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Abstract

In coding theory, Reed-Solomon codes are a family of codes with superior theoretical properties and
extensive empirical usage. This report provides a detailed yet intuitive explanation of Reed-Solomon
codes in three aspects: the mechanism behind Reed-Solomon codes, the improvements made to Reed-
Solomon codes to address their limitations and some real-life applications of Reed-Solomon codes.

1 Introduction

Reed-Solomon codes are an important and well-studied family of error-correcting codes that can detect
and correct errors in received codewords. Reed-Solomon codes were first introduced by Irving S. Reed and
Gustave Solomon in 1960 [25] and they have a number of desirable information-theoretic properties that
make them superior to other codes. Throughout the years, many advancements have been forwarded in this
field and Reed-Solomon codes have also proven their usefulness in real-life applications, from the ubiquitous
QR codes to the Hubble Space Telescope in the outer space. In this report, we first explain the mechanism
behind Reed-Solomon codes, including some important mathematical foundations and detailed encoding and
decoding procedures. We also evaluate Reed-Solomon codes based on their desirable properties and possible
limitations. Then we introduce several important improvements made to Reed-Solomon codes in order to
address these limitations. Lastly, we exemplify some major applications of Reed-Solomon codes to illustrate
why Reed-Solomon codes are exceptionally useful in real life.

2 Mechanism

The intuition behind Reed-Solomon codes is simple: Every polynomial of degree up to k−1 can be uniquely
determined by any k points that it passes through. Therefore, to encode a message of length k, we can
interpret it as the coefficients of a polynomial and use the coordinates of the k points it passes through as
the codeword. Alternatively, we may also do this in a reversed manner where messages are interpreted as
coordinates of points while coefficients of the polynomial are used as codewords. With this intuition in mind,
we shall now formally study the mechanism of Reed-Solomon codes.

2.1 Galois Field

Before we introduce Reed-Solomon codes, it is important to explain the definition and some desirable prop-
erties of a mathematical structure that is used extensively in Reed-Solomon codes: the Galois field GF(nk),
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where n is a prime number and k ≤ n is a positive integer.

2.1.1 The Galois Field GF(n) and Its Primitive Element

We start from a simple Galois field GF(n):

Definition 1. A Galois field GF(n) is a finite set S of size n associated with two defined operations: addition
(+) and multiplication (·), where the two operations satisfy the Field axioms [21].

For example, GF(2) can be defined as the set {0, 1} with addition defined as a + b := (a + b) mod 2 and
multiplication defined as a · b := (a · b) mod 2, where the +, · and mod to the right of := refer to the normal
arithmetic operators on integers. For example, in GF(2), 1 + 1 = 0 and 1 · 1 = 1.

Every Galois field GF(n) where n is a prime number has a primitive element [8], that is, there exists
an element ρ ∈ GF(n) such that for any non-zero element x ∈ GF(n), x = ρi for some positive integer
i < n. Note that the definition of exponentiation here corresponds to the definition of multiplication in
GF(n): ρi := ρ · ρ · · · · · ρ for i times. Since one non-zero element can be generated each time, it will take
n − 1 times for all non-zero elements to be generated, hence ρn−1 = 1 and ρn = ρ. This also implies that
0, ρ, ρ2, · · · , ρn−1 = 1 are pairwise distinct since otherwise a loop will be formed. For example, 2 is a primitive
element for GF(3) since 21 = 2 and 22 = 2 · 2 = 1. However, 2 is not a primitive element for GF(7) since
2i, i ∈ Z+ will be trapped in the cycle {2, 4, 1, 2, 4, 1, · · · }. Therefore, any GF(n) can be written alternatively
as the set {0, ρ, ρ2, · · · , ρn−1 = 1} given a primitive element ρ.

2.1.2 Polynomials over Galois Field: GF(nk)

Informally, we define GF(nk) over a set of polynomials of order up to k − 1: P (x) = m0 +m1x +m2x
2 +

· · · +mk−1x
k−1, where m0,m1, · · · ,mk−1 ∈ GF(n) and x ∈ GF(n). For example, x2 + 1 is an instance of

GF(53); 0.5x2 + 0.5 is not an instance of GF(53). We then proceed to define addition and multiplication
over the set of polynomials:

• Addition (+): The addition of two polynomials in GF(nk) is simply to sum up the coefficients to the
same term following the addition defined in GF(n). For example, in GF(23), (x2 + x) + (x + 1) =

(1 + 0)x2 + (1 + 1)x+ (0 + 1) = x2 + 1.

• Multiplication (·): To define the multiplication of two polynomials P1(x) ·P2(x) in GF(nk), we specify
two cases:

1. The sum of order of P1 and order of P2 does not exceed k−1. In this case, the coefficient of

ρ (p ≤ k−1) in the product is equal to
p∑

i=0

(c1,i · c2,p−i), where c1,i refers to the coefficient to xi in

P1, c2,p−i refers to the coefficient to xp−i in P2 and certainly the summation
∑

is based on addition
in GF(n) and multiplication · is that of GF(n). This seemingly complicated process is actually
what we are familiar with. For example, in GF(53), (x+3)·(x+3) = (1·1)x2+(1·3+3·1)x+(3·3) =
x2 + x+ 4.

