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Abstract
The Multi-Armed Bandit (MAB) problem studies how the agent can maximize the total reward

when each action yields a random reward drawn from an unknown distribution. In this report,
we provide a structured overview of stochastic MAB formulations and fundamental algorithms (ϵ-
Greedy, UCB and ThompsonSampling) with provable performance guarantees. We then extend
the discussion to contextual MAB where auxiliary information is available and introduce advanced
algorithms under different modelling assumptions, particularly those with near-optimal guarantees.
Lastly, we present a practical implementation of (contextual) MAB in movie recommender systems
and demonstrate how it can help address real-world challenges such as the cold-start problem.
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1 Introduction
The Multi-Armed Bandit (MAB) problem is a classic reinforcement learning (RL) problem that has wide
applications. It studies how an agent repeatedly selects one among several actions (e.g., pull the arms of
slot machines/bandits) to maximize its reward after a number of iterations, given that it does not know the
reward (distribution) each action leads to a priori. During the sequential trials and observations of rewards,
the agent gradually learns the reward (distribution) each action yields to make better decisions. Similar
to other RL problems, the core challenge for MAB algorithms is the exploitation-exploration tradeoff :
should one stick to the already tried and learnt actions that give the highest reward, or try new actions
that can possibly give even higher rewards? By strategically balancing exploitation and exploration,
MAB algorithms can work effectively and have broad use cases: recommender systems sequentially select
items (e.g., movies on Netflix) to users, in order to maximize satisfaction and subscriptions (Zhou et al.,
2017); advertisers may use MAB algorithms to choose target users to maximize the influence/exposure of
their product advertisements in social networks (Vaswani et al., 2017).

In this report, we first introduce stochastic and Bayesian formulations of the MAB problem and present
classic algorithms such as ϵ-Greedy (Sutton et al., 1998), UCB (Auer, 2000) and ThompsonSampling
(Scott, 2010), with a focus on their provable theoretical guarantees. We further explore contextual bandits
(Langford and Zhang, 2007) and explain different types of contextual bandits depending on the modelling
assumptions and analyze the performance guarantee of their corresponding algorithms. In particular, we
focus on those with near-optimal guarantees on the regret. Finally, we selectively implement these
algorithms to build a movie recommender system, where we demonstrate how contextual bandits can
address practical challenges such as the cold start problem (Silva et al., 2023)).

2 Stochastic Bandit and Algorithms

2.1 Formulation
Suppose at each round t ∈ [T ], the agent can choose an action a ∈ A = {a1, a2, · · · , aK}. The (random)
reward Ra associated with action a follows a fixed distribution at each round. Let µa = E[Ra] denote the
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expected reward given by action a. Clearly, if the agent knows the distribution of every Ra in advance, it
will consistently choose the single action a∗ that maximizes µa∗ and obtain an expected total reward of
Tµa∗ . The stochastic bandit (Lai and Robbins, 1985) problem studies how the agent can maximize its
(expected) reward given that it does not know the distributions in advance. Hence, the goal
of a stochastic bandit algorithm that chooses action at and receives reward rt at round t is to minimize
its (expected) cumulative regret ρT (i.e., loss in total rewards compared with the ideal strategy):

ρT = E
[
Tµa∗ −

∑T
t=1 rt

]
. (1)

An algorithm with a provable upper bound on the regret is favorable because it means the actual reward
is at least a certain amount close to the ideal reward (i.e., it cannot be arbitrarily bad). The upper bound
is near-optimal if we can additionally find a lower bound on the regret (such that for some stochastic
bandit algorithms, no algorithm can do better than the lower bound) that is close to the upper bound,
which means that the upper bound is really good. Below we give the lower bound of the stochastic bandit
problem and in the later sections we introduce 3 classical algorithms that achieve near-optimal guarantees.

The Ω(
√
KT ) Lower Bound Auer et al. (2002) proves the following lower bound1:

Theorem 1 (Lower Bound of Stochastic Bandit). For any stochastic bandit algorithm, there exists a
problem instance such that the algorithm achieves a regret of at least Ω(

√
KT ).

