the total regret

ak#a* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .

- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..

- LHS = empirical mean + confidence < true mean + confidence + confidence (of ay).
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Suppose there are K Bernoulli arms with gaps A, = Tgx — 7o, and we set ¢ =1
and §; = 1, then the total regret

ak#a* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .
- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..

- LHS = empirical mean + confidence < true mean + confidence + confidence (of ay).
- RHS 2 true mean (of a*).
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Suppose there are K Bernoulli arms with gaps A,, = T4+ — T4, and we set ¢ =1
and §; = 1, then the total regret

ak#a* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .
- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..

- LHS = empirical mean + confidence < true mean + confidence + confidence (of ay).
- RHS 2 true mean (of a*).
- If A,, islarge, for LHS to be larger than RHS, confidence of aj cannot be too small!
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Suppose there are K Bernoulli arms with gaps A,, = T4+ — T4, and we set ¢ =1
and §; = 1, then the total regret

ak#a* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .

- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..
- LHS = empirical mean + confidence < true mean + confidence + confidence (of ay).
- RHS 2 true mean (of a*).
- If A,, islarge, for LHS to be larger than RHS, confidence of aj cannot be too small!
m Used to bound the number of each action a; # a™ being selected.
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Suppose there are K Bernoulli arms with gaps A,, = T4+ — T4, and we set ¢ =1
and §; = 1, then the total regret

ak7éa* ag

* Consider the high-probability event Vag, ¢ [|i), — pa, < 4%, .
- Distance between the true mean and the empirical mean is at most our confidence.

* An action a;, # a” is selected over a™ because UCB!, > UCBL..

- LHS = empirical mean + confidence < true mean + confidence + confidence (of ay).

- RHS 2 true mean (of a*).

- If A,, islarge, for LHS to be larger than RHS, confidence of aj cannot be too small!
m Used to bound the number of each action a; # a™ being selected.

* Factor in the probability the event does not happen and sum up everything.
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Suppose there are K Bernoulli arms with gaps A,, = T4+ — T4, and we set ¢ =1

and §; = 1, then the total regret

o log T Alternatively, we can use
T = E: A,
ap+=a*
PT = E Z AakTak
arFa*

 Consider the high-probability event Vay,t [|ii
- Distance between the true mean and the empirical me{  directly to achieve another

* An action a; # a™ is selected over a™ because bound:
- LHS = empirical mean + confidence < true mean + confi or =0 ( KT log T) .
- RHS 2 true mean (of a*).
- If A,, islarge, for LHS to be larger than RHS, confidence TOUSTTTaTT

m Used to bound the number of each action a; # a” being selected.

* Factor in the probability the event does not happen and sum up everything.
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Algorithm: Upper Confidence Bound (UCB)

e Each action is associated with a mean and a confidence term.
* We use a quantity that needs a bound [a, b] to quantify uncertainty.
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A Bayesian View: Bayesian Bandit

* Each action is associated with a distribution (i.e., our belief).
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A Bayesian View: Bayesian Bandit

* Each action is associated with a distribution (i.e., our belief).
* Whenever we try a new action, our belief is updated using Bayes’ rule:

. p(eat )p(?“at |00»t )
p(@at|'rat) T p(eat) :
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A Bayesian View: Bayesian Bandit

* Each action is associated with a distribution (i.e., our belief).
* Whenever we try a new action, our belief is updated using Bayes’ rule:

. p(eat )p(?“at |00»t )
p(@at|'rat) T p(eat) :

* Goal: Minimize Bayesian regret:

IEprior [,OT] .
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Algorithm: Thompson Sampling

* Each action is associated with a distribution.
e At each round ¢, we randomly sample an (estimated) reward for each action
and choose the action that maximizes it.

A A A A
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Algorithm: Thompson Sampling

* Each action is associated with a distribution.
e At each round ¢, we randomly sample an (estimated) reward for each action

and choose the action that maximizes it.
Equivalently, we are sampling from p (a™ = alall past observations).

A A A A

==1
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Algorithm: Thompson Sampling

* Each action is associated with a distribution.
e At each round ¢, we randomly sample an (estimated) reward for each action

and choose the action that maximizes it.
Equivalently, we are sampling from p (a™ = alall past observations).

 Bound on Bayesian regret:

log T
II:-‘:prior [pT] =0 ( Z A )

arFa* k

Eprior[pr] = O (\/KTlogT) :
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Application: Movie Recommendation

Movie recommender A1, ** QK Users

v Click?
v/ Satisfaction?

