AY2021/22 Semester 1

1. C Programming Language

1.1. Pointer

- &a: Address of a.
- %p: Format specifier for addresses.
- int *a_ptr;: Declaring a pointer variable.
- a_ptr = &a; or int *a_ptr = &a; Assigning value to a pointer.
- *a_ptr is synonymous with a.

<u>1.2. Array</u>

- a is synonymous with &a[0].
- An array that ends with \0 is a string.

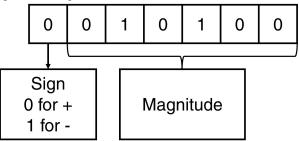
1.3. Structure

- We can directly assign by the name.
- Structure is similar to variable.
- (*a_ptr).b is equivalent to a_ptr->b.

2. Data Representation and Number Systems

2.1. Weighted-Positional Number System

- $(a_n a_{n-1} \dots a_1 a_0, f_1 f_2 \dots f_m)_R$ = $a_n R^n + a_{n-1} R^{n-1} + \dots + a_1 R + a_0 + f_1 R^{-1} + f_2 R^{-2} + \dots + f_m R^{-m}$
- Base-*R* to Decimal Conversion:

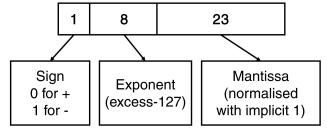

	10	remainder			0.3125	carry]
/2	5	0	← LSB	*2	0.625	0	← MSB
/2	2	1		*2	0.25	1	
/2	1	0		*2	0.5	0	
/2	0	1	← MSB	*2	0	1	← LSB
	(101	0)2]		(0.0	L01) ₂]
	Division-by-2				Multiplic	ation-by-2	

2.2. ASCII Table

Refer to Appendix A.

2.3. Signed Binary Numbers

• Sign-and-Magnitude:


- 1s Complement
 - $-x = 2^n x 1$ (negate all the bits)
 - If there is a carry-out of MSB during addition, add 1 to the result.

- 2s Complement
- $-x = 2^n x$ (negate all the bits, then add 1)

2.4. Excess Representation

• Excess-*n* Representation: Subtract *n* from every number

2.5. Floating Point Numbers

3. MIPS

3.1. Instruction Formats

R-Formats

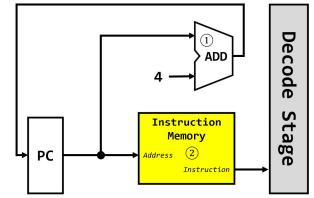
6	5	5	5	5	6
opcode	rs	rt	rd	shamt	funct

I-Formats

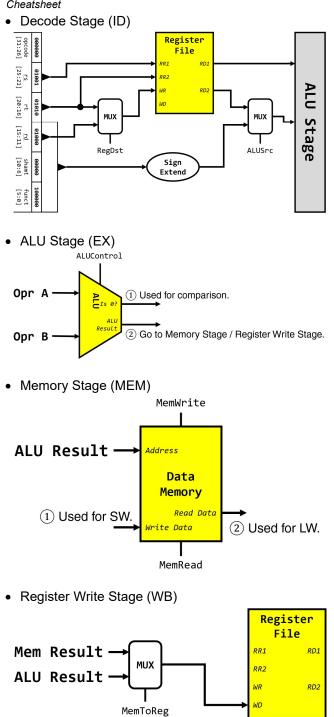
6	5	5	16
opcode	rs	rt	immediate

• J-Formats

6	26
opcode	target address
o Ei	rst 4 bits of PC + target address + 00


- First 4 bits of PC + target address + 00
- 3.2. MIPS Reference Page

Refer to Appendix B.


4. Datapath and Control

4.1. Instruction Execution Cycle

Fetch Stage (IF)

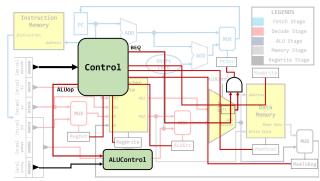
- $(\underline{1})$ Fetch instruction from PC address.
- 2 Increment PC by 4.

4.2. Complete Datapath

Refer to Appendix C.

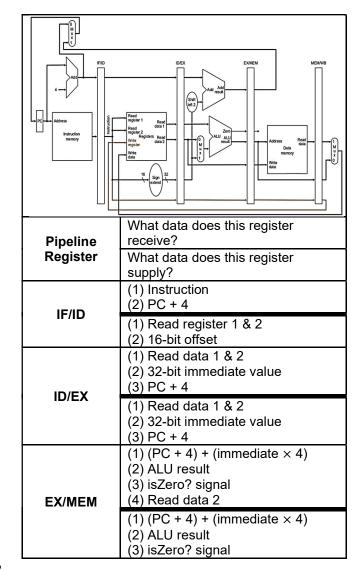
4.3. Control

Control Signals


RegDst	Select destination register
RegWrite	Enable writing of register
ALUSrc	Select 2 nd ALU operand
ALUControl	Select ALU operation
MemRead	Enable reading of data memory
MemWrite Enable writing of data memory	
MemToReg Select data to write register	
PCSrc	Select next PC value

ALUControl Signal

ALUControl	Function
0000	AND
0001	OR
0010	ADD
0110	SUB
0111	SLT
1100	NOR


o ALUControl signal is generated from 2-bit ALUop signal (LW/SW - 00; BEQ - 01; R-type - 10) and optionally 6-bit Funct field.

