CS1231

DISCRETE STRUCTURES

Cheatsheet

Properties of Tian Xiao

Logical Statements

Basic Operators: and (\wedge), or (V), $\operatorname{not}(\sim)$

Laws of Logical Equivalence

1. Commutative Laws: $p \mathbb{K} q \equiv q \mathbb{K} p$
2. Associative Laws: $(p \nless \mathcal{W}) \mathcal{W} r \equiv p \nless(q \nless<r)$
3. Distribution Laws: $p \wedge(q \vee r) ; p \vee(q \wedge r)$
4. Identity Laws: $p \wedge$ True $\equiv p ; p \vee$ False $\equiv p$
5. Negation Laws: $p \wedge \sim p \equiv$ False; $p \vee \sim p \equiv$ True
6. Double Negative Laws: $\sim(\sim p) \equiv p$
7. Idempotent Laws: $p \wedge p \equiv p ; p \vee p \equiv p$
8. Universal Bound Laws: $p \wedge$ False \equiv False; $p \vee$ True \equiv True
9. De Morgan's Laws: $\sim(p \wedge q) \equiv \sim p \vee \sim q ; \sim(p \vee q) \equiv \sim p \wedge \sim q$
10. Absorption Laws: $p \vee(p \wedge q) \equiv p ; p \wedge(p \vee q) \equiv p$
11. Negation of True/False: \sim True \equiv False; \sim False \equiv True

Conditional Statements

1. Implication Law: $p \rightarrow q \equiv \sim p \vee q$
2. Contrapositive: $\sim q \rightarrow \sim p \equiv p \rightarrow q$
3. Converse: $q \rightarrow p$
4. Inverse: $\sim p \rightarrow \sim q$

Rules of Inference

Modus Ponens

$p \rightarrow q$
p
$\cdot q$

Transitivity
$p \rightarrow q$
$q \rightarrow r$
$\cdot p \rightarrow r$

Division into Cases	Contradiction
$p \vee q$	
$p \rightarrow r$	
$q \rightarrow r$	
$\sim p \rightarrow$ False	
$\cdot p$	

Quantitative Operators: \exists ! (there exists one and only one)

Quantitative Statements

1. Negation: $\forall \rightarrow \exists ; P(x) \rightarrow \sim P(x)$
2. Contrapositive: $\forall x \in D, \sim Q(x) \rightarrow \sim P(x)$
3. Converse: $\forall x \in D, Q(x) \rightarrow P(x)$
4. Inverse: $\forall x \in D, \sim P(x) \rightarrow \sim Q(x)$

Universal Instantiation

$\forall x \in D, P(x)$
$a \in D$
$\cdot P(a)$

Rule + Universal Instantiation
$=$ Universal Rule

Definition of Numbers

1. Even: $\exists \mathrm{k} \in \mathbf{Z}$ such that $x=2 k$
2. Odd: $\exists \mathrm{k} \in \mathbf{Z}$ such that $x=2 k+1$
3. Prime: $\forall r, s \in \mathbf{Z}+, n=r s \Rightarrow(r=1, s=n)$ or $(r=n, s=1)$
4. Composite: $\exists r, s \in \mathbf{Z}+,(n=r s)$ and $(1<r, s<\mathrm{n})$
5. Rational: $\exists p, q \in \mathbf{Z}, r=\frac{p}{q}$ and $q \neq 0$
6. Divisible: $\exists k \in \mathbf{Z}, n=d k$

Proof by Contradiction

The contrapositive of $P(x) \rightarrow Q(x)$ is $\sim Q(x) \rightarrow \sim P(x)$.

1. Prove the contrapositive statement through a direct proof.
1.1. Suppose $x \in \mathbf{D}$ such that $Q(x)$ is False.
1.2. Show that $P(x)$ is False.
2. Therefore, the original statement $P(x) \rightarrow Q(x)$ is True.