=/ 1 | B Goal: Maximize total
e Al R RS B click rate/satisfaction.
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Application: Movie Recommendation

Different groups have
different preferences.

Goal: Ma '41i/ze/total
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Application: Movie Recommendation

Different groups have
different preferences.

!

A one-size-fit-all solution A8
does not work well!

L
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Application: Movie Recommendation

Movie recommender Actions a1, ,aK to Users
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Application: Movie Recommendation

Movie recommender Actions a1, ,aK to Users

#odod G5 R lEY Too many groups!
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Application: Movie Recommendation

Movie recommender

ZANUS | Computing

Actions a1, - ,aK

Users
Features Rewards R
Sex | Age
M 9
M 28
F 6
F 23
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Contextual Bandit: B = (A, X, R)

Movie recommender Actions A Users
Contexts X
Features Rewards R
Sex | Age
M 9
M 28
F 6
F 23
(AVERGERS AY2024/25 Sem?2
SHANSHANK CS4246/CS5446
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Contextual Bandit: B = (A, X, R)

Movie recommender Actions A

[
LEONARDO DICAPRIO

SHAWSHANK

BNUS | Computing

"W\, / National University
. of Singapore

Users
Contexts X
Features Rewards R
Sex | Age
M 9
M| 28] ... |#»
F
p(R|A,X)
F 73
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Contextual Bandit: B = (A, X, R)

* Modelling assumption:
Rx — f(X) + gx
]E[Rx] — f(X)

- Each context x € A4 x X contains both action and features.
- &x is a zero-mean noise conditioned on x.

US | Computing
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Contextual Bandit: B = (A, X, R)

* Modelling assumption:
Rx — f(X) + gx
]E[Rx] — f(X)

- Each context x € A x X contains both action and features.

- &« is a zero-mean noise conditioned on Xx.

* Examples:
- Linear bandit: f(x) =w'x.
- Generalized linear bandit: f(x) = g(w "x).
- Gaussian process bandit: f(x) = GP(x).
- Neural bandit: f(x) = NN(x).

NUS | Computing

of Singapore
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Algorithm ?

* Assume | know the expected reward 7. - , 2
given by each action, then the best /\ f\ /\
. ' . %a

Good if we can bound the regret! ]

strategy is to always choose the best

action o™ with the highest 7"
But | don’t know...
 We use (cumulative) regret to measure

how good a bandit algorithm is:
T T

=FE ZRG* - ZR%
= =1
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Algorithm ?

Good if we can bound the regret! ]

* Assume | know the expected reward 7.
given by each action, then the best

strategy is to always-choose-thebest

" X il tlo bl ocs o
But | don’t know... a; = arg max,[E|Ry]

 We use (cumulative) regret to measure
how good a bandit algorithm is:

T T
=FE ZRG* —ZR%
= =1

= E — Ta,) -
NUS\Com utm
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Algorithm ?

Good if we can bound the regret! ]

* Assume | know the expected reward 7.
given by each action, then the best

strategy is to

" X il tlo bl ocs o
But | don’t know... a; = arg max,[E|Ry]

 We use (cumulative) regret to measure
how good a bandit algorithm is:

T
pr =K Z Ror %, — Z Ra, x,
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Algorithm: LinearUCB

* Each weight is associated with a mean and a confidence term.

More confident
L if we try more!
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Algorithm: LinearUCB

* Each weight is associated with a mean and a confidence term.

e Confidence ellipsoid bound:
Pr [EIt, W — W™ ||y 2 u\/dlog 1+¢L/A + \F)\HW*HI <é.

4]
P [ o7 [2] - [2]
t t

- v, L, A are parameters specified in the assumptions.

NUS | Computing

of Singapore
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Algorithm: LinearUCB

* Each weight is associated with a mean and a confidence term.

 Confidence ellipsoid bw J

1+tL/A\
Py [at, Ve — Wl > u\/dlog PHIEA L A

- (o i) o] e [a]] <o

- v, L, A are parameters specified in the assumptions.
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Algorithm: LinearUCB

* Each weight is associated with a mean and a confidence term.

