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Abstract
This report provides a detailed summary and review of the
paper [3] stated in the title, which was authored by Zhiqi Bu,
Jialin Mao and Shiyun Xu from University of Pennsylvania
and published at NeurIPS 2022. In the paper, the authors pro-
pose a new technique to train large convolutional neural net-
works with differential privacy, namely mixed ghost clipping,
which significantly improves the scalability and efficiency of
the training process.

1 Introduction
Machine learning (ML) may use data that contains private
or sensitive information such as income, medical records or
browsing history whose owners are not willing to publicly
share. However, even if the learner (e.g., companies) does
not expose the dataset used to train its ML model, such in-
formation can still be leaked from the trained model itself
through techniques such as membership inference attacks
[11] or model inversion attacks [13]. To protect data privacy,
differential privacy (DP) [6] has been adopted as a measure
of privacy. The core intuition behind DP is that the privacy
of a data sample is preserved through a ML model training
mechanism if the trained models with or without the sam-
ple in the training set are indistinguishable (i.e., the model
parameters are similar). A number of such differentially pri-
vate machine learning (DP-ML) mechanisms [1, 7, 8] have
been proposed, among which NoisySGD [1] is specifically
catered to neural networks and shown to perform well on
image classification tasks [5, 12]. The main technique of
NoisySGD is per-sample gradient clipping, where the gra-
dient computed at each backpropagation step (based on the
loss associated with a sample) is normalized and then made
noisy so as to mask the actual effect of each sample.

However, the efficiency (E) and scalability (S) of
NoisySGD on very large and deep convolutional neural net-
works (CNNs) remain a problem. Firstly (E), per-sample
gradient clipping needs to be done for each sample in a
batch, for each weight in the neural network, and at each it-
eration. Besides, since the gradient at each iteration is noisy,
the model takes more iterations to converge. These two fac-
tors have significantly slowed down the training process by
as many as 1000 times empirically [2]. Secondly (S), it is
observed in practice that larger CNN models, trained with
NoisySGD, perform worse than smaller ones. Therefore, it

is questionable whether training with NoisySGD can be ap-
plied to larger-scale CNNs without sacrificing accuracy.

In this paper, the authors have addressed both E and S
by proposing mixed ghost clipping, a mixture of ghost clip-
ping and per-sample gradient clipping, whichever is faster.
Ghost clipping avoids the need to compute and store the
gradient for each sample, thus improving the efficiency (E).
The authors also show that by training larger-scale CNNs
efficiently with mixed ghost clipping, it is possible to ob-
tain larger-scale CNNs with good accuracy, thus empirically
verifying the scalability (S).

2 Backgrounds
2.1 Differential Privacy
Differential privacy (DP) [6] provides a measure of privacy-
preserving capability of a ML model training mechanism.
Conceptually, it measures how much the trained model pa-
rameters differ when each sample is in or is not in the train-
ing dataset. The smaller the difference is, the more privacy
the training mechanism can preserve. Formally,

Definition 1. [(ϵ, δ)-Differential Privacy] Two (training)
datasets are said to be neighboring if they differ by only one
sample. A randomized training mechanism M : D → Rr,
which takes in a dataset D ∈ D to train its r model pa-
rameters, is (ϵ, δ)-differentially private if for every pair of
neighboring datasets D and D′ and every subset O ∈ Rr,

Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O] + δ. (1)

2.2 NoisySGD
NoisySGD [1] is a variant of the stochastic gradient de-
scent (SGD) algorithm to train deep neural networks with
DP. Compared with standard SGD, NoisySGD has two ad-
ditional steps (and thus two special parameters) at each iter-
ation:

• Clipping gradients: The computed gradient is “clipped”
with regards to a preset gradient norm bound C in order
to limit the impact of each sample (larger impact implies
larger risk of privacy breach), i.e., for each sample xi, we
clip the actual gradient g(xi) to

ḡ(xi)← g(xi)

max
(
1,

∥g(xi)∥
C

) , (2)
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Figure 1: Illustration of a convolutional layer.

where the term 1

max
(
1,

∥g(xi)∥
C

) = Ci is called clipping

factor;
• Injecting noises: Gaussian noises of scale σ are then in-

jected to the clipped gradients in order to mask the im-
pact of each sample, i.e., when taking the average of L
gradients in a batch, we do

g̃(xi)← 1
L

(∑
i ḡ(xi) +N (0, σ2C2I)

)
. (3)

Since these two steps have to be done for each sample, the
computational cost of NoisySGD is much larger than that of
standard SGD.