Sets and Functions

Set Concepts

1. Equal Sets: $A=B \Leftrightarrow x \in A \leftrightarrow x \in B$
2. Subset: $A \subseteq B \Leftrightarrow \forall x, x \in A \rightarrow x \in B$
3. Finite Set: $|S|=n$, where n is called cardinality
4. Power Set: $P(A)$ is the set of all subsets of A
5. Cartesian Product: $A \times B=\{(a, b) \mid a \in A, b \in B\}$

Set Operations

1. Union: $A \cup B=\{x \mid(x \in A) \vee(x \in B)$
2. Intersection: $A \cap B=\{x \mid(x \in A) \wedge(x \in B)$
3. Compliment: $B-A=B \backslash A=B \cap \bar{A}$
4. Complement: $\bar{A}=U-A$

Set Identities

1. Commutative Laws: $A \backsim B \equiv B \breve{n}$
2. Associative Laws: $(A \breve{n} B) \breve{n} C \equiv A \breve{n}(B \breve{n} C)$
3. Distribution Laws: $A \cap(B \cup C)$; $A \cup(B \cap C)$
4. Identity Laws: $A \cap U=A ; A \cup \emptyset=A$
5. Negation Laws: $A \cap \bar{A}=\emptyset ; A \cup \bar{A}=U$
6. Double Negative Laws: $\overline{(\bar{A})}=A$
7. Idempotent Laws: $A \cap A=A ; A \cup A=A$
8. Universal Bound Laws: $A \cap \emptyset=\emptyset ; A \cup U=U$
9. De Morgan's Laws: $\overline{A \cap B}=\bar{A} \cup \bar{B} ; \overline{A \cup B}=\bar{A} \cap \bar{B}$
10. Absorption Laws: $A \cup(A \cap B)=A ; A \cap(A \cup B)=A$
11. Negation of True/False: $\bar{U}=\emptyset ; \bar{\emptyset}=U$

Function Concepts

1. $f: X \rightarrow Y$ is injective iff
$\forall a, b \in X, f(a)=f(b) \Rightarrow a=b$
2. $f: X \rightarrow Y$ is surjective iff
$\forall y \in Y, \forall x \in X(f(x)=y)$

3. Bijective: 1-1 + onto
4. Inverse Functions: Let
$f: X \rightarrow Y$ be a bijection. Then its inverse $g: Y \rightarrow X:$
$\forall y \in Y, g(y)=x \Leftrightarrow f(x)=y$
5. Image: $f(X)=\{f(x) \mid x \in X\}$
6. Preimage: $f^{-1}(Y)=\{x \in X \mid f(x) \in Y\}$

Induction

Mathematical Induction

1. For each $n \in D$, let $P(n)$ be the proposition $<\mathrm{XXX}>$
2. (Base step) $P(1)$ is true because $<\mathrm{RRR}>$.
3. (Induction step)
3.1. Let $k \in D$ such that $P(k)$ is true, i.e. $<\mathrm{XXX}>$
3.2. <YYY>
3.n. Thus $P(k+1)$ is true
4. Hence $\forall n \in D, P(n)$ is true by Mathematical Induction.

Strong Induction

1. For each $n \in D$, let $P(n)$ be the proposition $\langle\mathrm{XXX}\rangle$.
2. (Base step) $P(1)$ is true because $<\mathrm{RRR}\rangle$.
3. (Induction step)
3.1. Let $k \in D$ such that $P(1), \ldots, P(k)$ is true, i.e. $<\mathrm{XXX}>$. 3.2. <YYY>
3.n. Thus $P(k+1)$ is true.
4. Hence $\forall n \in D, P(n)$ is true by Strong Induction.

Integers

Definition - Divisibility

Let $n, d \in Z$ and $d \neq 0 . \exists k \in Z(n=d k) \Rightarrow d \mid n$.

