
Properties of Tian Xiao

1

CS2030 Programme Methodology II

AY2021/22 Semester 1

1. Object-Oriented-Programming (OOP)

OO Principles

(1) Abstraction

 Data Abstraction + Functional Abstraction
 Implementor defines the data/functional abstractions using

lower-level data and processes.
 Client uses high-level data types and methods.
 Interaction between two objects is viewed as

communication across an abstraction barrier.

(2) Encapsulation

 Packaging: Package related data and behaviour in a self-
contained unit.

 Information Hiding: Hide information/data from the client
and allow access only through methods provided.

Good OOP Degisn

(1) Tell-Don’t-Ask Principle

 Tell an object what to do; Don’t ask an object for data (e.g.
accessors).

(2) Immutability of Objects

 Make all instance fields private final to encapsulate data
and prevent mutation.

(3) Avoid Cyclic Dependencies

2. Inheritance

Inheritance

(1) “is-a” Relationship

(2) super Keyword

 super(…) to access parent’s constructor.
 super.x refers to parent’s property.
 super.foo() refers to parent’s method.

(3) protected Modifier

 protected gives access to properties/methods to all other
classes (including sub-classes) within the same package.

(4) Override a Method

 Explicitly redefining a method in a sub-class overrides the
same method from its super-class.

 The annotation @Override indicates to the compiler that
the method overrides the same one in the parent class.

(5) Overload a Method

 Methods of the same name can co-exist if their method
signatures (number, type, order of arguments) are
different.

3. Polymorphism

Liskov Substitution Principle

If S is a sub-class of T, then an object of type T can be replaced by
that of type S without changing the desirable property of the
programme.

Polymorphism

(1) Compile-Time Type VS Run-Time Type

 Consider the code A a = new AA();:
The compile-time type of a is A, so it can call all methods
of A; The run-time type of a is AA, so it will run all methods
of AA.

(2) Static Binding in Overloading and Dynamic Binding in Overriding

4. Abstract Class and Interface

Concrete Class, Abstract Class and Interface

(1) Concrete class is the actual implementation.

(2) Interface is a contract specifying the abstraction between what
the client can use and what the implementor should provide.

(3) Abstract class is a trade-off between the two, typically used as a
base class.

SOLID Principles in OO Design

(1) Single-Responsibility Principle: A class should have only one
reason to change.

(2) Open-Closed Principle: Open for extension; Closed for
modification.

(3) Liskov Substitution Principle

(4) Interface Segregation Principle: Clients should not know of
methods they do not need (which interface should be visible).

(5) Dependency Inversion Principle: Program to an interface, not an
implementation.

5. Java Collections

Java Collection: ArrayList<T>

(1) OO Principles

 Abstraction: Methods that organise, store and retrieve
data.

 Encapsulation: How data is being stored is hidden.

(2) ArrayList<A> is called a parametrised type.

(3) Auto-boxing and Unboxing

 Passing primitive types into a collection causes it to be
auto-boxed.

 Assigning boxed types to a primitive type causes it to be
unboxed.

(4) ArrayList<AA> is not a sub-type of ArrayList<A>, while AA[]
is a sub-type of A[].

Interface: List<T>

(1) List<T> extends Collection<T>.

(2) Converting from an Array to a List:

 List<Integer> lst = Arrays.asList(arr);
 Converting from an primitive array to a list requires every

element to be boxed:
Arrays.stream(arr).boxed().collect(Collectors.t
oList());
Or convert the array to a boxed array first:
Arrays.stream(arr).boxed().toArray(Integer[]::n
ew);

(3) Converting from a List to an Array:

Properties of Tian Xiao

2

 lst.toArray() returns an array of Object.
 lst.toArray(new Integer[0]) returns an array of

Integer.

(4) Sorting

 Natural Order: Comparable<T>
 Comparator: Comparator<T>

6. Java Keywords, Exception Handling and
Assertions

Keywords

(1) static

 Define constants
 Define aggregated data
 static methods belong to the class instead of an object.
 No overriding since static methods resolved at compile

time.
 static fields/methods should be called through the class

instead of instances.

(2) enum

 An enum is a special type of class used for defining
constants.