2. The sum of order of P1 and order of P2 exceeds k − 1. The issue with this case is that
the order of the product may be larger than k − 1, which contradicts the definition of GF(nk).
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To resolve this, we need to introduce a property called irreducible: A polynomial in GF(nk)

is said to irreducible if it cannot be written as the product of any two polynomials that are
not 0 or 1. For example, the polynomial x2 + x + 4 in the above example is not irreducible in
GF(53) since it can be written as the product of x + 3 and x + 3. Let D(x) be an irreducible
polynomial of order k − 1. We can now define the product of P1(x) and P2(x) as the result
from Case 1 modulo D(x), where the remainder can be found through techniques such as long
division. For example, D(x) = x2 + x + 1 is an irreducible polynomial in GF(53) and we have
(x2 + 1) · (x+ 1) = (x3 + x2 + x+ 1) mod (x2 + x+ 1) = 1.

It has been proven that GF(nk) with the above definitions of addition and multiplication is indeed a Galois
field [16]. There is a particular reason why Galois fields GF(n) and GF(nk) are particularly suitable for
error-correcting codes: Let ρ be a primitive element of GF(n) and consider a particular polynomial P (x) =

m0 + m1x + m2x
2 + · · · + mk−1x

k−1 ∈ GF(nk). We know that x can take values from the set S =

{0, ρ, ρ2, · · · , ρn−1}. When we plug in the values 0, ρ, ρ2, · · · , ρn−1 into the polynomial P (x), we have

P (0) = m0;

P (ρ) = m0 +m1ρ+m2ρ
2 + · · ·+mk−1ρ

k−1;

P (ρ2) = m0 +m1ρ
2 +m2ρ

4 + · · ·+mk−1ρ
2k−2;

· · ·

P (ρn−1) = m0 +m1ρ
n−1 +m2ρ

2n−2 + · · ·+mk−1ρ
(k−1)(n−1).

(1)

Note that the above n equations are all distinct since 0, ρ, ρ2, · · · , ρn−1 are pairwise distinct by definition of
primitive elements. Suppose that we choose any k distinct instances α0, α1, · · · , αk−1 ∈ GF(n) and evaluate
P (αi) for i = 0, 1, · · · , k − 1, then these k evaluations will correspond to k rows from Equation (1). We can
write the k rows in the form of a linear system:

1 α0 α2
0 · · · αk−1

0

1 α1 α2
1 · · · αk−1

1

...
...

...
. . .

...
1 αk−1 α2

k−1 · · · αk−1
k−1




c0

c1
...

ck−1

 =


P (α0)

P (α1)
...

P (αk−1)

 . (2)

We know that the above equation has a unique solution if and only if the first matrix is non-singular, and
it is indeed non-singular because it is in the form of a Vandermonde matrix [17]. Therefore, whenever we
evaluate a predetermined polynomial using each of 0, ρ, ρ2, · · · , ρn−1 as input and suppose we are evaluating
correctly, we can always reversely find the polynomial from any k pairs of inputs and evaluations. Moreover,
even if some of the evaluations are wrong, as long as at least k out of the n evaluations are correct, we still
have a chance to reversely find the polynomial. This important property fuels the invention of the encoding
and decoding process of Reed-Solomon codes in the sections below.
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2.2 Encoding

Let X denote the set of all symbols (i.e. alphabet) that we are going to use. Let n be the smallest prime
number that is larger than X and let GF(n) be a Galois field. Let ρ be a primitive element of GF(n) as
defined in Section 2.1.1. For each message block m = (m0,m1, · · · ,mk−1) ∈ GF(n)k (i.e. m is a k-tuple
defined over GF(n)), we can define a polynomial in GF(nk) based on it:

P (x) = m0 +m1x+m2x
2 + · · ·+mk−1x

k−1. (3)

Note that P (x) is a polynomial of degree at most k − 1. We can then encode the message m by evaluating
the polynomial P (x) at α0 = 0, α1 = ρ, α2 = ρ2, · · · , αn−1 = ρn−1, where {α0, α1, · · · , αn−1} is known as
the set of evaluation points1. The encoding of m is the tuple of evaluations of P (α) at all evaluation points,
i.e.

RS(m) =
(
P (α0), P (α1), ..., P (αn−1)

)
. (4)

Alternatively, we can also represent Reed-Solomon codes as a result of matrix multiplication:

RS(m)⊤ =


1 α0 α2

0 · · · αk−1
0

1 α1 α2
1 · · · αk−1

1

...
...

...
. . .

...
1 αn−1 α2

n−1 · · · αk−1
n−1




m0

m1

...
mk−1

 , (5)

where the first matrix is commonly known as the Vandermonde matrix, denoted as

Vα0,α1,··· ,αn−1
=


1 α0 α2

0 · · · αk−1
0

1 α1 α2
1 · · · αk−1

1

...
...

...
. . .

...
1 αn−1 α2

n−1 · · · αk−1
n−1

 . (6)

For simplicity, let V denote Vα0,α1,··· ,αn−1
for a fixed Galois field. It is clear that V ⊤ is the generator matrix

of Reed-Solomon codes since for any message block m we have RS(m) = mV ⊤.

