CS1231 DISCRETE STRUCTURES

Cheatsheet

Properties of Tian Xiao

Logical Statements

Basic Operators: and (Λ), or (\vee), not (\sim)

Laws of Logical Equivalence

```
01. Commutative Laws: p \times q \equiv q \times p
02. Associative Laws: (p \times q) \times r \equiv p \times (q \times r)
03. Distribution Laws: p \land (q \lor r); p \lor (q \land r)
04. Identity Laws: p \land \mathbf{True} \equiv p; p \lor \mathbf{False} \equiv p
05. Negation Laws: p \land \neg p \equiv False; p \lor \neg p \equiv True
06. Double Negative Laws: \sim(\sim p) \equiv p
07. Idempotent Laws: p \land p \equiv p; p \lor p \equiv p
08. Universal Bound Laws: p \land False \equiv False; p \lor True \equiv True
09. De Morgan's Laws: \sim (p \land q) \equiv \sim p \lor \sim q; \sim (p \lor q) \equiv \sim p \land \sim q
10. Absorption Laws: p \lor (p \land q) \equiv p; p \land (p \lor q) \equiv p
11. Negation of True/False: \simTrue \equiv False; \simFalse \equiv True
```

Modus Tollens

 $p \rightarrow q$

 $\sim q$

•~p

• p

 $p \vee q$

 $p \rightarrow r$

 $q \rightarrow r$

• r

Division into

Conditional Statements

- 01. Implication Law: $p \rightarrow q \equiv \neg p \lor q$
- 02. Contrapositive: $\sim q \rightarrow \sim p \equiv p \rightarrow q$
- 03. Converse: $q \rightarrow p$
- 04. Inverse: $\sim p \rightarrow \sim q$

Rules of Inference

Modus Ponens	_
$p \rightarrow q$	
р	
• q]

Conjunction
р
q
• $p \wedge q$

Tran	siti	vity	

$p \rightarrow q$	
$q \rightarrow r$	
• $p \rightarrow r$	

Elimination	Specialisatio
$p \lor q$	$p \wedge q$
$\sim q$	• <i>p</i>

	• <i>p</i>		
Cases	Contradiction		

 $\sim p \rightarrow False$ • p

Generalisation

n

• $p \lor q$

Quantitative Operators: \exists ! (there exists one and only one)

Ouantitative Statements

01. Negation: $\forall \rightarrow \exists$; $P(x) \rightarrow \sim P(x)$ 02. Contrapositive: $\forall x \in D, \sim O(x) \rightarrow \sim P(x)$ 03. Converse: $\forall x \in D, O(x) \rightarrow P(x)$ 04. Inverse: $\forall x \in D, \sim P(x) \rightarrow \sim O(x)$

Universal Instantiation

$\forall x \in D, P(x)$	
$a \in D$	
• $P(a)$	

Rule + Universal Instantiation = Universal Rule

Definition of Numbers

01. Even: $\exists k \in \mathbb{Z}$ such that x = 2k02. Odd: $\exists k \in \mathbb{Z}$ such that x = 2k + 103. Prime: $\forall r, s \in \mathbb{Z}^+$, $n = rs \Rightarrow (r = 1, s = n)$ or (r = n, s = 1)04. Composite: $\exists r, s \in \mathbb{Z}+$, (n = rs) and (1 < r, s < n)05. Rational: $\exists p, q \in \mathbb{Z}, r = \frac{p}{q}$ and $q \neq 0$ 06. Divisible: $\exists k \in \mathbb{Z}, n = dk$

Proof by Contradiction

The contrapositive of $P(x) \rightarrow O(x)$ is $\sim O(x) \rightarrow \sim P(x)$. 1. Prove the contrapositive statement through a direct proof. 1.1. Suppose $x \in \mathbf{D}$ such that Q(x) is False. 1.2. Show that P(x) is False. 2. Therefore, the original statement $P(x) \rightarrow O(x)$ is **True**.