 Confidence ellipsoid bw J

14 tL/X
A lat,IIWt—w*IIMZ”\/dlog I L iwl| <

1+tL T |
Pr |3t |w/] |2F| —w* T |2F]| > V\/dlog pa /)\+\/X||w*|| AL et |2 <.
Xt X¢ ) Xt Xt

- v, L, A are parameters specified in the assumptions.
* At each round ¢, choose weight w from ellipsoid and action a; that
maximize

AY2024/25 Sem?2

Xt
CS4246/CS5446
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Algorithm: LinearUCB

*—h— @ —k —*

* At each round ¢, choose weight w from ellipsoid and action a; that
maximize
T |Qk
UCng =W [V ] :

X¢ AY2024/25 Sem?2
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Algorithm: LinearUCB

Suppose we set §; = —}E then the total regret of LinearUCB satisfies

pr =0 (d Tlog T) :
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Algorithm: LinearUCB

Suppose we set §; = —}E then the total regret of LinearUCB satisfies

pr =0 (d Tlog T) :

* Suppose at some round we choose w, and a,. Then our estimated upper
bound of reward is better than the optimal reward:

UCng* = w;r [?t] > w* ' [Cft] :

Xt Xt
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Algorithm: LinearUCB

Suppose we set §; = —}E then the total regret of LinearUCB satisfies

pr =0 (d Tlog T) :

* Suppose at some round we choose w, and a,. Then our estimated upper
bound of reward is better than the optimal reward:

UCng* = w;r [?t] > w* ' [Cft] :

Xt Xt

* From the confidence ellipsoid bound, distance between UCBka* and our

T la . AY2024/25 Sem?
actual reward w* [ii] is bounded. C54246/CS5446
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Algorithm: LinearUCB

Suppose we set §; = —}E then the total regret of LinearUCB satisfies

pr =0 (d Tlog T) :

* Suppose at some round we choose w, and a,. Then our estimated upper
bound of reward is better than the optimal reward:

UCng* = w;r [?t] > w* ' [Cft] :

Xt Xt

* From the confidence ellipsoid bound, distance between UCBka* and our

' AY2024/25 Sem?

actual reward w*T || is bounded. .
: Xt So regret is bounded! CS4246/CS5446
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A Bayesian View: Bayesian Contextual Bandit

 Model parameters now follow a distribution (i.e., our belief).
 Whenever we try a new action, our belief is updated using Bayes’ rule:

p(W)p(’l“at ,Juct |W)
p(,rat,it)

p(Wl’l"at,)‘“(t) —

* Goal: Minimize Bayesian regret:
IIE‘:prior [,OT] .
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CS4246/CS5446

NUS | Computing

ional University
||||||||



Algorithm: LinearTS

 Model parameters now follow a distribution (i.e., our belief).
e At eachround ¢, we randomly sample a weight w from its distribution and
choose the action that maximizes the estimated reward: w™ [“’“] .

ZANUS | Computing
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Implementation based on Paper

Contextual bandits to increase user prediction accuracy in movie
recommendation system. Yizhe Chen (2025)

* Utilizes to make movie recommendation accuracy In movie recommendation systom |

Yizhe Chen”

Faculty of Science, University of Hong Kong, 999077, Hong Kong, China

Abstract. Cold-start problems are inevitable phenomena where

* makes distinction between and offline recommendations
the loss of new users. The typical Multi-Armed Bandit (MAB) models are
widely adopted as recommendation systems to solve cold-start problems, but

standard MAB takes much more mmendation trials than new user's

to mitigate cold-start problem which is usually encountered by s

of the nold phase. Overall, CMAB

. . cd better res s
iscounted cumulative gain. The optimal number of groups is 10, which
o eviates cold-start problems cfficiently, and sustains the cfficiency of the

inc system under filtering. T
suggests a possible slection of CMAB for recommendation sy
alleviate the cold start problem and estimates the tuned parameter

MovicLens dataset. The evaluation metric in this paper provides a possible
- iy 5 8

system, instead of adopting multiple evaluation metrics respectively, these
metrics also provide estimates of the optimal value of parameters.