2.2.1 Properties of Reed-Solomon Codes

Proposition 1. Reed-Solomon codes are linear codes.

Proof. Linear codes are defined such that any linear combination of codewords is also a codeword. Since
Galois fields are closed under addition and scalar multiplication, we have for any m,m′ ∈ GF(n)k, m+m′ ∈
GF(n)k and for any a ∈ R, am ∈ GF(n)k. Hence it follows that RS(m) + RS(m′) = mV ⊤ + m′V ⊤ =

(m + m′)V ⊤ = RS(m + m′), which is the codeword for m + m′. We also have for any a ∈ R, aRS(m) =

a
(
mV ⊤) = (am)V ⊤ = RS(am), which is the codeword for am. Therefore, Reed-Solomon codes are linear

codes of dimension k over GF(n).
1Note that some Reed-Solomon codes also allow arbitrary values of n and evaluation points and their correctness has been

proven. We focus on the basic case in this report.
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Proposition 2. Reed-Solomon codes have minimum distance d = n− k + 1.

Proof. The Fundamental Theorem of Algebra states that a non-zero polynomial of degree k − 1 over field
GF(n) has at most k − 1 distinct roots in GF(n) [6]. From Equation (3), P (x) is a polynomial of degree at
most k − 1. Following the Fundamental Theorem of Algebra, it must have at most k − 1 roots. In other
words, there are at most k− 1 zeros in the Reed-Solomon codeword RS(m) for any message block m.

Recall that the Hamming distance between two codewords refers to the number of positions in which they
differ and the Hamming weight of a codeword refers to the Hamming distance between the codeword and an
all-zero codeword [27]. With the reasons above, the Hamming weight of a Reed-Solomon codeword is at least
n−(k−1) = n−k+1. Recall also that the minimum distance of a codebook refers to the minimum Hamming
distances between any pair of codeword in the codebook [27]. As Reed-Solomon Codes are linear codes by
Proposition 1, the minimum distance equals the minimum Hamming weight, hence is at least n−k+1.

The Singleton bound for linear codes states that every linear code of minimum distance d and dimension k

satisfy d ≤ n− k+1 [28]. Therefore the minimum distance d is bounded both above and below by n− k+1.
Hence we complete the proof.

Since Reed-Solomon codes achieve equality in the Singleton bound, they are a type of maximum distance
separable (MDS) codes [28]. This characteristic makes them the codes with the optimal error-detecting and
error-correcting capabilities for fixed n and k. However, the use of Reed-Solomon codes can be limited by
its large alphabet size in real applications and this will be further explained in Subsection 2.4.

2.2.2 Encoding with Lagrange Interpolation

The original encoding procedure as described above does not embed the symbols of input message block
m = (m0,m1, · · · ,mk−1) in the output codeword RS(m), thus it is a non-systematic code. Encoding with
Lagrange interpolation, on the other hand, provides an alternative way to produce Reed-Solomon codes
that are systematic. Recall that we have a set of evaluation points {α0, α1, · · · , αn−1}. We now define the
polynomial P (x) alternatively as the unique polynomial of degree less than k such that

P (αi) = mi, ∀i ∈ {0, 1, ..., k − 1}. (7)

The existence and uniqueness of such a polynomial are proved in [29]. We can thus find the unique P (x)

passing through points (α0,m0), (α1,m1), ..., (αk−1,mk−1) using Lagrange interpolation. Note that Equation
(7) uses only the first k out of n evaluation points. We then evaluate the polynomial P (x) at the remaining
evaluation points αk, αk+1, · · · , αn−1. With these evaluations, the message block m is encoded as

RS(m) =
(
m0,m1, ...,mk−1, P (αk), P (αk+1), · · · , P (αn−1)

)
. (8)
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This encoding procedure is systematic because the first k entries of each codeword correspond to the message
m. Similar to the original encoding procedure, we can write the generator matrix as follows:

Vα1,α2,...,αn =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 αk α2
k · · · αk−1

k

1 αk+1 α2
k+1 · · · αk−1

k+1
...

...
...

. . .
...

1 αn−1 α2
n−1 · · · αk−1

n−1



. (9)

Thus, again for any message block m we have RS(m) = mV ⊤.

2.3 Decoding

Suppose that we are given the codeword RS(m) = (c0, c1, ..., cn−1) with possible errors and the length of
original message block k. Suppose also that the set of evaluation points S = {α0, ..., αn−1} is known. Now
we would like to reversely find out the polynomial P (x) and the original message block m. Note that the
following decoders are applicable to both original encoding and encoding with Lagrange interpolation.

2.3.1 Theoretical Decoder

Theoretically, we can repeatedly take k out of the n evaluations and perform Lagrange interpolation to
produce the polynomial that satisfy the k evaluations. The most frequently occurring polynomial, P ∗(x), is
believed to eliminate errors in the received codeword [25]. Upon obtaining P ∗(x), it becomes straightforward
to get the original message block m: For original encoding, we take the coefficients of P ∗(x) as m; for encoding
with Lagrange interpolation, we take the results of P ∗(αi), i = 0, 1, · · · , k − 1 as m.