Sets and Functions

Set Concepts

01. Equal Sets: $A = B \Leftrightarrow x \in A \leftrightarrow x \in B$ 02. Subset: $A \subseteq B \Leftrightarrow \forall x, x \in A \rightarrow x \in B$ 03. Finite Set: |S| = n, where *n* is called cardinality 04. Power Set: P(A) is the set of all subsets of A 05. Cartesian Product: $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Set Operations

01. Union: $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$ 02. Intersection: $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$ 03. Compliment: $B - A = B \setminus A = B \cap \overline{A}$ 04. Complement: $\overline{A} = U - A$

05. Disjoint: $A \cap B = \emptyset$

Set Identities

01. Commutative Laws: $A \ltimes B \equiv B \ltimes A$ 02. Associative Laws: $(A \ltimes B) \ltimes C \equiv A \ltimes (B \ltimes C)$ 03. Distribution Laws: $A \cap (B \cup C)$; $A \cup (B \cap C)$ 04. Identity Laws: $A \cap U = A$; $A \cup \emptyset = A$ 05. Negation Laws: $A \cap \overline{A} = \emptyset$; $A \cup \overline{A} = U$ 06. Double Negative Laws: $\overline{(A)} = A$ 07. Idempotent Laws: $A \cap A = A$; $A \cup A = A$ 08. Universal Bound Laws: $A \cap \emptyset = \emptyset$; $A \cup U = U$ 09. De Morgan's Laws: $\overline{A \cap B} = \overline{A \cup B}$; $\overline{A \cup B} = \overline{A \cap B}$ 10. Absorption Laws: $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$ 11. Negation of True/False: $\overline{U} = \emptyset$; $\overline{\emptyset} = U$

Function Concepts

01. $f: X \to Y$ is injective iff $\forall a, b \in X, f(a) = f(b) \Rightarrow a = b$ 02. $f: X \to Y$ is surjective iff $\forall v \in Y, \forall x \in X (f(x) = v)$ Domain Codomai 03. Bijective: 1-1 + onto04. Inverse Functions: Let $f: X \to Y$ be a bijection. Then its inverse $g: Y \to X$: $\forall y \in Y, g(y) = x \Leftrightarrow f(x) = y$ 05. Image: $f(X) = \{f(x) \mid x \in X\}$ 06. Preimage: $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$

Induction

Mathematical Induction

1. For each $n \in D$, let P(n) be the proposition $\langle XXX \rangle$. 2. (Base step) P(1) is true because $\langle RRR \rangle$. 3. (Induction step) 3.1. Let $k \in D$ such that P(k) is true, i.e. $\langle XXX \rangle$. $3.2. \langle YYY \rangle$... 3.n. Thus P(k+1) is true. 4. Hence $\forall n \in D$, P(n) is true by Mathematical Induction.

Strong Induction

- 1. For each $n \in D$, let P(n) be the proposition $\langle XXX \rangle$.
- 2. (Base step) P(1) is true because $\langle RRR \rangle$.

3. (Induction step)
3.1. Let *k* ∈ *D* such that *P*(1), ..., *P*(*k*) is true, i.e. <XXX>.
3.2. <YYY>
...
3.n. Thus *P*(*k* + 1) is true.

4. Hence $\forall n \in D$, P(n) is true by Strong Induction.

Integers

Definition - Divisibility Let $n, d \in Z$ and $d \neq 0$. $\exists k \in Z (n = dk) \Rightarrow d \mid n$.

Theorem - Properties of Division 01. If $a \mid b, b \mid c$, then $a \mid c$ (Transitive Property). 02. $\forall m, n \ni Z (a \mid b \land a \mid c \Rightarrow a \mid mb + nc)$

Theorem - Division Algorithm Let $n \in Z$ and $d \in Z^+$. Then there are unique integers q and r, with $0 \le r < d$ such that n = dq + r.

Definition - Modular Arithmetic Let $a, b \in Z, m \in Z^+$. $a \equiv b \pmod{n}$ if $n \mid (a - b)$.

Theorem (Chpt. 4 Pg. 3) 01. $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$ 02. $a \equiv b \pmod{m}$ iff $\exists k \in Z \ (a = b + km)$ 03. If $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, then $a + b = c + d \pmod{m}$, $ac = bd \pmod{m}$.

Definition - Prime Number
A positive number is:
(1) prime, if it has exactly 2 divisors, 1 and itself.
(2) composite, if it has more than 2 divisors.

Theorem (Chpt. 4 Pg. 5) Every positive integer *n* greater than 1 has at least 1 prime divisor.

Theorem - Prime Factorisation Theorem (Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a product of primes where the prime factors are written in order of nondecreasing size. **Theorem (Chpt. 4 Pg. 6)** If *n* is composite, then it has a divisor *d* with $1 \le d \le \sqrt{n}$.