Theorem - Properties of Division

1. If $a|b, b| c$, then $a \mid c$ (Transitive Property).
2. $\forall m, n \ni Z(a|b \wedge a| c \Rightarrow a \mid m b+n c)$

Theorem - Division Algorithm

Let $n \in Z$ and $d \in Z^{+}$. Then there are unique integers q and r, with $0 \leq r<d$ such that $n=d q+r$.

Definition - Modular Arithmetic

Let $a, b \in Z, m \in Z^{+} . a \equiv b(\bmod n)$ if $n \mid(a-b)$.

Theorem (Chpt. 4 Pg. 3)

1. $a \equiv b(\bmod m)$ iff $a \bmod m=b \bmod m$
2. $a \equiv b(\bmod m)$ iff $\exists k \in Z(a=b+k m)$
3. If $a \equiv b(\bmod m), c \equiv d(\bmod m)$, then
$a+b=c+d(\bmod m), a c=b d(\bmod m)$.

Definition - Prime Number

A positive number is:
(1) prime, if it has exactly 2 divisors, 1 and itself.
(2) composite, if it has more than 2 divisors.

Theorem (Chpt. 4 Pg. 5)

Every positive integer n greater than 1 has at least 1 prime
divisor.

Theorem - Prime Factorisation Theorem (Fundamental

Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a product of primes where the prime factors are written in order of nondecreasing size.

Theorem (Chpt. 4 Pg. 6)

If n is composite, then it has a divisor d with $1 \leq d \leq \sqrt{n}$.

Theorem (Chpt. 4 Pg. 6)

There are infinitely many primes.

Definition - Greatest Common Divisor (GCD)
Let a and b be integers, not both zero. GCD of a and b is the greatest integer d such that $d \mid a$ and $d \mid b$. GCD can be computed using prime factorisation.

Definition - Relatively Prime

Integers a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Theorem - Base \boldsymbol{b} Expansion of Integers
Base b expansion of any integer is unique.
Algorithm for Base bexpansion
procedure base b expansion of $n \in Z^{+}$
$\mathrm{q}:=\mathrm{n}$
$\mathrm{k}:=0$
while $q \neq 0$:
begin

$$
\begin{aligned}
& a_{k}:=\mathrm{q} \bmod \mathrm{~b} \\
& \mathrm{q}:=\mathrm{q} / / \mathrm{b} \\
& \mathrm{k}:=\mathrm{k}+1
\end{aligned}
$$

end base b expansion of n is $\left(a_{k-1} \ldots a_{1} a_{0}\right)_{n}$.

Theorem - Euclidean Algorithm

$a \bmod b=r \Rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$

Euclidean Algorithm

x := a
$\mathrm{y}:=\mathrm{b}$
while $y \neq 0$:
begin

$$
\begin{aligned}
& r:=x \bmod y \\
& x:=y
\end{aligned}
$$

$y:=r$
end $\{\operatorname{gcd}(a, b)=x\}$
Theorem - Result of Euclidean Algorithm

Let $a, b \in Z^{+}, r=\operatorname{gcd}(a, b) . \exists m, n \in Z(r=a m+b n)$.

Theorem (Chpt. 4 Pg. 10)

$a, b, c \in Z^{+} .(\operatorname{gcd}(a, b)=1 \wedge a \mid b c) \Rightarrow a \mid c$.

Theorem (Chpt. 4 Pg. 11)

$\operatorname{Prime}(p) \wedge p\left|a_{0} a_{1} \ldots a_{n} \Rightarrow p\right| a_{k}$ for some k

Theorem-Cancellation

If $a c \equiv b c(\bmod m) \wedge \operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$

Definition - Multiplicative Inverse

$\bar{a} a \equiv 1(\bmod m)$. This exists iff $\operatorname{gcd}(a, m)=1$.