Proof sketch. Consider a problem instance I where all Ra follows N (0, 1). Consider another instance I ′

where only the reward given by action a′ differs and Ra′ ∼ N (∆, 1) (∆ > 0). For an algorithm, suppose
action a′ is chosen for n′ rounds. The total regret is thus E[∆·(T−n′)]. For any algorithm that can reliably
distinguish I ′ from I, n′ should depend on ∆: when ∆ is small, n′ must be large enough for the agent to
be certain that action a′ is better (using Pinsker’s inequality (Csiszár and Körner, 1981), n′ ≥ Θ(1/∆2)).
Yet, the agent does not know which action a′ is, so it has to try every action at least Θ(1/∆2) times. Thus,
we can choose ∆ =

√
K/T such that 1/∆2 = T/K and the agent has to make a uniform exploration.

Thus, there exists an instance I ′ such that the regret is Ω (E[∆ · (T − n′)]) = Ω(
√
KT ).

2.2 ϵ-Greedy
The ϵ-Greedy algorithm (Sutton et al., 1998) is a simple yet powerful algorithm that balances exploitation
and exploration. At round t, the algorithm specifies a parameter ϵt and

• exploitation: chooses the action that gives the highest mean reward so far with probability 1− ϵt:

argmaxa
1

na(t)

∑
s≤t;as=a rs, (2)

where na(t) represents the number of choosing action a up to round t;
• exploration: chooses a random action with probability ϵt.

The vanilla version of ϵ-Greedy algorithm uses a constant ϵt ≡ ϵ. In expectation this would achieve a
regret of at least Ω(ϵT ): In ϵT out of T rounds, the algorithm is expected to choose a random action.
In expectation, a random action gives a (constant) regret of (1/K)

∑
a∈A(µa − µa∗) at each of the ϵT

rounds, thus Ω(ϵT ). Therefore, ϵ should be small enough for the cumulative regret to be small.
However, a large ϵ is preferable at the earlier rounds to explore more actions to avoid being trapped

in locally optimal actions. This motivates using an ϵt that decays over rounds t. Indeed, it is provable
that the ϵ-Greedy algorithm can achieve a better regret when ϵt is chosen properly:

Theorem 2 (Regret Bound of ϵ-Greedy (Slivkins, 2024)). Let ϵt = t−1/3(K log t)1/3. The ϵ-Greedy al-
gorithm, when running for T iterations, achieves an expected regret of O(T 2/3(K log T )1/3) = Õ(T 2/3K1/3).

Proof sketch. At each round t, we consider exploitation and exploration separately:
• exploitation: If a suboptimal at ≠ a∗ is chosen, its expected reward µat

would not be too much
lower than µa∗ (†), at least at the later rounds when nat(t) and na∗(t) are large. This is because
the empirical mean gradually converges to the expectation as there are more samples. With high
probability, ∆at

:= µa∗ − µat
is bounded by 2

√
2K log t/tϵt.2 Note that (†) is a crucial statement,

an idea that forms the backbone of the proofs for most algorithms discussed in this report.
1The bounds discussed in this report do not depend on the actual gap between each action a and the optimal action

a∗: ∆a := µa∗ − µa (i.e., we discuss the worst-case (minimax) bounds) due to page limit. There are also a group of
gap-dependent bounds that are worth noting.

2In fact, this is derived using Hoeffding bound (Eq. 3) which we only introduce in Sec. 2.3. The reasoning is also similar
to (‡) there. We direct interested readers there since the proof there can be applied to contextual bandits later.
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• exploration: The regret at round t is O(ϵt) as in the discussion about vanilla ϵ-Greedy algorithm.
The specified ϵt in the theorem balances the tradeoff between the two regrets and thus gives the cumulative
regret bound O(t2/3(K log t)1/3) for every round t ∈ [T ].