(3) final

 Explicitly prevent overriding

Exception Handling

(1) throw the Exception Out

(2) Handle the Exception (try… catch… finally…)

(3) Checked Exception VS Unchecked Exception

 A checked exception is one that the programmer should
actively anticipate and handle.

 An unchecked exception is one that is unanticipated,
usually the result of a bug.

 Unchecked exceptions are sub-classes of
RuntimeException. All Error are also unchecked.

Assertions

(1) Exceptions are used to handle user mishaps, while assertions
are used to identify bugs during programme development.

(2) Expression

 assert boolean_expression;
 assert boolean_expression : string_expression;

(3) -ea Flag

7. Generics

Defining Functionilty

(1) Concrete Class

(2) Lambda Expression

 (parameterList) -> (Statements)
 Variables used can be from class properties (static),

instance properties and final or effectively final local
variables.

(3) Anonymous Class from Functional Interface

Wildcards

(1) Unbounded Wildcards

 ImList<?> can refer to all types of ImList.

(2) Bounded Wildcards

 PECS: Producer extends; Consumer super.

(3) Variance of Types

 Covariant:
C <: S → C[] <: S[]
C <: B → ImList<C> <: ImList<? Extends B>

 Invariant:
C <: S ↛ ImList<C> <: ImList<S> or ImList<S>
<: ImList<C>

 Contravariant:
ArrayList <: List → ArrayList<C> <: List<C>
B <: F → ImList<F> <: ImList<? Super B>

8. Declarative Programming

Optional to Manage Missing/Null Values

(1) Common Methods

 empty()
 filter(Predicate<? super T> pred)
 flatMap(Function<? super T, ? extends

Optional<? Extends U>> mapper)
 ifPresentOrElse(Consumer<? super T> action,

Runnable emptyAction)
 map(Function<? super T, ? extends U> mapper)
 ofNullable(T value)
 orElseGet(Supplier<? Extends T> supplier)

(2) Tell-Don’t-Ask Principle: Avoid using get(), isPresent(),
isEmpty()

Stream to Manage Iteration

(1) Stream elements within a stream can only be consumed once.

(2) Data Source (lazy evaluation)

 IntStream.range()
 Stream<Integer>.iterate()

(3) Operations

 Terminal Operation: Reduce the stream of values into a
single value (eager evaluation).

 Intermediate Operation: Specify tasks to perform on a
stream’s elements (lazy evaluation).

 Lazy evaluation allows us to work with infinite streams
(e.g. iterate(T seed, Function<T, T> next),
generate(Supplier<T> supplier)). Intermediate
operations can be used to restrict the total number of
elements inside the stream (e.g. limit()).

(4) Parallelism

 Avoid parallelising trivial tasks because they creates more
work in terms of parallelising overhead.

 Stream operations must not interfere with stream data.
 Stream operations are preferably stateless with no side

effects.

(5) Associative Accumulating Function

 <U> U reduce(U identity, BiFunction<U, ? super
T, U> accumulator, BinaryOperator<U> combiner)

 Rules to follow when parallelising:
(a) combiner.apply(identity, i) must be equal to i.
(b) combiner and accumulator must be associative.

Properties of Tian Xiao

3

(c) combiner and accumulator must be compatible, i.e.
combiner.apply(u, accumulator.apply(identity,
t)) must be equal to accumulator.apply(u, t).

9. Lazy

Caching

(1) Supplier to Handle Delayed Data

(2) Optional to Store Cache Value

LazyList

(1) head: () -> value

(2) tail: () -> LazyList

10. Asynchronous Programming

Fork and Join

(1) If Task A and B does not produce side effects, we can fork Task
A to execute at the same time as Task B and join back Task A later.

(2) Callback: A callback is any executable code that is passed as an
argument to other code so that the former can be called back after
the latter completes.

CompletableFuture

(1) Static Constructors

 RunAsync with thenRun for Runnables
 SupplyAsync with thenApply for Suppliers with

returned values

(2) Callback Methods

 thenAccept(Consumer<? super T> action)
 thenApply(Function<? super T, ? extends U> fn)
 thenCompose(Function<? super T, ? extends

CompletionStage<U>> fn)
 thenCombine(CompletionStage<? extends U> other,

BiFunction<? super T, ? super U, ? extends V>
fn)

(3) join Method

 Returns the result when execution completes.