Theorem (Chpt. 4 Pg. 12)
$a x \equiv b(\bmod n) \Rightarrow x \equiv \bar{a} b(\bmod n)$

Theorem - Fermat's Little Theorem

If p is a prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1} \equiv 1(\bmod p)$

Relations

Definition - Relation

Let A and B be sets. A relation R is a subset of $A \times B$. We have $x R y$ iff $(x, y) \in R . R^{-1}=\{(y, x) \in B \times A \mid x R y\}$.

Definition-Equivalence Relation

Let R be a relation on set A.

1. Reflexive: $\forall x \in A, x R x$.
2. Symmetric: $\forall x, y \in A, x R y \Rightarrow y R x$.
3. Antisymmetric: $\forall x, y \in A,(x R y \wedge y R x) \Rightarrow x=y$.
4. Transitive: $\forall x, y, z \in A,(x R y \wedge y R z) \Rightarrow x R z$.
5. Equivalence: Reflexive + Symmetric + Transitive
6. Partial Order: Reflexive + Antisymmetric + Transitive

Definition - Equivalence Class

The equivalence class of $a,[a]_{R}=\{x \in a \mid a R x\}$. The set of all equivalent classes, $A / R=\left\{[a]_{R} \mid a \in A\right\}$

Definition - Partition

A collection of non-empty sets A_{1}, A_{2}, \ldots forms a partition of set S if:
(1) $A_{1} \cup A_{2} \cup \ldots=S$;
(2) A_{1}, A_{2}, \ldots are mutually disjoint.

Partial Order Concepts

1. Comparable: $a \preccurlyeq b$ or $b \preccurlyeq a$
2. Maximal: $\sim(\exists c \in A(a<c))$
3. Minimal: $\sim(\exists c \in A(a \succ c))$
4. Largest/Greatest/Maximum: $\forall b \in A, b \leqslant a$
5. Smallest/Least/Minimum: $\forall b \in A, b \geqslant a$
6. Total Order: $\forall a, b \in P, a, b$ is comparable.
7. Well Order: Every non-empty subset of P has a smallest element.

Theorem (Chpt. 5 Pg. 8)

Every finite non-empty poset S has a minimal element and a maximal element.

Theorem (Chpt. 5 Pg. 9)

Every non-empty poset S has at most one minimum element and at most one maximum element.

Counting and Probability

Multiplication Principle

If there are m ways of doing something and n ways of doing another thing, then there are $m n$ ways of doing both things.

Addition Principle

If we have m ways of doing something and n ways of doing another thing but we cannot do both things at the same time, then there are $m+n$ ways of choosing one thing to do.

Pigeonhole Principle

A function from a finite set to a smaller finite set cannot be one-to-one: there must be at least 2 elements in the domain that have the same image in the co-domain.

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if for each $y \in Y, f^{-1}(\{y\})$ has at most k elements, then X has at most $k m$ elements; in other words, $n \leq k m$.

Theorem 9.6.1

no. of combinations with repetition allowed $=(n+r-1) C r$.

Theorem 9.7.1 - Pascal's Formula
$(n+1) C r=n C r+n C(r-1)$

Theorem 9.7.2-Binomial Theorem

$(a+b)^{n}=n C 0 a^{n}+n C 1 a^{n-1} b+\ldots+n C n b^{n}$

Theorem 6.3.1

If $|X|=\mathrm{n},|\mathrm{e}(X)|=2^{n}$.

Theorem 9.9.1-Bayes' Theorem

Suppose that a sample space S is a union of mutually disjoint events $B_{1}, B_{2}, \ldots, B_{n}$. Suppose A is an event in S, and suppose A and all the B_{i} have non-zero probabilities.

If k is an integer with $1 \leq k \leq n$, then
$P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) \times P\left(B_{k}\right)}{P\left(A \mid B_{1}\right) \times P\left(B_{1}\right)+P\left(A \mid B_{2}\right) \times P\left(B_{2}\right)+\ldots+\left(A \mid B_{n}\right) \times P\left(B_{n}\right)}$
Definition - Independent Events
A and B are independent iff $P(A \cap B)=P(A) P(B)$.