Implementation

4.4. Pipelining

Pipeline Datapath

Properties of Tian Xiao

RegWrite

	(4) Read data 2	
MEM/WB	(1) ALU result (2) Memory read data	
	(1) ALU result (2) Memory read data	

Cycle Time and Execution Time

 Single-cycle processor:

$$CT = \sum_{k=1}^{N} T_k$$

(*CT*: Cycle time; *N*: Number of stages; T_k : Time for operations in stage k)

 $ET = I \times CT$

(ET: Execution time; I: Number of instructions)

• Multi-cycle processor:

 $CT = \max(T_k)$ $ET = I \times \overline{CPI} \times CT$ (\overline{CPI} : Average cycles per instruction)

• Pipeline processor:

 $CT = \max(T_k) + T_d$ (T_d: Overhead for pipelining) $ET = (I + N - 1) \times CT$

- Number of Cycles
 - Ideal case:

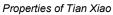
$$I + N - 1$$

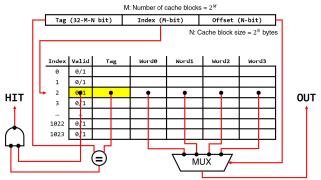
(I: Number of instructions)

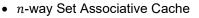
• Without data forwarding:

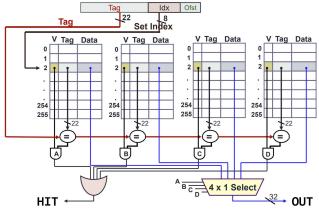
Instruction	Delay Caused
RAW	+2
Load Word	+2
Branch at MEM	+3
Branch at ID	+1

• With data forwarding:


Instruction	Delay Caused
RAW	+0
Load Word	+1
Branch at MEM	+3
Branch at ID	+1
RAW + Branch at ID	+1
Load + Branch at ID	+2


<u>4.5. Cache</u>


• $\overline{T_a} = P_{hit}T_{hi} + (1 - P_{hit})T_{miss}$


($\overline{T_a}$: Average access time; P_{hi} : Hit rate; T_{hi} : Hit time; T_{miss} : Miss penalty)

• Direct Mapped Cache

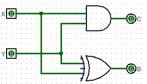
Fully Associative Cache

Offset	
4-bit	
ytes 0-3 Bytes 4-7	Bytes 8-11 Bytes 12-15
	ytes 0-3 Bytes 4-7

Offend

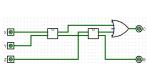
- Block Replacement Policy
 - Least Recently Used
 - $\circ\,$ First in First out
 - Random Replacement
 - Least Frequently Used

5. Circuits

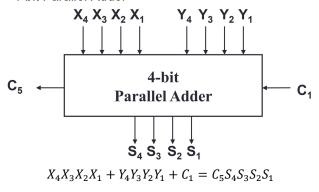

- 5.1. Boolean Algebra
- Laws of Boolean Algebra

Identity Laws	
A + 0 = 0 + A = A	$A \cdot 1 = 1 \cdot A = A$
Inverse/Complement Laws	
A + A' = A' + A = 1	$A \cdot A' = A' \cdot A = 0$
Commutative Laws	
A + B = B + A	$A \cdot B = B \cdot A$
Associative Laws	
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Distributive Laws	
$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + (B \cdot C) = (A + B) \cdot (A + C)$
Idempotency	
X + X = X	$X \cdot X = X$
One/Zero Element	
X + 1 = 1 + X = 1	$X \cdot 0 = 0 \cdot X = 0$
Involution	

(X')' = X	
Absorption 1	
$X + X \cdot Y = X$	$X \cdot (X + Y) = X$
Absorption 2	
$X + X' \cdot Y = X + Y$	$X \cdot (X' + Y) = X \cdot Y$
De Morgan's	
$(X + Y)' = X' \cdot Y'$	$(X \cdot Y)' = X' + Y'$
Consensus	
$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y +$	$(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X$
X' · Z	$+ Y) \cdot (X' + Z)$


5.2. Adder

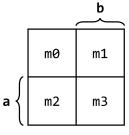
• Half-Adder


In	out	Output			
Х	Y	С	S		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		

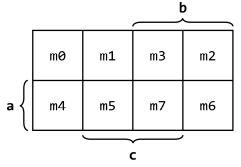
• Full Adder

	Input		Out	tput
Х	Υ	Ζ	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

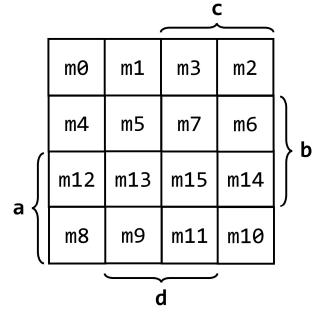
• 4-bit Parallel Adder



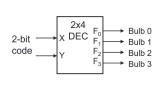
5.3. K-Map


· Gray Code: Only a single bit changes from one code value to the next.

