H2 Further Mathematics Contents

Matrices	 Augmented matrix of a linear system: ^{a11} a12 a13 b1 ^{a12} a22 a23 b2 ^{a31} a32 a33 b3 ^{a32} ^{a33} b3 ^{b1} ^{a11} a12 a13 a32 a33 b3 ^{a31} ^{a32} a33 b3 ^{a31} ^{a322} a33 b3 ^{a31} ^{a32} a33 b3 ^{a33} ^{a31} ^{a32} a33 b3 ^{a31} ^{a31} a32 a33 ^{a31} ^{a31} a32 a33 ^{a31} ^{a31} a32 a33 ^{a31} ^{a31} a32 a33 ^{a31} ^{a31} a32 ^{a31} a32			
Conics	Geometric Definition Cartesian Equation Parametric Equation Polar	Ellipse $PF_{1} + PF_{2} = k$ $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ $\begin{cases} x = a\cos\theta \\ y = b\sin\theta \end{cases}$	Hyperbola $ PF_1 - PF_2 = k$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $\begin{cases} x = asec\theta \\ y = btan\theta \end{cases}$	Parabola $PF = x_P - x_c $ $y^2 = 4cx$ $\begin{cases} x = c \\ y = 2c^2 \end{cases}$
	Equation $r = \frac{ep}{1 + ecos\theta}$ Focus • DEF define point F to	the distance betwe	e > 1 $c^2 = a^2 + b^2$ The distance betwee een P and a fixed ling e. Let $c - ke^2 = 0$	the d: $x = k$ is a

	Eccentricity Range $0 \le e < 1$ $e > 1$ $e = 1$				
	Eccentricity $e = \frac{c}{a}$ $e = \sqrt{1 - \frac{b^2}{a^2}}$ $e = \sqrt{1 + \frac{b^2}{a^2}}$ $e = \frac{c}{a}$				
Mathematical Induction	• Let P_n be the statement When $n = 1$, LHS=RHS, hence P_1 is true; Assume that P_k is true for some value of k, prove P_{k+1} is true. Since P_1 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by mathematical induction, P_n is true for all $n \in Z^+$.				
Linear Spaces	 S is a basis of P if S is linearly independent and S spans P. Dimension is the number of vectors in the basis of V. Null space of A is the set of all the solutions of Ax = 0. Rank of A (rank(A)) is the dimension of row space of A. Nullity of A (nullity(A)) is the dimension of null space of A. For an m × n matrix A, rank(A) + nullity(A) = n. Linear transformation: T(u + v) = T(u) + T(v) and T(ku) = kT(u). For T: Rⁿ → Rⁿ, rank(T) + nullity(T) = n. 				
Recurrence Relation	• First-order recurrence relation: $x_{n+1} = ax_n + b$ $x_{n+1} = ax_n + b = a(ax_{n-1} + b) + b = a^2x_{n-1} + (b + ab)$ $= \dots = a^{n+1}x_0 + b\frac{1 - a^{n+1}}{1 - a}$ • Second-order recurrence relation: $ax_{n+2} + bx_{n+1} + cx_n = 0$ has a general solution of $x_n = Am_1^n + Bm_2^n$. When $m_1 = m_2$, the solution is $x_n = (An + B)m^n$.				
Numerical Methods	• Interval bisection: sign of $f(\frac{a+b}{2})$. • Linear interpolation: sign of $f(\frac{a f(a) +b f(b) }{ f(a) + f(b) })$. • Newton-Raphson: $x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$ • Recurrence relation: $x_{r+1} = f(x_n)$ • Trapezium rule: $\int_a^b f(x) dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$ • Simpson's rule: $\int_a^b f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{2n-1}) + f(x_{2n})]$				
Further Application of Integration	 Area under polar curve: ∫¹/₂r² dθ (area of sectors of circle) Volume (disc): ∫ πy² dx (volume of cylinder) Volume (shell): ∫ 2πyx dy (perimeter×thickness) 				