Graphs

Definition - Undirected Graphs

$G=(V, E)$
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the non-empty set of vertices (nodes).
$E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the set of edges.
$e_{1}=\left\{v_{1}, v_{2}\right\}$ is the undirected edge connecting v_{1} and v_{2}
(endpoints). e_{1} is incident on v_{1} and v_{2}.

Definition - Directed Graphs

$e_{1}=\left(v_{1}, v_{2}\right)$ is the directed edge connecting v_{1} and v_{2} (endpoints).

Type of Graphs

1. Simple Graphs: A simple graph is an undirected graph that does not have any parallel edges/loops.
2. Complete Graphs: A complete graph K_{n} is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices. It has $\frac{n(n-1)}{2}$ edges in total.
3. Bipartite Graphs: A bipartite graph (bigraph) is a simple graph whose vertices can be divided into two disjoint sets U and V such that each edge connects one vertex in U to one in V.
4. Bipartite Complete Graph: A bipartite complete graph $K_{m, n}$ is a bipartite graph where every vertex in U is connected to every vertex in V .
05 . Subgraph: H is a subgraph of G if every vertex of H is a vertex of G, every edge of H is an edge of G and every edge in H has the same endpoints as it has in G.

Definition - Degree

$\operatorname{deg}(v)$ equals the total number of edges that are incident on v, with a loop counted twice. Total degree of a graph equals the sum of degrees of all its vertices.

Basic Concepts of Walks

1. A walk from v to w is a finite alternating sequence of adjacent vertices and edges of $G\left(v_{0} e_{0} v_{1} e_{1} v_{2} \ldots v_{n-1} e_{n-1} v_{n}\right)$. The length of this walk is n. A walk v to v consisting of a single v is a trivial walk. A close walk is a walk that starts and ends at the same vertex.
2. Trial: A trail is a walk without a repeated edge.
3. Path: A path is a walk without a repeated vertex.
4. Circuit: A circuit (cycle) is a closed walk without a repeated edge. An undirected graph is cyclic if it contains at least one loop or cycle.
5. Simple Circuit: A simple circuit is a circuit that does not contain repeated vertices other than the first and last.

Definition-Connectedness

Two vertices v and w are connected if and only if there is a walk from v to w.
A graph is connected if and only if any two vertices are connected.
A connected component of a graph is a connected subgraph of largest possible size.

Theorem 10.1.1 - The Handshake Theorem

Corollary 10.1.2

The total degree of a graph is even.

Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.

Lemma 10.2.1

Let G be a graph.
a. If G is connected, then any two distinct vertices of G can be connected by a path.
b. If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trial from v to w in G.
c. If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.

Definition-Euler Circuit

Let G be a graph. An Euler circuit of G is a circuit that contains every vertex and traverses every edge of G exactly once.

Definition - Eulerian Graph

An Eulerian graph is a graph that contains an Euler circuit.

Theorem 10.2.2

If a graph has an Euler circuit, then every vertex of the graph has a positive even degree. / If any vertex of a graph has a positive odd degree, the graph does not have an Euler circuit. (contrapositive version)

Theorem 10.2.3

If a graph is connected and the degree of every vertex of G is a positive even integer, then G has an Euler circuit.

Theorem 10.2.4

A graph G has an Euler circuit if and only if G is connected and every vertex of G has a positive even degree.

Definition-Euler Trail/Path

Let G be a graph, and let v and w be two distinct vertices of G. An Euler trail/path from v to w is a sequence of adjacent edges and vertices that starts at v, ends at w, passes through every
vertex of G at least once, and traverses every edge of G exactly once.

Corollary 10.2.5

Let G be a graph, and let v and w be two distinct vertices of G. There is an Euler Trail from v to w if and only if G is connected, v and w have odd degree and all other vertices have positive even degree.