Theorem (Chpt. 4 Pg. 6) There are infinitely many primes.

Definition - Greatest Common Divisor (GCD) Let a and b be integers, not both zero. GCD of a and b is the greatest integer d such that $d \mid a$ and $d \mid b$. GCD can be computed using prime factorisation.

Definition - Relatively Prime Integers *a* and *b* are relatively prime if gcd(a, b) = 1.

Theorem - Base *b* **Expansion of Integers** Base *b* expansion of any integer is unique.

Algorithm for Base *b* Expansion procedure base *b* expansion of $n \in Z^+$ q := n k := 0while $q \neq 0$: begin $a_k := q \mod b$ q := q // b k := k + 1end base *b* expansion of *n* is $(a_{k-1}...a_1a_0)_n$.

Theorem - Euclidean Algorithm $a \mod b = r \Rightarrow gcd(a, b) = gcd(b, r)$

Euclidean Algorithm x := a y := b while y ≠ 0: begin r := x mod y x := y y := r end {gcd(a, b) = x}

Theorem - Result of Euclidean Algorithm

Let $a, b \in Z^+$, r = gcd(a, b). $\exists m, n \in Z (r = am + bn)$.

Theorem (Chpt. 4 Pg. 10) *a*, *b*, $c \in Z^+$. $(gcd(a, b) = 1 \land a \mid bc) \Rightarrow a \mid c$.

Theorem (Chpt. 4 Pg. 11) $Prime(p) \land p \mid a_0 a_1 \dots a_n \Rightarrow p \mid a_k$ for some k

Theorem - Cancellation If $ac \equiv bc \pmod{m} \land gcd(c, m) = 1$, then $a \equiv b \pmod{m}$.

Definition - Multiplicative Inverse $\overline{aa} \equiv 1 \pmod{m}$. This exists iff gcd(a, m) = 1.

Theorem (Chpt. 4 Pg. 12) $ax \equiv b \pmod{n} \Rightarrow x \equiv \overline{ab} \pmod{n}$

Theorem - Fermat's Little Theorem If *p* is a prime and gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$

Relations

Definition - Relation Let A and B be sets. A relation R is a subset of $A \times B$. We have xRy iff $(x, y) \in R$. $R^{-1} = \{(y, x) \in B \times A \mid xRy\}$.

Definition - Equivalence Relation Let *R* be a relation on set *A*. 01. Reflexive: $\forall x \in A, xRx$. 02. Symmetric: $\forall x, y \in A, xRy \Rightarrow yRx$. 03. Antisymmetric: $\forall x, y \in A, (xRy \land yRx) \Rightarrow x = y$. 04. Transitive: $\forall x, y, z \in A, (xRy \land yRz) \Rightarrow xRz$. 05. Equivalence: Reflexive + Symmetric + Transitive 06. Partial Order: Reflexive + Antisymmetric + Transitive

Definition - Equivalence Class The equivalence class of a, $[a]_R = \{x \in a \mid aRx\}$. The set of all equivalent classes, $A/R = \{[a]_R \mid a \in A\}$.

Definition - Partition A collection of non-empty sets $A_1, A_2, ...$ forms a partition of set *S* if: (1) $A_1 \cup A_2 \cup ... = S$;

```
(2) A_1, A_2, \dots are mutually disjoint.
```

Partial Order Concepts

01. Comparable: $a \leq b$ or $b \leq a$ 02. Maximal: $\sim (\exists c \in A (a \prec c))$ 03. Minimal: $\sim (\exists c \in A (a \succ c))$ 04. Largest/Greatest/Maximum: $\forall b \in A, b \leq a$ 05. Smallest/Least/Minimum: $\forall b \in A, b \ge a$ 06. Total Order: $\forall a, b \in P, a, b$ is comparable. 07. Well Order: Every non-empty subset of P has a smallest element.

Theorem (Chpt. 5 Pg. 8) Every finite non-empty poset S has a minimal element and a maximal element.

Theorem (Chpt. 5 Pg. 9)

Every non-empty poset S has at most one minimum element and at most one maximum element.

Counting and Probability

Multiplication Principle

If there are *m* ways of doing something and *n* ways of doing another thing, then there are *mn* ways of doing both things.

Addition Principle

If we have *m* ways of doing something and *n* ways of doing another thing but we cannot do both things at the same time, then there are m + n ways of choosing one thing to do.