Suppose the number of errors is ϵ in the n evaluations. The number of k-combinations of evaluations that
provides error-free polynomials is thus equal to

(
n−ϵ
k

)
. Meanwhile, the maximum number of a particular

erroneous polynomial is at most
(
ϵ+k−1

k

)
, since any erroneous polynomial can pass through at most k−1 out

of the n− ϵ error-free evaluations at their corresponding evaluation points. In order for the most frequently
occurring polynomial P ∗(x) to be the error-free one, we have(

n− ϵ

k

)
>

(
ϵ+ k − 1

k

)
n− ϵ > ϵ+ k − 1

ϵ <
n− k + 1

2
.

(10)

Therefore, a Reed-Solomon code with fixed n and k can correct up to ⌊n−k
2 ⌋ errors.
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Despite its technical simplicity and high error-correcting capacity, decoding Reed-Solomon codes require
(
n
k

)
possible combinations of evaluations and thus potential polynomials that we need to compute. This makes
the computation prohibitively costly even in simple cases. Therefore, this decoding method is impractical in
real applications.

2.3.2 Berlekamp-Welch Decoder

The Berlekamp-Welch algorithm [31] is a more efficient way to decode Reed-Solomon codes. On top of
correcting errors and recovering the original polynomial P (x), the Berlekamp-Welch algorithm also produces
an error polynomial which can locate the errors in the codeword.

Suppose again that the number of errors is ϵ in the n evaluations. Note that an error occurs at evaluation
point αi if ci ̸= P (αi). We define an error polynomial E(x) = e0 + e1x + e2x

2 + · · · + eϵx
ϵ of order ϵ such

that it must satisfy
ciE(αi) = E(αi)P (αi), ∀ i ∈ {0, 1, ..., n− 1}. (11)

When there is no error at αi, the above equation obviously holds since ci = P (αi); when there is an error
at αi, we need E(αi) = 0 for the above equation to hold. Since all the αi’s are distinct and the polynomial
E(x) has at most ϵ roots (because it is of order ϵ), we are certain that whether there is an error at αi is
sufficiently indicated by whether E(αi) = 0.

For simplicity, define a new polynomial Q(x) = E(x)P (x) which is a (ϵ + k − 1)-th order polynomial. Let
Q(x) = q0 + q1x + q2x

2 + · · · + qϵ+k−1x
ϵ+k−1. Note that by Equation (11) Q(αi) = 0 if there is an error

at αi. Additionally, we set the constraint that eϵ = 1 and by substituting the terms in Equation (11) we
have

ci(e0 + e1x+ e2x
2 + · · ·+ eϵx

ϵ) = q0 + q1x+ q2x
2 + · · ·+ qϵ+k−1x

ϵ+k−1

ci(e0 + e1x+ e2x
2 + · · ·+ eϵ−1x

ϵ−1)− (q0 + q1x+ q2x
2 + · · ·+ qϵ+k−1x

ϵ+k−1) = −cixϵ.
(12)

Note that we can write such an equation for each of the n evaluations on αi, i = 0, 1, · · · , n− 1. The set of n
such equations form a linear system for us to solve the values of ei’s and qi’s and we will know the exact form
of E(x) and P (x) from there. Algorithm 1 shows the pseudocode of the Berlekamp-Welch algorithm.

To better demonstrate the algorithm, we provide the following example where n = 5 and k = 3. Suppose that
the message block to be encoded is (1, 4, 2) and the evaluation points are {0, 1, 2, 3, 4}. Using the original
encoding, we use the polynomial P (x) = 1 + 4x+ 2x2 and obtain the codeword (1, 2, 2, 1, 4). Assume error
occurs at α3 and the received codeword is (1, 2, 1, 1, 4). Let ϵ = 1 and we have the following linear system
based on Equation (12): 

c0 −1 −α0 −α2
0 −α3

0

c1 −1 −α1 −α2
1 −α3

1

c2 −1 −α2 −α2
2 −α3

2

c3 −1 −α3 −α2
3 −α3

3

c4 −1 −α4 −α2
4 −α3

4




e0

q0

q1

q2

q3

 =


−c0α0

−c1α1

−c2α2

−c3α3

−c4α4

 . (13)

Note that the operations follow the arithmetic of GF(5) (e.g. −1 = 4). By substituting the values of

7



Algorithm 1 Berlekamp-Welch Algorithm
Inputs: The received codeword c = (c0, c1, ..., cn−1); the set of evaluation points S = {α0, α1, ..., αn−1); the

length of original message block k.

1: ϵ← ⌊n−k
2 ⌋

2: while ϵ > 0 do ▷ need to find ϵ by trail-and-error
3: A← linear system formed by Equation (12) for all αi, i = 0, 1, · · · , n− 1
4: if A can be solved then
5: Q(x), E(x)← solution to A
6: if Q(x)/E(x) has remainder ̸= 0 then

return Uncorrectable error detected!
7: end if

P (x)← Q(x)/E(x)
8: for αi where E(αi) = 0 do
9: ci ← P (αi) ▷ to correct error at αi

10: end for
return (c0, c1, ..., cn−1)

11: end if
12: ϵ← ϵ− 1
13: end while
14: return No error!