Definition - Hamilton Circuit

Let G be a graph. A Hamilton circuit of G is a simple circuit that includes every vertex of G.

Definition - Hamiltonian Graph

A Hamiltonian graph is a graph that contains a Hamiltonian circuit.

Proposition 10.2.6

A Hamiltonian graph G has a subgraph H with the following properties:
a. H contains every vertex of G
b. H is connected.
c. H has the same number of edges as vertices.
d. Every vertex of H has degree 2.

Theorem 10.3.2

$A^{n}{ }_{i j}=$ no. of walks of length n from v_{i} to v_{j}

Definition - Isomorphic Graph

Let $G=\left(V_{G}, E_{G}\right)$ and $G^{\prime}=\left(V_{G^{\prime}}, E_{G^{\prime}}\right)$ be two graphs.
$G \simeq G^{\prime} \Leftrightarrow \exists$ bijections $g: V_{G} \rightarrow V_{G^{\prime}}, h: E_{G} \rightarrow E_{G^{\prime}}$
$\left(\forall v \in V_{G}, e \in E_{G}(v\right.$ is an endpoint of $e \Leftrightarrow g(v)$ is an endpoint of $\left.h(e))\right)$

Theorem 10.4.1

Graph isomorphism is an equivalent relation.
Definition - Planar Graph
A planar graph is a graph that can be drawn on a 2D plane without edge crossing.

Kuratowski's Theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph K_{5} or the complete bipartite graph $K_{3,3}$.

Euler's Formula

For a connected simple planar graph
no. of faces $=$ no. of vertices + no. of edges -2

Trees

Definition - Tree

A graph is called a tree if and only if it is circuit-free and connected. A trivial tree is a graph that contains a single vertex. A graph is called a forest if and only if it is circuit-free and not connected.

Lemma 10.5.1

Any non-trivial tree has at least one vertex of degree 1 .

Definition - Terminal Vertex (Leaf) and Internal Vertex

If a tree has one or two vertices, each vertex is called a terminal vertex; otherwise, vertices of degree 1 are called terminal vertex and others are called internal vertex.

Theorem 10.5.2

Any tree with n vertices has $n-1$ edges.

Lemma 10.5.3

If G is any connected graph, C is any circuit of G, when one of the edges of C is removed from G, the graph that remains is still connected.

Theorem 10.5.4

If G is a connected graph with n vertices and $n-1$ edges, then G is a tree.

Definition - Rooted Tree

Theorem 10.6.1-Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of $2 k+1$ vertices and $k+1$ terminal vertices (leaves).

Theorem 10.6.2

$t \leq 2^{h}$

Depth-First Search

1. Pre-order: entry - left - right
2. In-order: left - entry - right
3. Post-order: left - right - entry

Definition - Spanning Tree

A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a tree

Proposition 10.7.1

1. Every connected graph has a spanning tree.
2. Any two spanning trees for a graph have the same number of edges.

Definition - Weighted Graph

Kruskal's Algorithm

Input: G (no. of vertices: n)
01 . Initialise T to contain all vertices of G and no edges.
02 . Let E be the set of all edges of G. Let $m=0$.
03 . while $m<n-1$:
a. Find an edge e in E of the least weight.
b. Delete e from E.
c. If e does not produce a circuit in T, add e to T.
d. $\mathrm{m}=\mathrm{m}+1$

End while
Output: T

Prim's Algorithm

Input: G (no. of vertices: n)

1. Initialise T to contain one vertex v of G and no edges

02 . Let V be the set of all vertices of G except v.
03. for $i=1$ to $n-1$
a. Find an edge e in G such that: (1) e connects T to one of the vertices in V and (2) e has the least weight of all edges connecting T to one of the vertices in V. Let w be the endpoint of e that is in V.
b. Add e and w to T. Delete w from V.

Output: T