3 Summary of Methodology
3.1 Ghost Clipping
Consider a convolutional layer with the following forward
pass (see Fig. 1 for explanation) of sample xi:

aout,i ← ϕ(si) = ϕ (F (U(ain,i)W + b)) . (4)
By differentiating the loss function Li against the kernel
weight W, we obtain the following gradient for sample xi:

g(xi) =
∂Li

∂w = F−1
(

∂L
∂si

)⊤
U(ain,i). (5)

The gradient norm, ∥g(xi)∥, can be computed directly with-
out having to compute g(xi):

∥g(xi)∥2=
(
U(ain,i)U(ain,i)

⊤)(F−1
(

∂L
∂si

)
F−1

(
∂L
∂si

)⊤)
.

(6)
Eq. (6) is the core of ghost clipping. Instead of explicitly
computing all the gradients g(xi) and storing them in the
memory, ghost clipping only computes the gradient norms
during backward propagation and thus significantly saves
the memory space. Fig. 2 gives a comparison between stan-
dard per-sample gradient clipping and ghost clipping on how
they process Eq. (2) and (3) respectively.

3.2 Mixed Ghost Clipping
As shown in Fig. 2, although ghost clipping significantly
saves the memory space, it requires an additional second
backward propagation, so it is not necessary that ghost clip-
ping always performs better than per-sample gradient clip-
ping at any layer. To determine which layer to use which
clipping technique, the authors give a precise condition
based on the layer specifications as follows:{

Ghost clipping , if 2H2
outW

2
out < pdkHkW ;

Per-sample clipping , otherwise.
(7)

Figure 2: Comparison between per-sample gradient clipping
(left) and ghost clipping (right). Per-sample gradient clip-
ping is memory-expensive since it needs to store the gradi-
ents, whereas ghost clipping requires extra time for the ad-
ditional second backward propagation.

Here Hout and Wout are the output dimension of the layer,
p is the number of output channels, d is the number of input
channels, and kH and kW are the kernel dimension.

Since the dimension of each layer in a large CNN can vary
significantly, mixed ghost clipping achieves a much better
performance than only per-sample gradient clipping, or only
ghost clipping. More specifically, the authors find that ghost
clipping is more efficient at the deeper layers (i.e., further
away from the input layer) and per-sample gradient clipping
is more efficient at the shallower layers.

4 Review
The privacy-utility tradeoff [10] has been a widely known
issue of DP-ML. Taking NoisySGD as an example, since we
are injecting noises to the gradient computed at each iter-
ation (to “hide” the actual effect of each sample), this will
not only slow down the convergence rate but also prevent
the model from reaching the minima of loss function in the
end. This is because when we are getting closer to the min-
ima, the gradient becomes smaller and eventually compara-
ble to the injected noises. This issue is especially critical to
very large and deep neural networks which contain a huge
number of parameters and take very long to converge even
without DP, highlighted by many previous attempts [2, 9].
However, since data privacy is essential (Sec. 1), research on
improving the efficiency (E) and scalability (S) of current
DP-ML techniques for deep neural networks is essential.

This paper proposes a technique, mixed ghost clipping,
that clearly improves both E and S: Theoretically, the au-
thors give a clear and detailed analysis of the time and space
complexity of mixed ghost clipping versus previous tech-
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niques; empirically, the authors are the first ones who man-
age to train very large CNN models such as convolutional
vision transformers on the standard CIFAR-10/100 datasets
and achieve dominating results. This has empirically veri-
fied that DP can be applied to large CNNs while maintaining
good model performance.

An important finding in this paper is that the choice of DP
technique is related to the model architecture and may need
to vary across models or even layers within a model. This is
because the training of ML models is heavily based on nu-
merical computation and approximation (e.g., matrix com-
putation), whose efficiency and performance depends on the
nature of numerical inputs (e.g., dimension, sparsity). This
finding has also motivated other works [4] to further improve
on such layer-wise hybrid implementations.