2.3 Upper Confidence Bound
One limitation of the ϵ-Greedy algorithm is that it only compares the empirical mean reward (Eq. (2))
without considering the confidence/uncertainty. For example, the optimal action a∗ can accidentally give
a low reward when it is first explored so it will not be exploited in the near future, causing a large regret.
This motivates that an action should not be denied due to its low empirical reward if it is not
sufficiently tried/the agent is not confident that it is sub-optimal. Based on this, Auer (2000)
proposes the upper confidence bound (UCB) algorithm whose general framework is as follows3:

1. At each round, the agent specifies a confidence region Πt
a of the reward associated with each action

a such that with high probability, the true expected reward µa ∈ Πt
a for all t ∈ [T ];

2. The agent chooses the action at with the highest reward within its confidence region (i.e., its upper
confidence bound UCBtat

). Clearly, UCBtat
≥ UCBta∗

.
At the earlier rounds when confidence is low, the confidence region Πt

a for each action a is large, giving
the agent more chances to explore; at the later rounds when confidence is high, the confidence region Πt

a

for each action a is small. Even if a suboptimal at ̸= a∗ is chosen, its expected reward µat would not be
too much lower than µa∗ because UCBtat

≥ UCBta∗
, so the regret is small. Therefore, it remains how the

agent should set the confidence regions to achieve provable near-optimal guarantees.
In the stochastic bandit setting, the agent’s confidence on the reward given by action a gets higher

when the number of choosing action a, na, increases. The empirical mean reward will converge to µa

when na → ∞. This can be captured by the Hoeffding bound (Hoeffding, 1994):

Theorem 3 (Hoeffding Bound). Let Ra,τ be independent samples of Ra. With probability ≥ 1− δ,∣∣∣ 1
na

∑na

τ=1 Ra,τ − µa

∣∣∣ ≤ (h− ℓ)

√
log 2

δ

2na
, (3)

where h and ℓ are upper and lower bounds of rewards.

Let µ̂t
a denote the empirical mean reward given by action a up to round t. Define ut

a :=
√

log(2/δ)/(2na).
By Eq. (3), we have with high probability the true expectation µa ∈ Πt

a := [µ̂t
a ± c · ut

a] for any round t if
the hyperparameter c is chosen properly (e.g., close to h− ℓ). By union bound over T rounds, we have
with high probability the above holds for all rounds t ∈ [T ]. Therefore, the choice of Πt

a is valid and thus
UCBta := µ̂t

a + c · ut
a. It leads to the following regret guarantee:

Theorem 4 (Regret Bound of UCB (Bubeck and Cesa-Bianchi, 2012)). The UCB algorithm, when
running for T iterations, achieves an expected regret of O(

√
KT log T ) = Õ(

√
KT ).

Proof sketch. We give a general idea of proof that is applicable to not only the above theorem, but also
applicable to all UCB-based algorithms to be discussed later. At round t, suppose an action at ̸= a∗ is
selected. Then UCBtat

≥ UCBta∗ , that is, µ̂t
at

+ c · ut
at

≥ µ̂t
a∗ + c · ut

a∗ . Since we require with high probability
µa ∈ Πt

a, we have LHS ≤ µat
+ c · ut

at
+ c · ut

at
and RHS ≥ µa∗ . Hence, ∆at

= µa∗ − µat
≤ 2c · ut

at
(†).

We know that the uncertainty ut
at

is smaller if the number of choosing at, nat
(t), is larger. Thus, if an

action a is bad such that ∆a = µa∗ − µa is large, for (†) to hold, na must be small. In fact, (†) can be
simplified to na(T ) ≤ O(log T/∆a+1). By choosing ∆a similarly to the proof of Thm. 1 and summing up
∆a · na(T ) over all a ∈ A, we obtain the stated bound, which is close to the lower bound in Thm. 1.

Remark. It is easy to see that the UCB algorithm can be improved if a concentration bound tighter than
Hoeffding’s bound is used to construct the confidence region Πt

a, e.g., empirical Berstein bound (Maurer
and Pontil, 2009), Kullback-Leibler divergence (Kullback and Leibler, 1951).