αi, i = 0, 1, 2, 3, 4, we arrive at the following linear system:
1 4 0 0 0

2 4 4 4 4

1 4 3 1 2

1 4 2 1 3

4 4 1 4 1




e0

q0

q1

q2

q3

 =


0

3

3

2

4

 , (14)

The solution to the linear system is[
e0 q0 q1 q2 q3

]⊤
=

[
3 3 3 0 2

]⊤
. (15)

Therefore, we have

E(x) = 3 + x,

Q(x) = 3 + 3x+ 2x3

P (x) = Q(x)/E(x) = 1 + 4x+ 2x2 with remainder 0.

(16)

As such, we reconstruct the original polynomial P (x). Since E(α2) = 3 + 2 = 0, we can evaluate P (α2) =

1+ 4 · 2+ 2 · 22 = 2 to obtain the correct value at α2: 2. Thus the corrected codeword is (1, 2, 2, 1, 4).

The time complexity of Berlekamp-Welch algorithm depends on the algorithm we use to solve linear systems,
which is at most O(n3). Therefore, it is much better than the theoretical decoder and hence much more
common in practice.
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2.3.3 Gao Decoder

The Gao decoder [11] is another efficient way to decode Reed-Solomon codes. Recall that we have a set eval-
uation points {α0, α1, · · · , αn−1} and a codeword (c0, c1, · · · , cn−1), hence there exists a unique polynomial
G1(x) of order at most n − 1 such that G1(αi) = ci for i = 0, 1, · · · , n − 1. In Section 2.3.2 we define an
error polynomial E(x) and another polynomial Q(x) = E(x)P (x), and from Equation (11) we have

G1(αi)E(αi) = Q(αi), ∀i ∈ {0, 1, · · · , n− 1}. (17)

In other words, the remainder of G1(x)E(x) divided by (x − αi) is always equal to the remainder of Q(x)

divided by (x−αi) given any αi. Note that for any two i, j ∈ {0, 1, · · · , n−1} and i ̸= j, (x−αi) is co-prime
to (x− αj), that is, one cannot be written as a multiple of another. Thus, by Chinese Remainder theorem,
G1(x)E(x) must be congruent to Q(x) modulo the following polynomial G0(x), the product of the co-prime
factors:

G0(x) =

n−1∏
i=0

(x− αi). (18)

That is, when we divide G1(x)E(x) and Q(x) by G0(x) respectively, we always get the same remainder.
Hence, when we divide G1(x)E(x)−Q(x) by G0(x), the remainder is equal to 0. In other words, there exists
a polynomial A(x), such that

G1(x)E(x)−Q(x) = A(x)G0(x)

A(x)G0(x)− E(x)G1(x) = −Q(x)
(19)

It has been shown that −Q(x) is a multiple of the greatest common divisor or G0(x) and G1(x) [11]. Hence,
we can easily find possible A(x), E(x) and Q(x) in Equation (19) through the Extended Euclidean algorithm.
After that, we can compute P (x) = Q(x)/E(x) similar to Section 2.3.2. Algorithm 2 shows the pseudocode
of the Gao decoder.

Algorithm 2 Gao Decoder Algorithm
Inputs: The received codeword c = (c0, c1, ..., cn−1); the set of evaluation points S = {α0, α1, ..., αn−1); the

length of original message block k.

1: G0(x)←
∏n−1

i=0 (x− αi)
2: G1(x)← unique polynomial such that G1(αi) = ci for i = 0, 1, · · · , n− 1 ▷ by Lagrange interpolation
3: while order of remainder ≥ n+k

2 do ▷ apply Extended Euclidean algorithm
4: quotient ← G0(x)/G1(x)
5: remainder ← G0(x) modG1(x)
6: G0(x)← G1(x)
7: G1(x)← remainder
8: end while
9: A(x), E(x), Q(x)← result of Extended Euclidean algorithm

10: if Q(x)/E(x) has remainder ̸= 0 then
11: return Uncorrectable error detected!
12: end if
13: P (x)← Q(x)/E(x)
14: return P (x)
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To better demonstrate this algorithm, we use the same setting as Section 2.3.2 where n = 5, k = 3, the
message block to be encoded is (1, 4, 2) and the evalution points are {0, 1, 2, 3, 4}. Suppose again that the
corrupted codeword is (1, 2, 1, 1, 4). We first find G0(x):

G0(x) = (x− 0)(x− 1)(x− 2)(x− 3)(x− 4) = x5 + 4x. (20)

We then find G1(x) by solving the following linear system:
1 0 0 0 0

1 1 1 1 1

1 2 4 3 1

1 3 4 2 1

1 4 1 4 1




g0

g1

g2

g3

g4

 =


1

2

1

1

4

 . (21)

The solution to the linear system is[
g0 g1 g2 g3 g4

]⊤
=

[
1 2 1 2 1

]
. (22)

Hence,
G1(x) = x4 + 2x3 + x2 + 2x+ 1. (23)

We then calculate the quotient and remainder of G0(x)/G1(x):

Hence following the Extended Euclidean algorithm we have

G0(x)− (x+ 3)G1(x) = 3x3 + 2x+ 2

G0(x) + (4x+ 2)G1(x) = 3x3 + 2x+ 2.
(24)

Note that (3x3 + 2x+ 2)/(4x+ 2) = 1 + 4x+ 2x2, which is the original polynomial P (x). Following similar
procedures to Section 2.3.2, we can get the corrected codeword (1, 2, 2, 1, 4) from there.