However, there are also some potential challenges to the
layer-wise hybrid implementations. Firstly, such an imple-
mentation requires a selection criterion to choose the appro-
priate technique for each layer. The selection criterion needs
be easy and efficient to implement so as not to undermine the
benefits of such implementation. However, it is questionable
whether there would always be such a selection criterion as
simple as the one in this paper. Secondly, this paper provides
one alternative to the original per-sample gradient clipping
technique. In future, there will be more alternatives and cor-
responding selection criteria, thus the selection of suitable
technique for each layer will be increasingly difficult.

The technique proposed in this paper is restricted to CNN
models as the derivation only works for convolutional layers
and fully connected linear layers. Since it employs the fact
that convolutional layers are equivalent as linear layers, it is
hard to adapt the technique to other deep learning models.

Future work could explore the possibility to extend the
concept of layer-wise hybrid implementations to other deep
learning models, such as recurrent neural networks (RNN)
and transformers. They could also come up with more alter-
native clipping techniques that are more suitable for certain
layer specifications. Furthermore, since this work has proven
the practicality of training very large and deep CNNs with
DP, more research can be done on maximizing the model
performance under certain DP requirements. such research
would be highly meaningful these days when deep learning
is prevalent and data privacy is drawing much attention.

Acknowledgement
This project serves as the final project of the SCE.I435 Vi-
sual and Knowledge Information Processing course con-
ducted by Prof. Kawakami Rei at Tokyo Institute of Tech-
nology.

References
[1] Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;

Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep
Learning with Differential Privacy. In Proc. ACM
SIGSAC conference on computer and communications
security, 308–318.

[2] Bu, Z.; Gopi, S.; Kulkarni, J.; Lee, Y. T.; Shen, H.; and
Tantipongpipat, U. 2021. Fast and Memory Efficient

Differentially Private-SGD via JL Projections. In Proc.
NeurIPS, 19680–19691.

[3] Bu, Z.; Mao, J.; and Xu, S. 2022. Scalable and Efficient
Training of Large Convolutional Neural Networks with
Differential Privacy. In Proc. NeurIPS, 38305–38318.

[4] Bu, Z.; Wang, Y.-X.; Zha, S.; and Karypis, G. 2023.
Differentially private optimization on large model at
small cost. In Proc. ICML, 3192–3218. PMLR.

[5] De, S.; Berrada, L.; Hayes, J.; Smith, S. L.; and Balle,
B. 2022. Unlocking High-Accuracy Differentially
Private Image Classification Through Scale. arXiv
preprint arXiv:2204.13650.

[6] Dwork, C. 2006. Differential Privacy. In International
Colloquium on Automata, Languages, and Program-
ming, 1–12. Springer.

[7] Lei, J. 2011. Differentially Private m-Estimators. In
Proc. NeurIPS.

[8] Li, T.; Li, J.; Liu, Z.; Li, P.; and Jia, C. 2018. Differ-
entially Private Naive Bayes Learning Over Multiple
Data Sources. Information Sciences, 444: 89–104.

[9] Li, X.; Tramer, F.; Liang, P.; and Hashimoto, T. 2021.
Large Language Models Can Be Strong Differentially
Private Learners. arXiv preprint arXiv:2110.05679.

[10] Makhdoumi, A.; and Fawaz, N. 2013. Privacy-Utility
Tradeoff Under Statistical Uncertainty. In 2013 51st
Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton), 1627–1634. IEEE.

[11] Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V.
2017. Membership Inference Attacks Against Machine
Learning Models. In Proc. IEEE Symposium on Secu-
rity and Privacy (SP), 3–18. IEEE.

[12] Tramer, F.; and Boneh, D. 2020. Differentially Private
Learning Needs Better Features (or Much More Data).
arXiv preprint arXiv:2011.11660.

[13] Zhang, Z.; Liu, Q.; Huang, Z.; Wang, H.; Lee, C.-K.;
and Chen, E. 2022. Model Inversion Attacks Against
Graph Neural Networks. In Proc. IEEE Transactions
on Knowledge and Data Engineering. IEEE.

3