Pigeonhole Principle

A function from a finite set to a smaller finite set cannot be one-to-one: there must be at least 2 elements in the domain that have the same image in the co-domain.

For any function f from a finite set X with n elements to a finite set *Y* with *m* elements and for any positive integer *k*, if for each $v \in Y$, $f^{-1}(\{v\})$ has at most k elements, then X has at most km elements; in other words, $n \le km$.

Theorem 9.6.1

no. of combinations with repetition allowed = (n + r - 1)Cr.

Theorem 9.7.1 - Pascal's Formula (n+1)Cr = nCr + nC(r-1)

Theorem 9.7.2 - Binomial Theorem $(a+b)^{n} = nC0a^{n} + nC1a^{n-1}b + ... + nCnb^{n}$

Theorem 6.3.1 If |X| = n, $|Q(X)| = 2^n$.

Theorem 9.9.1 - Bayes' Theorem

Suppose that a sample space S is a union of mutually disjoint events $B_1, B_2, ..., B_n$. Suppose A is an event in S, and suppose A and all the B_{\pm} have non-zero probabilities.

If k is an integer with $1 \le k \le n$, then $P(B_{k}|A) = \frac{P(A|B_{1}) \times P(B_{k})}{P(A|B_{1}) \times P(B_{1}) + P(A|B_{2}) \times P(B_{2}) + \dots + (A|B_{n}) \times P(B_{n})}$

Definition - Independent Events A and B are independent iff $P(A \cap B) = P(A)P(B)$.

Graphs

Definition - Undirected Graphs

G = (V, E)

 $V = \{v_1, v_2, ..., v_n\}$ is the non-empty set of vertices (nodes).

 $E = \{e_1, e_2, ..., e_n\}$ is the set of edges.

 $e_1 = \{v_1, v_2\}$ is the undirected edge connecting v_1 and v_2 (endpoints). e_1 is incident on v_1 and v_2 .

Definition - Directed Graphs

 $e_1 = (v_1, v_2)$ is the directed edge connecting v_1 and v_2 (endpoints).

Type of Graphs

01. Simple Graphs: A simple graph is an undirected graph that does not have any parallel edges/loops.

- 02. Complete Graphs: A complete graph K_n is a simple graph with *n* vertices and exactly one edge connecting each pair of distinct vertices. It has $\frac{n(n-1)}{2}$ edges in total.
- 03. Bipartite Graphs: A bipartite graph (bigraph) is a simple graph whose vertices can be divided into two disjoint sets Uand V such that each edge connects one vertex in

- complete graph $K_{m,n}$ is a bipartite graph where every vertex in U is connected to
- 05. Subgraph: H is a subgraph of G if every vertex of H is a vertex of G, every edge of H is an edge of G and every edge in *H* has the same endpoints as it has in *G*.

Definition - Degree

every vertex in V.

deg(v) equals the total number of edges that are incident on v, with a loop counted twice. Total degree of a graph equals the sum of degrees of all its vertices.

Basic Concepts of Walks

- 01. A walk from v to w is a finite alternating sequence of adjacent vertices and edges of $G(v_0e_0v_1e_1v_2...v_{n-1}e_{n-1}v_n)$. The length of this walk is *n*. A walk *v* to *v* consisting of a single v is a trivial walk. A close walk is a walk that starts and ends at the same vertex.
- 02. Trial: A trail is a walk without a repeated edge.
- 03. Path: A path is a walk without a repeated vertex.
- 04. Circuit: A circuit (cycle) is a closed walk without a repeated edge. An undirected graph is cyclic if it contains at least one loop or cycle.
- 05. Simple Circuit: A simple circuit is a circuit that does not contain repeated vertices other than the first and last.

Definition - Connectedness

Two vertices *v* and *w* are connected if and only if there is a walk from v to w.

A graph is connected if and only if any two vertices are connected.

A connected component of a graph is a connected subgraph of largest possible size.

Theorem 10.1.1 - The Handshake Theorem


```
total degree of G = 2 \times no. of edges of G
```

Corollary 10.1.2 The total degree of a graph is even.

Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.

Lemma 10.2.1

Let G be a graph.

- a. If G is connected, then any two distinct vertices of G can be connected by a path.
- b. If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trial from v to w in G.
- c. If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.

Definition - Euler Circuit

Let G be a graph. An Euler circuit of G is a circuit that contains every vertex and traverses every edge of G exactly once.

Definition - Eulerian Graph

An Eulerian graph is a graph that contains an Euler circuit.