2.4 Bayesian Bandit and Thompson Sampling
Instead of constructing a confidence region using concentration bounds, it is natural to directly represent
uncertainty using Bayesian beliefs (Gelman et al., 2013). We assume the reward given by action a follows
a likelihood model p(ra|θa) (e.g., binomial distribution) and the latent parameter θa follows a prior

3Later we will discuss how UCB can be adapted to contextual bandits, where the framework and thus the proof outline
of regret bound remain the same.
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distribution pa(θa) (e.g., beta distribution). When an action at is chosen and reward rat
is observed, the

agent updates its posterior belief using Bayes’ rule: pat
(θat

|rat
) ∝ pat

(θat
)p(rat

|θat
). When the same

action is chosen again, the current posterior becomes prior in Bayes’ rule and a new posterior is computed.
For fixed latent parameters θa’s, the problem reduces to a standard stochastic bandit and the goal is

to minimize the regret in Eq. (1). Therefore, the goal of a Bayesian bandit is to minimize the expected
cumulative regret over all possible stochastic bandit instances (i.e., Bayesian regret), that is,

Eθa∼pa(·)[ρT |{θa}a∈A]. (4)

How does the agent properly use its Bayesian belief to balance exploitation and exploration in Bayesian
bandits? Scott (2010) proposes the ThompsonSampling algorithm, which works as follows:

1. At round t, for each action a ∈ A, the agent randomly samples a reward from its current belief which
is updated using the process described in the first paragraph and is denoted as pa(ra|{ras

}t−1
s=1).

2. The agent chooses the action that gives the highest sampled reward.
Let a∗ be the random variable representing the agent’s belief on the optimal action. It is easy to see
that the above algorithm is effectively sampling from p(a∗ = a|{ras}t−1

s=1), that is, the probability of each
action a being the optimal action given all the observed rewards so far.

ThompsonSampling achieves a similar near-optimal bound (on Bayesian regret) to UCB:

Theorem 5 (Regret Bound of ThompsonSampling (Agrawal and Goyal, 2013a)). The ThompsonSam-
pling algorithm, when running for T iterations, achieves a Bayesian regret of O(

√
KT log T ) = Õ(

√
KT ).

Proof sketch. Let I(a∗; rat |{ras}t−1
s=1) denote the information gain about the optimal action a∗ given

by the observed reward in round t conditioned on past rewards. The total information gain about
a∗ over T rounds is thus IT :=

∑T
t=1 E[I(a∗; rat

|{ras
}t−1
s=1)]. At iteration t, the instantaneous regret is

ρt := ra∗ −E[rat
|{ras

}t−1
s=1]. The core idea here is that if the regret at round t is large, then the information

gain about a∗ at this round will also be large (using Pinsker’s inequality, ρ2t ≤ 2 · I(a∗; rat
|{ras

}t−1
s=1)),

so that the agent can identify the optimal action faster. Summing over T iterations, we have the total
regret

∑T
t=1 E[ρt] ≤

√
2T · IT by Cauchy-Schwarz inequality. Since each of the K actions has a posterior

that can be specified to log T bits of precision after T rounds, the total information gain is at most
IT ≤ O(K log T ). Therefore, ρT ≤ O(

√
2T ·K log T ) = O(

√
KT log T ) = Õ

√
KT .

3 Contextual Bandit and Algorithms

3.1 Formulation
Suppose at each round t, the agent observes additional information associated with each action that may
be related to the reward. For example, when a movie recommender chooses a movie to recommend to a
user, it may have access to the user’s gender, age, watching history etc., which can affect whether the user
will click/appreciate each movie. However, a stochastic bandit would not use such information and even
in the ideal case it will keep recommending the single movie that most users like. Therefore, to utilize
such information and obtain even higher rewards, contextual bandits (Langford and Zhang, 2007) are
proposed. The additional information at each round is formulated as a set of vectors {xt,ak

}Kk=1 where
the contextualized action xt,ak

represents the context vector associated with action ak at round t. Since
there might be a large number of different contexts, it remains computationally intractable to learn the
reward associated with each context separately. Hence, a functional relationship is often assumed between
the contexts and their corresponding rewards:

Rt,ak
:= f(xt,ak

) + ξt,ak
(5)

for any t ∈ T and k ∈ K, where f(·) is a function (e.g., a linear model) and ξt,ak
is a zero-mean

random noise whose distribution is to be specified later. Clearly, the expected reward at round t,
E [Rt,ak

] = f(xt,ak
) and there still exists an optimal action a∗t at each round such that the expected

reward is maximized. The goal of a contextual bandit algorithm is still to minimize the regret between
the rewards given by the optimal actions and the actual rewards, that is,