* The offline recommendation uses collaborative filtering which |
leverages knowledge about the user based on similarity with

dilemma of and either new movies to the user to

. explore user preference or recommending movies that are previously interacted with to
t h t t d t ensure user satisfaction. This dilemma is a typical prublem in Multi-Armed Bandit (MAB), first
other users 1o Create recommenadaations. i o7 Rar 1) 1AhA® e s T e B U
(action) and must select one at each time step, kor each selection, a stochastic rccuh is
observed from a fixed but unknown distribution. The decision maker would refer to the
historical observation and make the next move accordingly. The MAB problem aims to
construct a sequential decision strategy that balances the inherent value of exploration and

exploitation to minimize the theoretical cost of not selecting the optimal arm.
In real scenarios of movie recommendation problems, the agent is provided with

* This offline recommendations does encounter the cold-start e
problem, as we might expect.

St e AY2024/25 Sem?2
source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf (:54246/(:55446

© The Authors, published by EDP Scienc
Commons Attribution License 4.0 (https:
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Online Recommendation

* The recommendation uses Contextual Bandit to provide the system with context
about the user with minimum data (cold users).

* The online recommendation is intended to Algorithm 1 LinUCB with disjoint linear models.
. . . . 0:1 5 R,
collaborative filtering until users | | ;-123 . 7do
have enough data which cold-start

problem.

Observe features of all arms @ € A,;:x,, € R?
forall a € A, do
if a is new then
A, < 1; (d-dimensional identity matrix)
b, < 0,41 (d-dimensional zero vector)

3
4
5

ope 6:

o Utilizes to make ;: end if

9
0
1

. . 0, < Az'b,
movie recommendation. s {
Pea < O Xy F 0 Xg-,a A7 Xy
end for
Choose arm a, = argmax,e 4P, With ties broken arbi-

* In the paper, Chen also compared the performance

. . il d ob l-valued ff
between the LinUCB contextual bandit and other e Ao R
. . 2 at at attag
multi-armed strategies. 13: by, « by, +7iXeg,
oiond o AY2024/25 Sem2
source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf CS4246/C55446
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Cold Start Problem in Recommendation System

* Chen’s proposed solution is to predict whether the user is “Cold” or not.

* The prediction results will decide whether the user will receive an or offline
recommendation.

* The process of L
recommendations with Initialization User-Movie pr——— No Cold User?
Contextual Bandit will run
repetitively as long as the user is Matrx Factorization _-__* s
still “Cold”. No

Prediction
Matrix

Yes

Clustering lr

Pull Arm

AY2024/25 Sem?2
source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf CS4246/C55446
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Dataset Description

* As in contextual bandit, the agent is allowed to have | == ==

partial knowledge about the environment in order to

reduce the needs for exploration.

» Dataset: MovieLens (Non-commercial, personalized

movie recommendations).

e Chen utilizes 79 context observed from the dataset:

* User Age, Gender, Occupation
* Movie Genre, Tag, Average Rating
* etc.

e Vectorized as feature vector used for the

National University
of Singapore

NUS | Computing

crystal that links her to the mythical sky-
kingdom of Laputa. With the help of
resourceful Pazu and a rollicking band of
sky pirates, she makes her way to the

and Pazu must outwit the evil Muska,

himself ruler of the world.
Your Tags
+
o steampunk = «7  imagination

Community Tags

view: |top all

predicts for you Genres

The orphan Sheeta inherited a mysterious  1sss

ruins of the once-great civilization. Sheeta
D

who plans to use Laputa's science to make

%24] anime | + 41| Studio Ghibli | + %4| Hayao Miyazaki +
< pirates + «6 animated masterp +| | % fantasy +

x5 greatsoundirack + x5 | robots + x4 fantasy world |+

Languages
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Our Methodology

* For this project, we limited our research scope to focus on
the implementation of LinUCB contextual bandits and compare it with contextual
epsilon-greedy bandits.

* Initially, we tried to replicate Chen’s approach which uses the user-movie-rating pairs
clustering as the contextual vector.

* However, this approach includes user-movie-rating data into clustering.
This approach feeds information about how users will rate certain movies which
leaks future predictions. Therefore, it causes the problem to not purely be a
cold-start problem.

e After further discussion and consideration, we decided to use the

0 o - - AY2024/25 Sem?2
user’s demographic information and the movie’s genre as the context vector. CS4246//CSSZ?6

NUS | Computing
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Our Methodology

* We suspect that Chen’s NDCG matrix score is heavily influenced by the Collaborative Filtering
as the number shows an outstanding score with minimum variance rate.

