H2 Physics Contents

	•	• SI base units: kg, m, s, A, K, mol.		
Measurement	•	A systematic erro	or is one that occurs consistently more or	
		consistently less th	an the actual reading.	
	•	A random error is o	one that gives a scatter of readings about a mean	
		value	she that gives a seater of readings about a mean	
	•	$\Delta y = y_{max} - y_{average}$		
	•	y = 3A + 5B - 6	$C \Rightarrow \Delta y = 3 \Delta A + 5 \Delta B + 6 \Delta C$	
	•	$y = \frac{3A^m}{AB^m} \Rightarrow \frac{\Delta y}{N} = 2$	$m\frac{\Delta A}{A} + n\frac{\Delta B}{B}$	
		$4B^{n} \qquad y$	A = B	
	•	Error 1s 1 s.1. and 1 (2,00+0,01) 1_{ray}	reading follows the d.p. of error (e.g.	
		(2.00 ± 0.01) Kg).	tance on the vertical velocity:	
	•		lance on the vertical velocity:	
Kinomotios			When rising, deceleration > 9.81	
Kinematics		$0 \xrightarrow{i} t$	When $v=0$, deceleration = 9.81	
			When falling, deceleration < 9.81	
	•	Newton's First I a	w: A body will continue in its state of rest or	
		uniform motion in	a straight line until an external resultant force	
		acts on it	a straight line until all external resultant force	
		Newton's Second	Law: The rate of change of momentum of a	
		body is directly pro	provide the resultant force acting on it. The	
		change in momen	tum is in the same direction as the resultant	
		force	tuin is in the same encetion as the resultant	
	•	Newton's Third L	aw. If Body A exerts a force on Body B. Body	
		R will exert a for	the same type equal in magnitude and	
		opposite in direction	on on Body A	
Dynamics	•	Force is defined as	s the rate of change of momentum of an object	
Dynamics		which is free to me	over 1 N is a force that will give a mass of 1 kg	
		an acceleration of	1 m s^2 in its direction.	
			dP dm	
	•	For a stream of par	rticle, $F = \frac{dt}{dt} = v \frac{dt}{dt}$	
	•	For a moving body	$Y, \ F = \frac{dP}{dt} = ma$	
	•	Principle of conse	ervation of linear momentum: If there is no	
		external force actin	ng on a system, the sum of linear momentum of	
		all bodies in the sy	stem remains constant.	
	•	A collision is elast	ic if the total kinetic energy is conserved.	
	•	The centre of grav	ity is the point at which the entire weight of a	
Forces		body appears to ac	t through.	
	•	Principle of mome	ents: For a body to be in rotational equilibrium,	

		sum of clockwise moment about any point is equal to sum of anti-			
		clockwise moment about the same point.			
Work, Energy and Power					
Circular Motion	•	$v = \omega r$ $a = \omega^2 r = \frac{v^2}{r}$			
	•	$\omega = \frac{2\pi}{T} = 2\pi f$			
Gravitational Field	•	A gravitational field is a region of space in which a mass experiences a force.			
	•	$F = \frac{GMm}{r^2}$			
	•	Gravitational field strength at a point is defined as the gravitation force per unit mass acting on a small mass placed at that point.			
	•	$g = \frac{GM}{r^2} = \frac{F}{m}$			
	•	Gravitational potential energy is defined as work done by external agents in bringing a mass from infinity to that point.			
	•	$GPE = -\frac{GMm}{r}$ (External agents do negative work as			
	•	gravitational force is attractive.) Gravitational potential is defined as work done per unit mass by external agents in bringing a small test mass from infinity to that point.			
	•	$\phi = -\frac{GM}{r}$			
	•	Geostationary orbit:			
		(i) Orbit period is same as Earth, 24 hours.			
		(ii) Orbital plane must coincide with the Earth's equatorial			
		plane.			
		(iii) Satellite must rotate from t	he west to the east.		
	•	Absolute scale is independent of	f the thermal property of any		
	•	substance. nV - nPT - Nkt			
	•	$p_{V} = n_{M} - n_{K}$ T must be converted to Kelvin.			
Thermophysics	•	First Law of Thermodynamics: $\Delta U = W + Q$			
	•	Thermodynamic processes:			
		Isothermal	Constant temperature		
		Isobaric	Constant pressure		
		Isochoric/Isovolumetric	Constant volume		

		Adiabatic	No heat exchange	
		Cyclic	Same states	
Oscillations	•	Simple harmonic motion: The motion of an object is simple harmonic if the acceleration of the object is always proportional to its displacement from the equilibrium point and the direction of acceleration is towards the equilibrium point. $x = Acos(\omega t)$ $v = -\omega Asin(\omega t)$ $a = -\omega^2 Acos(\omega t) = -\omega^2 x$ At equilibrium point, v is maximum. $KE_{max} = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$		
Waves	• • • • •	$v = f\lambda$ Stationary wave is a wave in which vibrational energy is stored. Phase difference: $\frac{\Delta \phi}{2\pi} = \frac{\Delta x}{\lambda} = \frac{\Delta t}{T}$ $I = \frac{P_{source}}{\text{Are}}$ $I \propto A^2$ Unpolarised: $I_{out} = \frac{1}{2}I_{in}$ Polarised: $A = A_c \cos \theta$; $I = I_c \cos^2 \theta$		
Superposition	•	Principle of superposition: When two or more waves meet at a point, the resultant displacement at that point is the vector sum of the displacement due to each individual wave. Conditions for interference fringes to be observed: (i) Waves must meet. (ii) Waves must be coherent. (iii) Waves must be coherent. (iii) Waves must be unpolarized or polarized along the same axis. Coherence: The phase difference between two waves remains constant and does not vary with time. Young's Double Slit: $x = \frac{\lambda D}{A}$, x is the distance between two adjacent dark fringes. Single/Multiple Slit: $sin\theta = \frac{n\lambda}{D}$, D is the width of the slit. Rayleigh Criterion: Two images are just resolved when the first		
Electric Field	•	diffraction minimum of one image coincides with the central maximum of the other. An electric field is a region of space where an electric force acts on a stationary charge placed inside.		