ρT := E
[∑T

t=1 Rt,a∗
t
−Rt,at

]
, (6)

where at is the action chosen by the agent at round t. Note that the reward given by the optimal action
is also assumed to follow the modelling assumption, i.e., R∗

t,at
= f(xt,a∗

t
) + ξt,a∗

t
, so it is important to use

a suitable model, such that a good algorithm that gives a low regret can work well in practice.
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The lower bound of contextual bandit depends on the specific modelling assumption and will be
introduced thereafter. Most contextual bandit algorithms are directly adapted from the UCB and
ThompsonSampling algorithms and operate under a similar mechanism. The proof of near-optimality
therefore follows the same core idea, except that the confidence region/Bayesian belief is defined differently.
Therefore, we will only state the upper bounds and highlight the necessary modifications.

3.2 (Generalized) Linear Bandit and Algorithms
The (generalized) linear bandit assumes the function f to be a (generalized) linear function, that is,

Rt,ak
:= g

(
w⊤xt,ak

)
+ ξt,ak

, (7)

where g : R → R is a possibly non-linear function and w is a vector served as the weights of the linear
model. When g is the identity function (i.e., ∀r [g(r) = r]), then it is the linear bandit; when g is the
sigmoid function, then it is a logistic model. We assume the linear bandit when we discuss the specific
algorithms for simplicity. Although (generalized) linear bandits have a simple modelling assumption, they
are found to work surprisingly well in practice (Kang and Kim, 2023).

LinearUCB Similar to the vanilla UCB algorithm (Sec. 2.3), the LinearUCB algorithm (Li et al.,
2010) works by constructing a high-probability confidence region Πt on the linear weights w instead of
on the reward associated with each action, then choosing the best contextualized action at that maximizes
the expected reward under its most favorable weight inside Πt, that is,

at := argmaxa∈A maxw∈Π w⊤xt,a. (8)

The weight vector w, however, does not become more accurate with more samples of w being drawn (as
in vanilla UCB). Thus, the confidence ellipsoid bound (Abbasi-yadkori et al., 2011) is used instead:

Theorem 6 (Confidence Ellipsoid Bound). Let {xt,ãt
} be any sequence of contextualized actions adapted

to filtration {Ft}Tt=1.4 Assume the feature xt,a has a bounded norm ∥xt,a∥ ≤ L and the noise ξt,a is
conditionally ν-sub-Gaussian (i.e, its moment-generating function at any λ is bounded by that of a
Gaussian with variance ν2), then for any a and δ ∈ (0, 1), we have with probability 1− δ, for all round t,

∥ŵt −w∗∥{aτ}t
τ=1

≤
(
ν
√
d log 1+tL/λ

δ +
√
λ∥w∗∥

)
, (9)

where ŵt is the fitted linear weights at round t, ∥ · ∥{aτ}t
τ=1

measures the Mahalanobis norm (Mahalanobis,
1936) of · (i.e., a confidence-weighted Euclidean norm where dimensions with higher confidence based on
past contextualized actions are weighted higher5).

From its name, the above bound gives an ellipsoidal confidence region Πt. Thus, for each action a,
finding the most favorable weight inside Πt is optimizing a (generalized) linear objective constrained on a
convex set, which is well established.

Following a similar minimax argument as Thm. 1, Dani et al. (2008) shows that the lower bound of
linear contextual bandit is Ω(d

√
T ). Correspondingly, LinearUCB is near-optimal:

Theorem 7 (Regret Bound of LinearUCB (Abbasi-yadkori et al., 2011)). The LinearUCB algorithm,
when running for T iterations, achieves an expected regret of Õ(d

√
T ).

LinearTS Similar to the ThompsonSampling algorithm, the LinearTS algorithm (Agrawal and
Goyal, 2013b) aims to represent the agent’s uncertainty on the linear weights w using a distribution
(i.e., similar to Bayesian linear regression (Bishop, 2006)). In each round t,

1. the agent randomly samples a weight w̃ from its current belief;
2. the agent chooses the contextualized action that gives the highest reward according to the sampled

weight (i.e., argmaxa w̃
⊤xt,a), plays the action and observes the new reward.