Table 3. NDCG & Cumulative Regrets (7'= 15, N =50, k= 10)
NDCG std Cumulative Regret | std
UCB 0.984250784 | +0.00280675 | 3.50778381 +1.09590408
TS 0.97747411 +0.0036339 | 3.50726015 +1.07879191
LinUCB | 0.97619576 | +£0.00349322 | 3.23152054 +1.08066565
e-greedy | 0.97721851 | £0.0036943 | 3.50118035 +1.15437115
AY2024/25 Sem?2

source: https://www.itm-conferences.org/articles/itmconf/pdf/2025/04/itmconf_iwadi2024_01018.pdf CS4246/C55446
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Results: Cumulative Regret

N: Number of movie clusters -> Number of arms

LinUCB

a =0.001

a=0.5

a=1

Contextual e-greedy
e = 0.001

€=0.5

e=0.1

NUS | Computing

||||||||

N=3

87.80
96.20
107.60

94.20
2409.00
4784.00

N

I
&)

174.80
218.00
267.60

179.20
3225.00
6248.40

281.20
373.00
535.40

284.00
3575.40
6804.60
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20

135.80
342.80
691.80

137.80
3576.60
7003.80

Z
I

50

177.80
711.00
1695.40

185.20
3738.00
7133.00
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Results: Cumulative Regret

N: Number of movie clusters -> Number of arms

LinUCB

a =0.001

a=0.5

a=1

Contextual e-greedy
e = 0.001

€=0.5

e=0.1

NUS | Computing

ooooooooooo

N=3 N=25 N=10 N =20 N =50
87.80 174.80 281.20 135.80 177.80
96.20 218.00 373.00 342.80 711.00

107.60 267.60 535.40 691.80 1695.40
>

94.20 179.20 284.00 137.80 185.20

2409.00  3225.00 3575.40 3576.60  3738.00

4784.00  6248.40 | 6804.60 7003.80  7133.00

Project Presentation

AY2024/25 Sem?2
CS4246/CS5446

78



Results: Cumulative Regret

N: Number of movie clusters -> Number of arms

N=3 N=5 N =10 N =20 N =50

LinUCB

a =0.001 87.80 174.80 281.20 135.80 177.80
a=0.5 96.20 218.00 373.00 342.80 711.00
a=1 107.60 267.60 535.40 691.80  1695.40
Contextual e-greedy

e = 0.001 94.20 179.20 284.00 137.80 185.20
£=0.5 2409.00 3225.00  3575.40 3576.60  3738.00
€=0.1 4784.00 | 6248.40 6804.60 7003.80 7133.00
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Results: Cumulative Regret

N: Number of movie clusters -> Number of arms
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Results: Cumulative Regret

N: Number of movie clusters -> Number of arms

N=3 N=5 N =10 N =20 N =50

LinUCB

a =0.001 87.80 174.80 281.20 135.80 177.80
a=0.5 96.20 218.00 373.00 342.80 711.00
a=1 107.60 267.60 535.40 691.80  1695.40
Contextual e-greedy

e = 0.001 94.20 179.20 284.00 137.80 185.20
£=0.5 2409.00 3225.00  3575.40 3576.60  3738.00
€=0.1 4784.00 | 6248.40 6804.60 7003.80 7133.00
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Results: Cumulative Regret

N: Number of movie clusters -> Number of arms

N=3 N=5 N =10 N =20 N =50

LinUCB

a =0.001 87.80 174.80 281.20 135.80 177.80
a=0.5 96.20 218.00 373.00 342.80 711.00
a=1 107.60 267.60 535.40 691.80  1695.40
Contextual e-greedy
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Results: Cumulative Regret

LinUCB achieved a lower cumulative regret compared to contextual epsilon greedy.
- LinUCB selects an arm based on the highest Upper Confidence Bound (UCB)
- Contextual epsilon greedy selects arms at random

class ContextualEpsilonGreedy:
def __init_ (self, n_arms, context_dim, epsilon):
self.n_arms = n_arms
self.context_dim = context_dim
self.epsilon = epsilon
self.A = [np.identity(context_dim) for _ in range(n_arms)]
self.b [np.zeros(context_dim) for _ in range(n_arms)]

select_arm(self, x):
if np.random.rand() < self.epsilon:
# Explore randomly
random_arm = np.random.randint(self.n_arms)
scores = self.score(random_arm, x)
return np.argmax(scores)
else:
# Exploit best arm
scores = [self.score(i, x) for i in range(self.n_arms)]
return np.argmax(scores)