	• $F_E = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$
	• Electric field strength at a point is defined as the electric force per unit positive charge acting on a small stationary test charge placed at that point.
	• $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} = \frac{F_E}{q}$
	• Electric potential energy is defined as the work done by external agents in bringing a stationary charge from infinity to that point.
	• $EPE = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r}$
	• Electric potential is defined as the work done by external agents per unit positive charge in bringing a small stationary test charge from infinity to that point.
	• $V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
	• Electric potential energy is negative when the force is attractive; Electric potential is negative when the source is negative.
	• $I = \frac{Q}{t} = nAvq$
Current	• Electromotive force is the energy per unit charge transferred from some other energy to electrical energy when charge is moved round a whole circuit.
DC Circuits	
DC Circuits Electromagnetism	 F = BILsinθ = Bqvsinθ Magnetic flux density (B) is defined as the magnetic force per unit length per unit current acting on a conductor perpendicular to the magnetic field. Its unit is T (Tesla).
DC Circuits Electromagnetism Electromagnetic Induction	 F = BILsinθ = Bqvsinθ Magnetic flux density (B) is defined as the magnetic force per unit length per unit current acting on a conductor perpendicular to the magnetic field. Its unit is T (Tesla). Φ = BAcosθ Magnetic flux (Φ) is defined as the product of the area and the magnetic flux density that is perpendicular to it. Its unit is Wb (Weber). Faraday's Law: The induced e.m.f. in a conductor is directly proportional to the rate of change of magnetic flux linkage or the rate of cutting of magnetic flux. Lenz's Law: The direction of the induced current is such that it produces a magnetic field that opposes the change in magnetic flux linkage causing it.
DC Circuits Electromagnetism Electromagnetic Induction	 F = B1Lsinθ = Bqvsinθ Magnetic flux density (B) is defined as the magnetic force per unit length per unit current acting on a conductor perpendicular to the magnetic field. Its unit is T (Tesla). Φ = BAcosθ Magnetic flux (Φ) is defined as the product of the area and the magnetic flux density that is perpendicular to it. Its unit is Wb (Weber). Faraday's Law: The induced e.m.f. in a conductor is directly proportional to the rate of change of magnetic flux linkage or the rate of cutting of magnetic flux. Lenz's Law: The direction of the induced current is such that it produces a magnetic field that opposes the change in magnetic flux linkage causing it. ε = - d(NΦ)/dt
DC Circuits Electromagnetism Electromagnetic Induction AC Circuit	 F = BILsinθ = Bqvsinθ Magnetic flux density (B) is defined as the magnetic force per unit length per unit current acting on a conductor perpendicular to the magnetic field. Its unit is T (Tesla). Φ = BAcosθ Magnetic flux (Φ) is defined as the product of the area and the magnetic flux density that is perpendicular to it. Its unit is Wb (Weber). Faraday's Law: The induced e.m.f. in a conductor is directly proportional to the rate of change of magnetic flux linkage or the rate of cutting of magnetic flux. Lenz's Law: The direction of the induced current is such that it produces a magnetic field that opposes the change in magnetic flux linkage causing it. ε = -d(NΦ)/dt The r.m.s. value for an AC current is the equivalent constant DC current that can dissipate the same average power. For ideal transformers, P is constant.

	radiation.
	• Photoelectric effect is a phenomenon where electrons are emitted
	from the surface of certain types of metals when electromagnetic
	radiation is incident on the surface of these metals.
	E = hf
	• Work function energy (φ) is the minimum energy required to
	remove an electron from the surface of a metal involved in
	photoelectric emissions.
	$\frac{1}{2}mv_{max}^2 = hf - \phi$
	• Intensity $= \frac{NE}{tA}$, Current $= \frac{N}{t}e$
	• Three observations supporting particulate model:
	(i) Threshold frequency
	(ii) No time delay
	(iii) Max k.e. independent of intensity
	• Wave-particle duality: $P = \frac{h}{\lambda}$
	$\Delta P \Delta x \ge h$
	• Emission Line Spectrum is a series of separate, differently
	wavelengths of electromagnetic radiation emitted by atoms when
	excited electrons in the atoms return to their ground state
	• Absorption Line Spectrum is the spectrum produced when light
	from a hot body passes through a cooler gas; it appears as a series
	of separate dark lines on a continuous spectrum.
	• Mass defect is the difference between the mass of a nucleus and
	all its constituents.
	• Nuclear binding energy is the energy needed to take apart all the
	constituent nucleons of a nucleus and separate them at an infinite
	distance apart from each other.
Nuclear Physics	$BE = \Delta mc^2$
	• Radioactive decay refers to the random and spontaneous
	transformation of an unstable nucleus to a lighter one in which
	radiation is released in the forms of α -particles, β -particles and
	neutrinos and/or γ -rays.