More specifically, Agrawal and Goyal (2013b) uses a Gaussian likelihood p(rt,a|w) = N (w⊤xt,a, v
2) where

v is assumed to be a known constant. The prior distribution p(w) follows the likelihood’s conjugate prior
distribution (also a Gaussian distribution) such that the posterior p(w|rt,a) has a closed-form expression.
In this way, the belief update can be done efficiently at each round.

The LinearTS algorithm achieves the following guarantee:
4Roughly, this means that actions at round t depends only on the information up to round t instead of the future.
5This also explains why the confidence region Π is an ellipsoid.
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Theorem 8 (Regret Bound of LinearTS (Abeille and Lazaric, 2017)). The LinearTS algorithm, when
running for T iterations, achieves an expected regret of Õ(d3/2

√
T ).

3.3 Gaussian Process Bandit and Algorithms
The Gaussian process bandit (Srinivas et al., 2010) assumes the function f to be a Gaussian process (GP)
model (Rasmussen and Williams, 2006). In particular, a GP model GP(µ, k) consists of a mean function
µ(·) and a kernel function k(·, ·) such that at input x, f(x) ∼ N (µ(x), k(x,x)). Moreover, for input x
and x′, the covariance between f(x) and x′ is k(x,x′). In other words, the functional values are jointly
Gaussian and each functional value alone follows a Gaussian distribution. Therefore, if the agent specifies
a prior GP(µ, k), it can update its belief based on the observed rewards using Bayes’ rule too.

For each contextualized action xt,a, we know that f(xt,a) ∼ N (µ(xt,a), k(xt,a,xt,a)). Therefore, it is
natural to set the confidence region based on the mean µ(xt,a) and the standard deviation

√
k(xt,a,xt,a)

using UCB, or directly sample an estimated reward from each f(xt,a) and choose the action that gives
the highest sampled reward using ThompsonSampling.

GaussianProcessUCB Let µt−1(xt,a) and σ2
t−1(xt,a) denote the posterior mean and variance of

f(xt,a) just before the start of round t. Similar to the standard UCB discussed in Sec. 2.3, the
confidence region is chosen as Πt

a := [µt−1(xt,a) ± c · σt−1(xt,a)] and the upper confidence bound
UCBta := µt−1(xt,a) + c · σt−1(xt,a). The GaussianProcessUCB algorithm thus chooses the action at
that maximizes UCBta at each round t.

The original version of GaussianProcessUCB (Srinivas et al., 2010) uses ct =
√

2B2 + 300ιt−1 ln
3(t/δ),

where B is an upper bound of the norm of f , ιt−1 is the maximum information gain (i.e., reduction
in uncertainty) at round t − 1 which depends on the actual contextual bandit problem and δ is the
high-probability parameter same as in Thm. 3; an improved version (Chowdhury and Gopalan, 2017)
uses ct = B + ν ·

√
2(ιt−1) + 1 + ln(1/δ), where ν is the sub-Gaussian parameter same as in Thm. 6.

GaussianProcessUCB achieves the following bound6:

Theorem 9 (Regret Bound of GaussianProcessUCB (Valko et al., 2013)). The GaussianProces-

sUCB algorithm, when running for T iterations, achieves an expected regret of Õ(
√
d̃T ), where d̃ is the

number of effective dimensions (i.e., principal components related to the kernel k(·, ·)).

GaussianProcessTS At round t, instead of drawing a reward for each input xt,a separately, the
GaussianProcessTS algorithm (Chowdhury and Gopalan, 2017) directly draws a deterministic
function f̃t from GP(µt, kt) and chooses the action at that maximizes the function value f̃t(xt,a). It
achieves the following regret bound:

Theorem 10 (Regret Bound of GaussianProcessTS (Chowdhury and Gopalan (2017))). The Gaus-
sianProcessTS algorithm, when running for T iterations, achieves an expected regret of Õ(d3/2

√
T ).