The time complexity of Gao decoder is in general O(n log2 n) with the help of Fast Fourier Transform
(FFT) techniques [11]. However, it is well-known that FFT works well only for large n (e.g. n ≥ 1000).
Therefore, Gao decoders are more useful for large-scale Reed-Solomon codes with more errors while the
Belerkamp-Welch algorithm is more suitable for small-scale Reed-Solomon codes (which are more common
in practice).
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2.4 Limitations

In this subsection, we evaluate the limitations of Reed-Solomon codes in terms of computational complexity
and multiple-burst correction capability.

2.4.1 High Computational Complexity

The theoretical decoder of Reed-Solomon codes requires a combinatorial time complexity. Although the
Berlekamp-Welch algorithm improves the time complexity to O(n3), it is still impractical in real applications
such as deep-space communication that requires fast and real-time decoding. Gao decoder has a time
complexity of O(n log2 n), but it is even slower than Berlekamp-Welch algorithm decoding because it uses a
very large constant factor for FFT. Moreover, when the message to encode is more complex, we need a larger
alphabet size, thus a larger n and a larger Galois field. As a result, the computational cost of performing
arithmetic operations in GF(nk) would also be prohibitively expensive. To better make use of this powerful
coding algorithm and enhance its scalability to encode more complex messages, many efforts have been
invested in improving the computational complexity. Examples will be explained in Section 3.

2.4.2 Low Multiple-Burst Correction Capability

In real life, there are two types of errors that can occur in data transmission: random errors and burst
errors. Random errors can typically be caused by natural noises or interference and are split evenly across
the codewords, whereas burst errors refer to errors that occur in many consecutive positions in codewords.
For example, it can be caused by physical damage to the data storage devices. Figure 1 illustrates the
difference between the two types of errors.

It has been shown that Reed-Solomon codes are good at handling random errors and single burst errors,
but not multiple burst errors [2]. However, multiple burst errors are common in some applications of Reed-
Solomon codes, such as compact disks. Therefore, there is a need to make improvements to the multiple-burst
correction capability of Reed-Solomon codes.

Figure 1: Different types of errors. The shaded squares refer to the positions where errors occur.

3 Improvement on Reed-Solomon Codes

To address the limitations above, a number of improvements were made over the original Reed-Solomon codes.
In this section, we focus on three important improvements and discuss their mechanisms and advantages
over the original Reed-Solomon codes.
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3.1 Bose-Chaudhur-Hocquenghem (BCH) View of Reed-Solomon Codes

Bose-Chaudhur-Hocquenghem (BCH) codes [4, 5, 15] are another type2 of error-correcting codes whose key
idea is to use a generator polynomial (which we will further explain later). The BCH view of Reed-
Solomon codes combines the idea of original Reed-Solomon codes and BCH codes to produce a new type
of codes that are more flexible and efficient than the original Reed-Solomon codes.

Similar to the original Reed-Solomon codes, we define a polynomial in GF(nk) using the message block
m = (m0,m1, · · · ,mk−1) as coefficients:

P (x) = m0 +m1x+m2x
2 + · · ·+mk−1x

k−1. (25)

Recall that the Galois field GF(n) has a primitive element ρ. We define a generator polynomial as fol-
lows:

G(x) = (x− ρ)(x− ρ2) · · · (x− ρt) = g0 + g1x+ g2x
2 + · · ·+ gtx

t, (26)

where t ≤ n−k is the error-correcting capacity that we can set. The encoding of m is simply the coefficients
of P (x)G(x) which is a polynomial of order up to (k − 1) + (n − k) = n − 1. For any error-free codeword,
G(ρi) = 0 for ρ = 1, 2, · · · , t; otherwise G(ρi) ̸= 0 at some ρi and we call it a syndrome at ρi. We can easily
correct the errors and get the original message block by “treating” such syndromes through the Petersen-
Gorenstein-Zierler algorithm [13,23] or Berlekamp-Massey algorithm [3,20].

Note that the above encoding is not systematic as the input message block m = (m0,m1, · · · ,mk−1) is not
embedded into the codeword. To make it systematic, we wish to have a polynomial B(x) such that some
coefficients of B(x) is equal to mi for i = 0, 1, · · · ,m−1 and B(x) should also be a multiple of the generator
polynomial G(x) so that we can still correct errors by treating syndromes. To achieve this, we define B(x)

as follows:

P ′(x) = P (x) · xt;

B(x) = P ′(x)− (P ′(x) modG(x)).
(27)

Note that P ′(x) = m0x
t +m1x

t+1 + · · · +mk−1x
t+k−1 according to the definition above. Since G(x) is of

order t, P ′(x)modG(x) has order at most t−1 which implies that coefficients to the terms xi, t ≤ i ≤ t+k−1

are the same for P ′(x) and B(x), hence the original message block m = (m0,m1, · · · ,mk−1) exists in the
coefficients of B(x). Meanwhile, P ′(x) and P ′(x)modG(x) are clearly congruent modulo G(x), hence B(x) is
a multiple of G(x). Therefore, the coefficients of B(x) is a systematic encoding of the original message block
m. Decoding of B(x) is similarly done by treating syndromes with Petersen-Gorenstein-Zierler algorithm or
Berlekamp-Massey algorithm.