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has a positive even degree. / If any vertex of a graph has a positive odd degree, the graph does not have an Euler circuit. (contrapositive version)

Theorem 10.2.3

If a graph is connected and the degree of every vertex of G is a positive even integer, then G has an Euler circuit.

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and every vertex of G has a positive even degree.

Definition - Euler Trail/Path

Let *G* be a graph, and let v and w be two distinct vertices of *G*. An Euler trail/path from v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes through every vertex of G at least once, and traverses every edge of G exactly once.

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler Trail from v to w if and only if G is connected, v and w have odd degree and all other vertices have positive even degree.

Definition - Hamilton Circuit

Let G be a graph. A Hamilton circuit of G is a simple circuit that includes every vertex of G.

Definition - Hamiltonian Graph

A Hamiltonian graph is a graph that contains a Hamiltonian circuit.

Proposition 10.2.6

A Hamiltonian graph G has a subgraph H with the following properties:

- a. H contains every vertex of G.
- b. H is connected.
- c. H has the same number of edges as vertices.
- d. Every vertex of H has degree 2.

Theorem 10.3.2

 $A_{ii}^{n} = no. of walks of length n from v_i to v_i$

Definition - Isomorphic Graph

Let $G = (V_G, E_G)$ and $G' = (V_{G'}, E_{G'})$ be two graphs. $G \simeq G' \Leftrightarrow \exists \text{ bijections } g : V_G \rightarrow V_{G'}, h : E_G \rightarrow E_{G'}$ $(\forall v \in V_G, e \in E_G (v \text{ is an endpoint of } e \Leftrightarrow g(v) \text{ is an endpoint of } h(e)))$

Theorem 10.4.1

Graph isomorphism is an equivalent relation. **Definition - Planar Graph** A planar graph is a graph that can be drawn on a 2D plane without edge crossing.

Kuratowski's Theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_5 or the complete bipartite graph $K_{3,3}$.

Euler's Formula

For a connected simple planar graph, no. of faces = no. of vertices + no. of edges - 2

Trees

Definition - Tree

A graph is called a tree if and only if it is circuit-free and connected. A trivial tree is a graph that contains a single vertex. A graph is called a forest if and only if it is circuit-free and not connected.

Lemma 10.5.1

Any non-trivial tree has at least one vertex of degree 1.

Definition - Terminal Vertex (Leaf) and Internal Vertex

If a tree has one or two vertices, each vertex is called a terminal vertex; otherwise, vertices of degree 1 are called terminal vertex and others are called internal vertex.

Theorem 10.5.2

Any tree with n vertices has n - 1 edges.

Lemma 10.5.3

If G is any connected graph, C is any circuit of G, when one of the edges of C is removed from G, the graph that remains is still connected.

Theorem 10.5.4

If G is a connected graph with n vertices and n - 1 edges, then G is a tree.

Definition - Rooted Tree

Theorem 10.6.1 - Full Binary Tree Theorem

If *T* is a full binary tree with *k* internal vertices, then T has a total of 2k + 1 vertices and k + 1 terminal vertices (leaves).

Theorem 10.6.2

 $t \le 2^h$

Depth-First Search

01. Pre-order: entry - left - right02. In-order: left - entry - right03. Post-order: left - right - entry

Definition - Spanning Tree

A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree.

Proposition 10.7.1

- 01. Every connected graph has a spanning tree.
- 02. Any two spanning trees for a graph have the same number of edges.

Definition - Weighted Graph

Kruskal's Algorithm

- Input: G (no. of vertices: *n*)
- 01. Initialise T to contain all vertices of G and no edges.
- 02. Let *E* be the set of all edges of *G*. Let m = 0.
- 03. while m < n 1:
 - a. Find an edge e in E of the least weight.
 - b. Delete e from E.
 - c. If e does not produce a circuit in T, add e to T.
 - d. m = m + 1
 - End while

Output: T

Prim's Algorithm

Input: G (no. of vertices: *n*) 01. Initialise *T* to contain one vertex *v* of *G* and no edges.

02. Let V be the set of all vertices of G except v.

03. for i = 1 to n - 1:

- a. Find an edge e in G such that: (1) e connects T to one of the vertices in V and (2) e has the least weight of all edges connecting T to one of the vertices in V. Let w be the endpoint of e that is in V.
- b. Add e and w to T. Delete w from V.

Output: T