3.4 Neural Bandit and Algorithms
The neural bandit (Zhou et al., 2020) assumes the function f to be a neural network with parameters w
and ReLU activations, denoted as fw. The expected reward at round t can still be estimated as fwt−1

(xt,a).
Regarding the confidence/uncertainty, however, since neural networks are often over-parameterized, it is
computationally challenging to maintain a belief on the parameters w and do a full Bayesian update
whenever a new reward is observed, as what linear bandits do. Fortunately, the neural tangent kernel
(NTK) theory (Jacot et al., 2018) has shown that neural networks behave approximately like linear models
in functional space near the initialized parameters w0. Therefore, the agent can represent its uncertainty
by

1. restricting the model parameters’ distance from their initialization using some regularization
parameter λ (i.e., adding the term λ · ∥w −w0∥ to the loss function Lw;

2. approximating the model as a linear model w⊤(∇wLw(xt,a)) where ∇wLw(xt,a) is the gradient
at xt,a. The approximation is valid because when differentiating with regards to w, the same
derivative will be obtained.

6The bound assumes finite arms. An alternative bound developed by Chowdhury and Gopalan (2017) is applicable to
infinite/continuous actions. The same applies to the GaussianProcessTS algorithm below.
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NeuralUCB Following the above approximation, Zhou et al. (2020) adapts the LinearUCB algorithm
by treating the gradient ∇wLwt−1

(xt,a) as the input at each round t and uses it to compute the
confidence ellipsoid same as in Thm. 6. In particular, the upper confidence bound on the reward has
the following closed-form expression: UCBta := fwt−1

(xt,a)+ ct ·
√
∇wLwt−1

(xt,a)⊤Z
−1
t−1∇wLwt−1

(xt,a)/m,
where Zt is the precision matrix capturing the shape of the confidence ellipsoid defined as Zt =
λI+

∑t−1
s=1 ∇wLws−1

(xs,a)∇wLws−1
(xs,a)

⊤/m and m is the network width (assumed to be fixed across
layers). When the exploration parameter ct is properly chosen, the NeuralUCB satisfies the following
guarantee:

Theorem 11 (Regret Bound of NeuralUCB (Zhou et al., 2020)). The NeuralUCB algorithm, when
running for T iterations, achieves an expected regret of Õ(

√
d̃T ), where d̃ is the number of effective

dimensions (i.e., principal components related to the NTK, similar to Thm. 9)

NeuralTS Zhang et al. (2021) adapts the ThompsonSampling algorithm to neural bandits by
converting the confidence region in NeuralTS to a Gaussian distribution of mean fwt−1

(xt,a) and
variance c2t∇wLwt−1

(xt,a)
⊤Z−1

t−1∇wLwt−1
(xt,a)/m. The rest of the algorithm is the same as standard

ThompsonSampling: sample a reward for each action a from its distribution and choose the action at
that gives the highest sampled reward. The NeuralTS achieves the following guarantee:

Theorem 12 (Regret Bound of NeuralTS (Zhang et al., 2021)). The NeuralTS algorithm, when
running for T iterations, achieves an expected regret of Õ(

√
d̃T ).

Remark. Unlike in linear and Gaussian bandits, the bounds for NeuralUCB and NeuralTS are similar.
This is because NeuralTS does not sample a function (as compared with sampling a linear weight in
LinearTS and sampling a function in GaussianProcessTS). Instead, it considers the uncertainty on
the reward given by each action directly, which reduces the need for discretization in functional space.

4 Implementation: Contextual Bandit in a Recommender System
In this section, we investigate the performance of contextual bandit algorithms in a movie recommendation
setting, focusing on improving the cold-start problem, a common challenge in real-world recommender
systems where new users lack sufficient interaction history and receive bad recommendations.

4.1 Methodology
Our implementation is based on Chen (2025) which focuses on using contextual bandits to increase
prediction accuracy in a movie recommender system, particularly to mitigate the cold-start problem.
Specifically, this paper uses LinearUCB to replace collaborative filtering to provide recommendations
to new users based on contextual features until users have enough data, using the MovieLens dataset
(Harper and Konstan, 2015). Specifically, a user-movie-rating clustering is created using K-Means, where
each of the K clusters serves as an arm. Missing entries in the user-movie-rating matrix are replaced by
latent factors using FunkSVD (Koren et al., 2009).