BCH view of Reed-Solomon codes are more common in practice because of its efficient decoding: the
Berlekamp-Massey algorithm takes O(n2) to decode, which is a significant improvement from O(n3) of
the original view. Moreover, there have been a lot of works to reduce constant factors such as the number of
arithmetic operations such as Berlekamp-Massey-Sakata algorithm [26] and Fast Parallel Berlekamp-Massey

2Sometimes, BCH codes are also viewed as subfield subcodes of Reed-Solomon codes [7].
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algorithm [18]. On the other hand, BCH view of Reed-Solomon codes provides higher flexibility in adjusting
the balance between computational complexity and error-correcting capacity. One can do so by adjusting
the value of t in Equation (26): A larger t allows us to detect and correct more errors but makes the decoding
process more computationally heavy, whereas a smaller t makes the decoding process more computationally
efficient in the compensation of some error-correcting capacity.

3.2 Folded Reed-Solomon (FRS) Codes

We have introduced some limitations of Reed-Solomon codes caused by its large block size in Section 2.4.1.
To address this issue, Folded Reed-Solomon (FRS) codes reduce block sizes by grouping the original code-
word into a number of folds and the total number of folds is much smaller than the original length of
codewords.

Suppose again that we have a Galois field GF(n), where ρ ∈ GF(n) is a primitive element. Recall that
ρn−1 = 1 and ρn = ρ. Let t ≥ 1 be the folding parameter which represents the number of elements per fold
and t divides n−1. Let P (x) be the polynomial defined for Reed-Solomon codes in Equation (3) or Equation
(7). We have known the codeword given by Reed-Solomon codes is

RS(m) =
(
P (0), P (ρ), P (ρ2), ..., P (ρn−1)

)
. (28)

In FRS codes, we drop the evaluation point 0 such that all the remaining evaluation points can be expressed
as a power of ρ. By grouping t consecutive elements in RS(m) together, we can arrive at the t-folded
Reed-Solomon codes, FRS(m), which is a code of block size n

t :

FRS(m) =



P (ρ)

P (ρ2)
...

P (ρt)

 ,


P (ρt+1)

P (ρt+2)
...

P (ρ2t)

 , · · · ,


P (ρn−t)

P (ρn−t+1)
...

P (ρn−1)


 . (29)

FRS codes can be decoded using an algorithm developed by Guruswami [14] in polynomial time.

Besides computational efficiency, FRS codes are also more capable of correcting burst errors as compared to
Reed-Solomon codes because FRS codes correct errors in each sub-block independently.

FRS codes have another significant advantage over original Reed-Solomon codes or even any other codes in
general: it has so far the optimal trade-off between coding rate and error correction radius. Coding rate in
a systematic code refers to the ratio of message length to codeword length; error correction radius refers
to the number of errors that a decoder can correct up to. Before FRS codes are invented, the best error
correction radius is given a fixed coding rate R is equal to 1−

√
R3, and FRS codes improve this number to

1−R asymptotically.
3Actually this error correction radius is also achieveed by Reed-Solomon codes!
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3.3 Cross-Interleaved Reed-Solomon Codes (CIRC)

Interleaving is a common technique to convert burst errors into the same patterns as random errors. The
idea of interleaving is extremely simple yet practical: It shuffles the original codeword such that the burst
errors are spread uniformly the entire codeword. For example, Figure 2 demonstrates how a 5×4 interleaver
can redistribute the burst errors.

Figure 2: Different types of errors. The shaded squares refer to the positions where errors occur.

Since Reed-Solomon codes are very good at handling random errors, it is likely to perform well on both
random errors and burst errors after the interleaving technique is used. Moreover, this technique does not
have any significant time complexity to the encoding and decoding process, and hence is very commonly
used in practice.

4 Applications of Reed-Solomon Codes

Because of its several superior properties, Reed-Solomon codes and their variants are commonly used in
practice. In this section, we focus on three major applications of Reed-Solomon codes [33]. By analyzing
the requirements and use cases in each application scenario, we explain why certain specific Reed-Solomon
codes are used in each application.

4.1 Compact Discs (CDs)

Reed-Solomon codes play a crucial role in ensuring accurate data retrieval from compact discs (CDs), video
compact discs (VCDs) and digital video discs (DVDs). We focus on the simplest one of them, CDs, which
only store audio information, where Reed-Solomon codes were introduced in the consumer product for the
first time. To produce a CD, sounds are first converted into a binary format through pulse-code modulation.
The binary code is then encoded with Eight-to-Fourteen Modulation (EFM) codes and CIRC codes
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and stored in CDs. When we play a CD, decoders inside players work to decode the original message and
convert it to sounds.

In CDs, data are stored as upwards bumps called pits (1) and downwards bumps called lands (0) on the disc
surface (Figure 3), which can be read by a laser beam. Due to bandwidth limits, only a certain number of
pits and lands can be written repetitively within a region. Hence, the raw messages need to be converted to
codewords such that the numbers of consecutive 0’s and 1’s are bounded, which can be done using
Run-Length Limited (RLL) codes. Therefore, we use a specific type of RLL codes, the EFM codes in
CDs.