National University
of Singapore

NUS | Computing

class LinUCB:
def __init__ (self, n_arms, context_dim, alpha):
self.n_arms = n_arms
self.context_dim = context_dim
self.alpha = alpha
self.A = [np.identity(context_dim) for arm in range(n_arms)]
self.b [np.zeros(context_dim) for arm in range(n_arms)]

def select_arm(self, x):
p_vals = []
for i in range(self.n_arms):
p = self.score(i, x)
p_vals.append(p)
return np.argmax(p_vals)

Project Presentation
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Results Analysis

LinUCB had a lower difference of cumulative regrets when switching from a low
exploration rate to a higher exploration rate, whereas contextual epsilon greedy had a
more drastic difference.

- LinUCB selects an arm based on the highest Upper Confidence Bound (UCB)
- Contextual epsilon greedy selects arms at random

LinUCB Contextual e-greedy
a =0.001 87.80 £ =0.001 94.20
a=0.5 96.20 £=0.5 2409.00
a=1 107.60 £=0.1 4784.00
AY2024/25 Sem2
CS4246/CS5446
NUS | Computing roject Presentation o



Results: Cumulative Regret Over Time

Cumulative Regret Over Time (N=50)

—— LinUCB (ax=0.001)
70001 LinucB (a=0.5)
—— LinUCB (a=1)
----- ContextualEpsilonGreedy (¢=0.001)
6000 T7..... ContextualEpsilonGreedy (¢=0.5)
----- ContextualEpsilonGreedy (e=1)
5000 1
bt
o
o
& 4000 -
7]
2
-t
o
£ 3000
>
O
2000 A
1000 A
0 .

0 2000 4000 6000 8000 10000
Interactions

LinUCB makes more calculated predictions and adapts over time
Contextual epsilon greedy uses randomized predictions

AY2024/25 Sem?2
CS4246/CS5446
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Thank you
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Appendix of results (in case needed)

A Contextual Bandit with Movie Clustering3 w &

File Edit View Insert Runtime Tools Help

mands + Code + Text

LinUCB (alpha: 0.001) - Cumulative Regret: 87.8000

LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0088
LinUCB (alpha: 0.001) - Average NDCG: 0.7412

LinUCB (alpha: @.5) - Cumulative Regret: 96.2000

LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0096
LinUCB (alpha: 0.5) - Average NDCG: 0.7411

LinUCB (alpha: 1) - Cumulative Regret: 107.6000

LinUCB (alpha: 1) - Average Regret per Interaction: 0.0108

LinUCB (alpha: 1) - Average NDCG: 0.7407

ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 92.8000
ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0093
ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.7412
ContextualEpsilonGreedy (epsilon: ©0.5) - Cumulative Regret: 2409.0000
ContextualEpsilonGreedy (epsilon: 0.5) Average Regret per Interaction: 0.2409

ContextualEpsilonGreedy (epsilon: 0. Average NDCG: 0.7401
ContextualEpsilonGreedy (epsilon: Cumulative Regret: 4784.0000
ContextualEpsilonGreedy (epsilon: Average Regret per Interaction: 0.4784
ContextualEpsilonGreedy (epsilon: Average NDCG: 0.7388
AY2024/25 Sem?2
CS4246/CS5446
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Appendix of results (in case needed)

A Contextual Bandit with Movie Clustering5 ¥ &

File Edit View Insert Runtime Tools Help

mands + Code + Text

LinUCB (alpha: 0.001) - Cumulative Regret: 174.8000

LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0175
LinUCB (alpha: 0.001) - Average NDCG: 0.6532

LinUCB (alpha: 0.5) - Cumulative Regret: 218.0000

LinUCB (alpha: 0.5) - Average Regret per Interaction: 0.0218
LinUCB (alpha: 0.5) - Average NDCG: 0.6501

LinUCB (alpha: 1) - Cumulative Regret: 267.6000

LinUCB (alpha: 1) - Average Regret per Interaction: 0.0268

LinUCB (alpha: 1) - Average NDCG: 0.6377

ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 179.2000
ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0179
ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.6533
ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3225.0000
ContextualEpsilonGreedy (epsilon: @.5) - Average Regret per Interaction: 0.3225

ContextualEpsilonGreedy (epsilon: 0.5) - Average NDCG: 0.6566
ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 6248.4000
ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.6248

ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.6575 AY2024/25 Sem?2
CS4246/CS5446
B ® 1
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Appendix of results (in case needed)