Arc length: $\int \sqrt{dx^2 + dy^2}$ (Pythagoras Theorem)				
Arc length of polar curve: $\int \sqrt{dr^2 + (rd\theta)^2}$				
Surface area: $\int 2\pi y \sqrt{dx^2 + dy^2}$ (perimeter×thickness)				
• Integration factor: For $\frac{dy}{dx} + P(x)y = Q(x)$, multiply both sides by				
$I(x) = e^{\int P(x) dx}:$				
$I(x)\frac{dy}{dx} + I(x)P(x)y = Q(x)I(x)$				
$I(x)\frac{dy}{dx} + I'(x)y = Q(x)I(x)$				
$\frac{d}{dx}(I(x)y) = Q(x)I(x)$				
$y = \frac{\int Q(x)I(x)dx}{I(x)}$				
• Solution to second-order differential equation: $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + c = 0$				
$\Delta > 0 \qquad \qquad y = Ae^{m_1 x} + Be^{m_2 x}$				
$\Delta = 0 \qquad \qquad y = (A + Bx)e^{mx}$				
$\Delta < 0 \qquad \qquad y = e^{\alpha x} (A \cos \beta x + B \sin \beta x)$				
• Euler's method: $y_{n+1} = y_n + \Delta t \cdot f(t_n, y_n)$				
• Improved Euler's method: $\begin{cases} y_{n+1}^* = y_n + \Delta t \cdot f(t_n, y_n) \\ y_{n+1} = y_n + \Delta t \cdot \left[\frac{f(t_n, y_n) + f(t_{n+1}, y_{n+1}^*)}{2} \right] \end{cases}$				
• de Moivre's Theorem: $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos \theta + i\sin \theta)$				
Roots of $z^n = re^{i\theta}$: $z = r^{\frac{1}{n}}e^{i\frac{\theta+2k\pi}{n}}$				
Conditions for Poisson Distribution: Independence, constant mean				
rate, randomness				
If $X \sim Po(\lambda)$, $E(X) = \lambda$, $Var(X) = \lambda$				
Conditions for geometric distribution: Independence, two outcomes,				
constant probability of success				
Memoryless property: If $X \sim \text{Geo}(p)$, $P(X > m + n X > n) = P(X > m)$				

Continuous Random Variables	• $\int_{-\infty}^{+\infty} f(x) dx = 1$ • Cumulative density function: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$ • Median, m: $F(m) = 1$ • Mode, m [*] : $f(m^*) \ge f(x)$ for all x • $E(X) = \int_{-\infty}^{+\infty} xf(x) dx$ • $E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x) dx$ • $P(X \le x) = P(Y \le f(x))$			
Special Continuous Probability Distributions	Uniform distribution: $E(X) = \frac{a+b}{2}$, $Var(X) = \frac{1}{12}(b-a)^2$			
Confidence Intervals				
Further Hypothesis	<i>t</i> -test is used when population is normally distributed and sample size is small.			

Testing	• Presentation:		
0	Test H_0 against H_1 (state both hypotheses).		
	Level of significance: α % (lower/upper/two-tailed).		
	Under H_0 , $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, hence $Z = \frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$		
	Method 1		
	$\overline{\text{Critical region: } z < a \text{ (taking lower-tailed as an example).}}$		
	Observed test statistic: $z = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} > a$		
	Hence we do not reject H_0 .		
	Method 2		
	By using GC, p -value = p		
	Since $p > \alpha$ %, we do not reject H_0 .		
	Therefore, there is insufficient evidence at α % level of		
	significance to claim H_1 (stated).		
	• When using CLT, remember to convert sample variance to unbiased		
	estimate of population variance.		
	Assumptions for <i>t</i> -test: Normal distribution, randomness,		
	independence.		
	 Value of population mean specified by the null hypothesis is contained in the α% confidence interval. ↔ We do not reject the null hypothesis at a (1 – α%) level of significance. 		
	• Two samples test: Under H_0 , $Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$		
	• For two samples test, X ₁ and X ₂ are drawn independently.		
	• Unbiased estimate for common variance: $s = \frac{n_1 \sigma_{s1}^2 + n_2 \sigma_{s2}^2}{n_1 + n_2 - 2}$		
	 <i>t</i>-test is used when population is normally distributed and at least one sample size is small. Paired sample <i>t</i>-test is used when each subject is measured twice 		
	(e.g. before and after tutorials). In this case, under H_0 , $T =$		
	$\frac{D-d_0}{S_D/\sqrt{n}} \sim t(n-1)$		
	• For paired-sample test, the difference is normally distributed.		
	• Pearson's statistic: $\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} \sim \chi^2(v)$, provided that $E_i \ge 5$.		
	• Degree of freedom, v = number of classes – number of estimated		
	parameters – 1 for goodness of fit.		
	• Collapse whenever $E_i < 5$.		
	• Degree of freedom, $v = (no. of rows - 1) \times (no. of columns - 1)$ for		
	independence.		

Non-	• Non-parametric tests test the median. The null hypotheses are to claim that the median difference is 0.	
parametric Tests	• Continuity correction: $P(X = k) \Longrightarrow P(k - \frac{1}{2} < X < k + \frac{1}{2}); P(X < k + \frac{1}{2})$	
10515	$k) \Longrightarrow P(X < k + \frac{1}{2})$	