Figure 3: Illustration of a CD with pits and lands [24].

During the production of CDs, electrical noises or interference might occur and cause imperfections in the
pits and lands; during the usage of CDs, players may also experience interference and inaccurately read from
the pits and lands. Hence there might be random errors in the codewords that decoders receive. Meanwhile,
CD owners may leave fingerprints or scratches on CDs which affect a concentrated region of data, leading to
possible burst errors in the codewords. Therefore, the codes used in CDs must have a high random error
correctability, long burst error correctability and good ability to retain as much information
as possible even if the number of errors exceeds the error correction radius. Furthermore, since a disc can
store limited data and is expected to be used to play audio fluently, the codes used in CDs should also have
low redundancy and efficient decoding algorithm. As a result, CIRC codes based on BCH view
of Reed-Solomon codes are chosen to be used CDs because they satisfy all these requirements, as we have
explained in Section 3.1 and 3.3.

4.2 Bar Codes and QR Codes

Two-dimensional bar codes encode information in a matrix or grid of black and white squares which can be
scanned using an imaging device. One popular example of two-dimensional bar codes is the Quick Response
(QR) code, where black dots refer to 1’s and white dots refer to 0’s. The use of Reed-Solomon codes in QR
codes can allow correct reading even if the QR codes are partially physically damaged or some pixels are
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wrongly captured by imaging devices.

To achieve this, a bar code needs to use some of its storage to store information (messages) and the other
to store redundancies. The specific design and parameters of the Reed-Solomon code used in bar codes
can vary depending on the specific application and the required level of error correction. In general, the
Reed-Solomon codes, when applied in bar codes, work similarly to the parity error correction [27]. However,
Reed-Solomon codes can correct much more errors as compared to the parity method based on the trade-off
between coding rate and error correction radius introduced in Section 3.2. For example [19], a Version 3 QR
code (29× 29) can hold 70 bytes of information. A common scheme is to use 34 bytes to store messages and
36 bytes to store redundancies. In other words, the coding rate, in this case, is 34

70 . Based on the trade-off
between coding rate and error correction radius introduced in Section 3.2, Reed-Solomon codes can ideally
achieve an error correction radius of 1 −

√
34
70 ≈ 0.3. In practice, the messages usually can be correctly

retrieved when up to 25% of the codewords are corrupted, which is slightly lower than the ideal bound but
still makes the QR codes highly resilient.

4.3 Deep-Space Telecommunication Systems

Reed-Solomon codes have been used extensively in deep-space telecommunication systems since the last
century, such as the famous National Aeronautics and Space Administration (NASA) Voyager program [12]
and NASA’s Hubble Space Telescope [32]. Due to the vast distance between the Earth and spacecrafts,
the signals sent from spacecrafts are weakened along the way and are highly susceptible to cosmic radiation
and electromagnetic interference. Thus the received data are highly likely to be erroneous. Meanwhile, it
is extremely time-expensive (up to months) to repeat the data collection and transmission process if the
erroneous data cannot be recovered [10]. This drives the need to use error-correcting codes in deep-space
telecommunication systems.

We study the Voyager spacecraft as an example [1]. Voyager adopted an optimized (7, 1
2 ) convolutional

code and later an additional (255, 223) Reed-Solomon code4. A convolutional code [30] is another type of
error-correcting code that works via convolution, the process of combining neighbouring data into one using
a boolean polynomial function called kernel. Convolutional codes can be decoded via maximum-likelihood
Viterbi decoder. The (7, 1

2 ) convolutional code can correct up to ⌊ 10−1
2 ⌋ = 4 errors [22]. The (255, 223)

Reed-Solomon code, on the other hand, can correct up to ⌊ 255−223
2 ⌋ = 16 errors and it is actually a standard

implementation of Reed-Solomon codes. Note that the Reed-Solomon code is concatenated to the initial
convolutional code at a later stage through code concatenation [9], which enables us to append a more
advanced code to an older code without major changes to the overall architecture of the system.

In conclusion, Reed-Solomon codes are a powerful tool in real-life applications where the correct information
is highly important but data transmission tends to be erroneous and lossy.

4Note that n = 255 is not a prime number as in our definition. This is common in practice because the primeness of n is
not a necessary condition for Reed-Solomon codes to work and our definition is a basic case.
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5 Conclusion

Our report has illustrated the information-theoretic and practical advantages of Reed-Solomon codes through
an in-depth study of their mechanisms. By reviewing how existing improvements have greatly extended the
use cases of Reed-Solomon codes, our report has also demonstrated the potential for further improvements
in future. In conclusion, Reed-Solomon codes are a remarkably powerful and important family of error-
correcting codes.
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Brief Summary of Contributions
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• For the Mechanism section, Fan Jue focused on the encoding and decoding (without Gao decoder) of
Reed-Solomon codes ; Tian Xiao focused on Galois field and Gao decoder. The Limitations subsection
are written together by the two authors. However, both authors proofread and made appropriate
updates on the scripts written by each other.

• For the Improvement on Reed-Solomon Codes section, Fan Jue focused on FRS codes and Tian
Xiao focused on BCH view of Reed-Solomon codes and interleaving. However, both authors proofread
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