We focus on the implementation of the LinearUCB algorithm and compare it with ϵ-Greedy. When
replicating Chen (2025)’s approach of creating the contextual vector, we find that this approach includes
a factorization of user-movie-rating data into the context vector, which feeds information about how users
will rate certain movies and leaks future predictions, causing the problem not purely to be a cold start
problem. After further discussion and consideration, we use only the user’s demographic information (e.g.,
Gender, Occupation) and the movie genre as the context vector. Furthermore, we use a K-means
clustering of the movies based on its genre as the arms of our contextual bandit. The source code of our
implementation can be found here.

4.2 Results
In the practical implementation, we experimented with different hyperparameters, such as adjusting the c
and ϵ for the contextual bandits and the number of movie clusters (i.e, arms of the agent) K. Our results
are shown in Tab. 1 and Fig. 1. First, we observed the impact of hyperparameters that control
the exploitation-exploration trade-off for LinearUCB (c) and ϵ-Greedy (ϵ). The higher the value
of such hyperparameters, the greater the chance of exploration tendency. For both LinearUCB and
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Table 1: Cumulative regrets of contextual bandits with different number of arms K and algorithms.

K = 3 K = 5 K = 10 K = 20 K = 50

LinearUCB with exploration parameter c
c = 0.001 93.40 176.20 287.80 142.40 180.80
c = 0.5 99.60 213.60 377.00 348.80 697.40
c = 1 111.00 272.00 527.80 710.20 1700.20

Contextual ϵ-Greedy
ϵ = 0.001 101.20 180.60 294.60 149.00 184.00
ϵ = 0.5 2464.80 3205.00 3595.40 3602.80 3766.40
ϵ = 1 4784.00 6248.40 6804.60 7003.80 7133.00

ϵ-Greedy, cumulative regret increases along with increasing hyperparameter values. An implication
is that by allowing more exploration to happen, the contextual bandit agents potentially deviate from
the optimal arm (over-exploring) since it increases the number of random arm selection for ϵ-greedy
and LinUCB is prone to choosing arms with high uncertainty. Second, in the case of a small c and ϵ
value, the cumulative regret of LinearUCB and ϵ-Greedy do not differ too much (notice
when c and ϵ are 0.001). On the other hand, when we set c and ϵ with a larger value, LinearUCB
performs better than ϵ-Greedy (notice when c and ϵ are 1). This is a result of the different arm
selection mechanisms of the agents. ϵ-Greedy selects arms at random, whereas LinearUCB selects
arms with the highest expected reward. We also observe that even with an increase in K, LinearUCB
still outperforms ϵ-Greedy.

(a) K = 3. (b) K = 5. (c) K = 10.

(d) K = 20. (e) K = 50.

Figure 1: Plot of cumulative regrets. We can see that LinearUCB becomes flatter over time. This is
most visible in K = 20 and K = 50. On the other hand, the line for ϵ-Greedy stays linear. This implies
that the LinearUCB starts to learn the better arms from contexts, whereas ϵ-Greedy does not.

5 Conclusion
The MAB problem provides a fundamental framework for balancing exploration and exploitation in
uncertain environments. While simple algorithms in stochastic setting are powerful, contextual bandits
leverage additional information through linear models and neural networks to further enhance decision
quality. Our implementation confirms that contextual bandits can be used in recommendation systems,
with LinearUCB generally performing better than contextual ϵ-Greedy. Future research directions
include adapting contextual bandits in other areas of artificial intelligence such as multi-agent reinforcement
learning (Hsu et al., 2025), Bayesian optimization (Dai et al., 2023; Lin et al., 2023) and active learning
(Wang et al., 2021; Ban et al., 2022).
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Appendix

A Project Administration

A.1 Division of Labor
All team members contribute equally to this project. Fan Jue and Tian Xiao focus primarily on
the theoretical part, while Nadia Victoria Aritonang and Reiner Anggriawan Jasin focus primarily on the
implementation part.

A.2 Use of AI Tools
These are the ChatGPT sessions we used when implementing the LinearUCB algorithm, which contain
the prompts we used and the responses from ChatGPT:

• Implementing LinearUCB part 1;

• Implementing LinearUCB part 2;

• Troubleshooting;

• Plotting cumulative regrets.
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