A Contextual Bandit with Movie Clustering 10 ¢ &

File Edit View Insert Runtime Tools Help
mands + Code + Text

LinUCB (alpha: 0.001) - Cumulative Regret: 281.2000

LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0281
LinUCB (alpha: 0.001) - Average NDCG: 0.3245

LinUCB (alpha: 0.5) - Cumulative Regret: 373.0000

LinUCB (alpha: @.5) - Average Regret per Interaction: 0.0373
LinUCB (alpha: 0.5) - Average NDCG: 0.3020

LinUCB (alpha: 1) - Cumulative Regret: 535.4000

LinUCB (alpha: 1) - Average Regret per Interaction: 0.0535

LinUCB (alpha: 1) - Average NDCG: 0.2719

ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 284.0000
ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0284
ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.3245
ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3575.4000
ContextualEpsilonGreedy (epsilon: 0.5) - Average Regret per Interaction: 0.3575

ContextualEpsilonGreedy (epsilon: 0. - Average NDCG: 0.3254
ContextualEpsilonGreedy (epsilon: Cumulative Regret: 6804.6000
ContextualEpsilonGreedy (epsilon: Average Regret per Interaction: 0.6805
ContextualEpsilonGreedy (epsilon: Average NDCG: 0.3222
AY2024/25 Sem?2
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Appendix of results (in case needed)

d Contextual Bandit with Movie Clustering20 ¢ &

File Edit View

mands + Code

LinUCB
LinUCB
LinUCB
LinUCB
LinUCB
LinUCB
LinUCB
LinUCB
LinUCB

(alpha:
(alpha:
(alpha:
(alpha:
(alpha:
(alpha:
(alpha:
(alpha:
(alpha:

Insert Runtime Tools Help

+ Text

0.001) - Cumulative Regret: 135.8000

0.001) - Average Regret per Interaction: 0.0136
0.001) - Average NDCG: 0.1599

0.5) - Cumulative Regret: 342.8000

0.5) - Average Regret per Interaction: 0.0343
0.5) - Average NDCG: 0.1072

1) - Cumulative Regret: 691.8000

1) - Average Regret per Interaction: 0.0692

1) - Average NDCG: 0.0666

ContextualEpsilonGreedy (epsilon: 0.001) - Cumulative Regret: 137.8000
ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0138
ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.1601
ContextualEpsilonGreedy (epsilon: @0.5) - Cumulative Regret: 3576.6000
ContextualEpsilonGreedy (epsilon: @0.5) - Average Regret per Interaction: 0.3577

ContextualEpsilonGreedy (epsilon:

5) - Average NDCG: 0.1581

ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7003.8000
ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.7004
ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.1515
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Appendix of results (in case needed)

d Contextual Bandit with Movie Clustering 50 % &

File Edit View Insert Runtime Tools Help

mands + Code + Text

LinUCB (alpha: 0.001) - Cumulative Regret: 177.8000

LinUCB (alpha: 0.001) - Average Regret per Interaction: 0.0178

LinUCB (alpha: 0.001) - Average NDCG: 0.0339

LinUCB (alpha: 0.5) - Cumulative Regret: 711.0000

LinUCB (alpha: 0. — Average Regret per Interaction: 0.0711

LinUCB (alpha: 0.5) - Average NDCG: 0.0156

LinUCB (alpha: Cumulative Regret: 1695.4000

LinUCB (alpha: Average Regret per Interaction: 0.1695

LinUCB (alpha: Average NDCG: 0.0124

ContextualEpsilonGreedy (epsilon: ©0.001) - Cumulative Regret: 185.2000
ContextualEpsilonGreedy (epsilon: 0.001) - Average Regret per Interaction: 0.0185
ContextualEpsilonGreedy (epsilon: 0.001) - Average NDCG: 0.0341
ContextualEpsilonGreedy (epsilon: 0.5) - Cumulative Regret: 3738.0000
ContextualEpsilonGreedy (epsilon: @0.5) - Average Regret per Interaction: 0.3738
ContextualEpsilonGreedy (epsilon: @.5) - Average NDCG: 0.0332
ContextualEpsilonGreedy (epsilon: 1) - Cumulative Regret: 7133.0000
ContextualEpsilonGreedy (epsilon: 1) - Average Regret per Interaction: 0.7133
ContextualEpsilonGreedy (epsilon: 1) - Average NDCG: 0.0305
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