H2 Mathematics Contents

Vectors	- $\widehat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}$ - A, B, C are collinear. $\Leftrightarrow \overrightarrow{\mathrm{AB}}=\lambda \overrightarrow{\mathrm{BC}}$ for some real number λ. - Ratio Theorem: $\overrightarrow{\mathrm{OP}}=\frac{\lambda \overrightarrow{\mathrm{OB}}+\mu \overrightarrow{\mathrm{OA}}}{\lambda+\mu}$ - $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$ - If $\mathbf{a} \perp \mathbf{b}, \mathbf{a} \cdot \mathbf{b}=0$ - $\mathbf{a} \times \mathbf{b}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)=-(\mathbf{b} \times \mathbf{a})$ - $\mathbf{a} \times \mathbf{b}=(\|\mathbf{a}\|\|\mathbf{b}\| \boldsymbol{\operatorname { s i n }} \theta) \widehat{\mathbf{n}}$, where $\widehat{\mathbf{n}}$ is the unit vector perpendicular to the plane containing \mathbf{a} and \mathbf{b}. - If $\mathbf{a} \\| \mathbf{b}, \mathbf{a} \times \mathbf{b}=0$ - Length of projection of \mathbf{a} onto $\mathbf{b}:\|\mathbf{a} \cdot \hat{\mathbf{b}}\|$ - Projection vector of \mathbf{a} onto $\mathbf{b}:(\mathbf{a} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}$ - Length of vector component of a perpendicular to $\mathbf{b}:\|\mathbf{a} \times \hat{\mathbf{b}}\|$ - Vector component of a perpendicular to $\mathbf{b}: \mathbf{a}-(\mathbf{a} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}$ - Equation of a line: $\left\{\begin{array}{l}\mathbf{r}=\mathbf{a}+\lambda \mathbf{m} \\ \frac{x-a_{1}}{m_{1}}=\frac{y-a_{2}}{m_{2}}=\frac{z-a_{3}}{m_{3}}\end{array}\right.$ - Equation of a plane: $\left\{\begin{array}{l}\mathbf{r}=\mathbf{a}+\lambda \mathbf{m}_{\mathbf{1}}+\mu \mathbf{m}_{\mathbf{2}} \\ \mathbf{r} \cdot \mathbf{n}=D \\ a x+b y+c z=D\end{array}\right.$ - Angle between lines and planes: using $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$ - Distance from a point to a line or plane: using projection or perpendicular component. - Reflection of a point: using the foot of perpendicular from the point to the line or plane.
Curve Sketching	
Transformation of Graphs	- Translation of $y=f(x)$ by a units in the ($+/-$)ve (x / y) direction. - Scaling of $y=f(x)$ parallel to the (x / y) axis by a factor of a. - Reflection of $y=f(x)$ about the (x / y) axis.
Functions	- To prove 1-1: Show that every horizontal line $y=b, b \in R$ cuts the graph at most once. - For fg to exist, $\mathrm{R}_{\mathrm{g}} \subseteq \mathrm{D}_{\mathrm{f}}$.

	- Unbiased estimates of $\sigma^{2}: s^{2}=\frac{n}{n-1} \sigma_{x}^{2}$ - Distribution of \bar{X} : $\left\{\begin{array}{l} X \sim N\left(\mu, \sigma^{2}\right) \rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \\ \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \text { approximately, when } n \text { is large }(C L T) \end{array}\right.$ - Write CLT in full.
Hypothesis Testing	- Presentation: Test H_{0} against H_{1} (state both hypotheses). Level of significance: $\alpha \%$ (lower/upper/two-tailed). Under $H_{0}, \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, hence $\mathrm{Z}=\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}} \sim N(0,1)$ Method 1 Critical region: $\mathrm{z}<\mathrm{a}$ (taking lower-tailed as an example). Observed test statistic: $\mathrm{z}=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / n}}>a$ Hence we do not reject H_{0}. Method 2 By using GC, p-value $=p$ Since $p>\alpha \%$, we do not reject H_{0}. Therefore, there is insufficient evidence at $\alpha \%$ level of significance to claim H_{1} (stated). - When using CLT, remember to convert sample variance to unbiased estimate of population variance.
Correlations and Regressions	

