H2 Further Mathematics Contents

	- Arc length: $\int \sqrt{d x^{2}+d y^{2}}$ (Pythagoras Theorem) - Arc length of polar curve: $\int \sqrt{\mathrm{dr}^{2}+(r d \theta)^{2}}$ - Surface area: $\int 2 \pi y \sqrt{\mathrm{dx}^{2}+\mathrm{dy}^{2}}$ (perimeter \times thickness)
Further Differential Equation	- Integration factor: For $\frac{d y}{d x}+P(x) y=Q(x)$, multiply both sides by $\mathrm{I}(\mathrm{x})=\mathrm{e}^{\int \mathrm{P}(\mathrm{x}) \mathrm{dx}}$ $\begin{gathered} \mathrm{I}(\mathrm{x}) \frac{d y}{d x}+I(x) P(x) y=Q(x) I(x) \\ \mathrm{I}(\mathrm{x}) \frac{d y}{d x}+I^{\prime}(x) y=Q(x) I(x) \\ \frac{d}{d x}(I(x) y)=Q(x) I(x) \\ \mathrm{y}=\frac{\int Q(x) I(x) d x}{I(x)} \end{gathered}$
	- Solution to second-order differential equation: $\mathrm{a} \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c=0$
	$\Delta>0 \quad y=A e^{m_{1} \mathrm{x}}+\mathrm{Be}^{\mathrm{m}_{2} \mathrm{x}}$
	$\Delta=0 \quad y=(A+B x) \mathrm{e}^{\mathrm{mx}}$
	$\Delta<0 \quad \mathrm{y}=e^{\alpha x}(A \cos \beta x+B \sin \beta x)$
	- Euler's method: $\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\Delta \mathrm{t} \cdot \mathrm{f}\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ - Improved Euler's method: $\left\{\begin{array}{l}y_{n+1}^{*}=y_{n}+\Delta t \cdot f\left(t_{n}, y_{n}\right) \\ y_{n+1}=y_{n}+\Delta t \cdot\left[\frac{f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}^{*}\right)}{2}\right]\end{array}\right.$
Further Complex Number	- de Moivre's Theorem: $[\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)]^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}(\operatorname{cosn} \theta+\mathrm{i} \operatorname{sinn} \theta)$ - Roots of $z^{n}=r e^{i \theta}: z=r^{\frac{1}{n}} e^{\frac{\theta+2 k \pi}{n}}$
Further Special Discrete Probability Distributions	- Conditions for Poisson Distribution: Independence, constant mean rate, randomness - If $\mathrm{X} \sim \operatorname{Po}(\lambda), \mathrm{E}(\mathrm{X})=\lambda, \operatorname{Var}(\mathrm{X})=\lambda$ - Conditions for geometric distribution: Independence, two outcomes, constant probability of success - Memoryless property: If $\mathrm{X} \sim \mathrm{Geo}(\mathrm{p}), \mathrm{P}(\mathrm{X}>\mathrm{m}+\mathrm{n} \mid \mathrm{X}>\mathrm{n})=$ $\mathrm{P}(\mathrm{X}>\mathrm{m})$

Continuous Random Variables	- $\int_{-\infty}^{+\infty} f(x) d x=1$ - Cumulative density function: $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$ - Median, $m: F(m)=1$ - Mode, $m^{*}: f\left(m^{*}\right) \geq f(x)$ for all x - $E(X)=\int_{-\infty}^{+\infty} x f(x) d x$ - $E(g(X))=\int_{-\infty}^{+\infty} g(x) f(x) d x$ - $P(X \leq x)=P(Y \leq f(x))$
Special Continuous Probability Distributions	- Uniform distribution: $E(X)=\frac{a+b}{2}, \operatorname{Var}(X)=\frac{1}{12}(b-a)^{2}$
Confidence Intervals	- Unbiased estimator for $\mu: \overline{\mathrm{X}}$ - Unbiased estimator for $\sigma^{2}: S^{2}=\frac{\mathrm{n}}{\mathrm{n}-1} \sigma_{\mathrm{n}}{ }^{2}$ - Unbiased estimator for $\mathrm{p}: \mathrm{P}_{\mathrm{S}}=\frac{\mathrm{x}}{\mathrm{n}}$ - Explain in context a confidence interval: If a large number of samples are taken randomly, and their (1- α) confidence intervals for μ are found, then we say that (1- α) of such intervals will contain μ. - Confidence interval for population mean: - Confidence interval for population proportion: $\left(P_{s}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}, P_{s}+z_{1-\frac{\alpha}{2}} \sqrt{\left.\frac{p(1-p)}{n}\right)}\right.$
Further Hypothesis	- t-test is used when population is normally distributed and sample size is small.

Testing	- Presentation: Test H_{0} against H_{1} (state both hypotheses). Level of significance: $\alpha \%$ (lower/upper/two-tailed). Under $H_{0}, \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, hence $\mathrm{Z}=\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}} \sim N(0,1)$ Method 1 Critical region: $\mathrm{z}<\mathrm{a}$ (taking lower-tailed as an example). Observed test statistic: $\mathrm{z}=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}}>a$ Hence we do not reject H_{0}. Method 2 By using GC, p-value $=p$ Since $p>\alpha \%$, we do not reject H_{0}. Therefore, there is insufficient evidence at $\alpha \%$ level of significance to claim H_{1} (stated).
	- When using CLT, remember to convert sample variance to unbiased estimate of population variance. - Assumptions for t-test: Normal distribution, randomness, independence. - Value of population mean specified by the null hypothesis is contained in the $\alpha \%$ confidence interval. \leftrightarrow We do not reject the null hypothesis at a $(1-\alpha \%)$ level of significance. - Two samples test: Under $H_{0}, \mathrm{Z}=\frac{\left(\overline{X_{1}}-\overline{X_{2}}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}{ }^{2}}{n_{1}}+\frac{\sigma_{2}{ }^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)$ - For two samples test, X_{1} and X_{2} are drawn independently. - Unbiased estimate for common variance: $s=\frac{n_{1} \sigma_{s_{1}}{ }^{2}+n_{2} \sigma_{s 2}{ }^{2}}{n_{1}+n_{2}-2}$ - t-test is used when population is normally distributed and at least one sample size is small. - Paired sample t-test is used when each subject is measured twice (e.g. before and after tutorials). In this case, under $H_{0}, \quad \mathrm{~T}=$ $\frac{\bar{D}-d_{0}}{S_{D} / \sqrt{n}} \sim t(n-1)$ - For paired-sample test, the difference is normally distributed. - Pearson's statistic: $\chi^{2}=\sum_{i=1}^{n} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}} \sim \chi^{2}(v)$, provided that $E_{i} \geq 5$. - Degree of freedom, $\mathrm{v}=$ number of classes - number of estimated parameters -1 for goodness of fit. - Collapse whenever $\mathrm{E}_{\mathrm{i}}<5$. - Degree of freedom, $v=($ no. of rows -1$) \times($ no. of columns -1$)$ for independence.

| | •Non-parametric tests test the median. The null hypotheses are to
 claim that the median difference is 0. |
| :---: | :--- | :--- |
| Non-
 parametric
 Tests | -Continuity correction: $\mathrm{P}(\mathrm{X}=\mathrm{k}) \Rightarrow \mathrm{P}\left(\mathrm{k}-\frac{1}{2}<\mathrm{X}<\mathrm{k}+\frac{1}{2}\right) ; \mathrm{P}(\mathrm{X}<$
 $\mathrm{k}) \Rightarrow \mathrm{P}\left(\mathrm{X}<\mathrm{k}+\frac{1}{2}\right)$ |