Decimal	Binary	Gray Code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

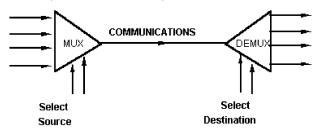

• 2-variable K-Map

3-variable K-Map



4-variable K-Map

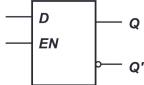
- Prime Implicant: A product term obtained by combining the maximum possible number of minterms from adjacent squares in the map.
- · Essential Prime Implicant: A prime implicant that includes at least one minterm that is not covered by any other prime implicant.
- If $\alpha \neq \beta$, then:
 - $\circ m\alpha \cdot m\beta = 0$
 - \circ M α + M β = 1


5.4. Decoder and Encoder

	Inp	out		Output						
	Х	Y	F ₀	F ₁	F_2	F ₃				
0 1	0	0	1	0	0	0				
2	0	1	0	1	0	0				
3	1	0	0	0	1	0				
	1	1	0	0	0	1				

• Encode is reverse of decoder.

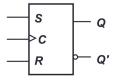
5.5. Multiplexer and Demultiplexer


5.6. Latch

• Active-High S-R Latch

 s	- Q
 R	⊶ Q'

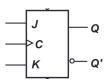
S	R	Q	Ŷ	State
0	0	Q	Q'	NC
0	1	1	0	Set
1	0	0	1	Reset
1	1	0	0	Invalid


Gated D Latch

Q	EN	D	Q	State
Q	1	0	0	Reset
	1	1	1	Set
Q'	0	Х	Q	NC

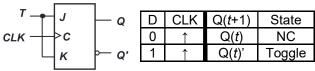
5.7. Flip-flop

• S-R Flip-flop



S	R	CLK	Q(<i>t</i> +1)	State
0	0	Х	Q(t)	NC
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	?	Invalid

• D Flip-flop


D - S	— Q	D	CLK	Q(<i>t</i> +1)	State
CLK C		0	\uparrow	0	Reset
	⊢ Q'	1	\uparrow	1	Set

• J-K Flip-flop

J	K	CLK	Q(<i>t</i> +1)	State
0	0	\uparrow	Q(t)	NC
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	↑	Q(t)	Toggle

• T Flip-flop

Appendix A: ASCII Table (Section 2.2)

Properties of Tian Xiao

ASCII ⁻	TABLE
--------------------	-------

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char
0	0	0	0	(NULL)	48	30	110000	60	0	96	60	1100000	140	× .
1	1	1	1	(START OF HEADING)	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	c
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	(ENQUIRY)	53	35	110101	65	5	101	65	1100101	145	e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	1
10	A	1010	12	[LINE FEED]	58	3A	111010	72	÷	106	6A	1101010	152	1
11	B	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	(SHIFT IN)	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	P
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	A	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	B	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	С	115	73	1110011	163	s
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	(NEGATIVE ACKNOWLEDGE)	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	н	120	78	1111000	170	×
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	1	121	79	1111001	171	У
26	1A	11010	32	(SUBSTITUTE)	74	4A	1001010	112	J	122	7A	1111010	172	z
27	18	11011	33	[ESCAPE]	75	4B	1001011	113	K	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	Í.
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	-
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111	117	0	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	1	81	51	1010001	121	Q	1				
34	22	100010	42		82	52	1010010	122	R					
35	23	100011	43		83	53	1010011	123	S					
36	24	100100		\$	84	54	1010100		т					
37	25	100101		%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	v					
39	27	100111	47		87	57	1010111	127	w					
40	28	101000		(88	58	1011000		x					
41	29	101001)	89	59	1011001		Y					
42	2A	101010		•	90	5A	1011010	132	z					
43	2B	101011		+	91	5B	1011011		[
44	2C	101100			92	SC	1011100		1					
45	2D	101101			93	5D	1011101		1					
46	2E	101110		·	94	5E	1011110		~					
47	2F	101111		1	95	5F	1011111							
									-					

MIPS Reference Data

	1		
1	6	1	à
ß	2	1	
1			1
	(

1

CORE INSTRUCT	ON SE	т			OPCODE	
		FOR-			/ FUNCT	
NAME, MNEMO	NIC	MAT	· · · ·		(Hex)	
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}	
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)		
Add Imm. Unsigned	addiu	Ι	R[rt] = R[rs] + SignExtImm	(2)		
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}	
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}	
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex	
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}	
Branch On Not Equa	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5_{hex}	
Jump	j	J	PC=JumpAddr	(5)		
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)		
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}	
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtlmm](7:0)}	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)		
Load Linked	11	Ι	R[rt] = M[R[rs]+SignExtImm]	(2,7)		
Load Upper Imm.	lui	1	R[rt] = {imm, 16'b0}		fhex	
Load Word	lw	Ι	R[rt] = M[R[rs]+SignExtImm]	(2)	nea	
Nor	nor	R	$R[rd] = \sim (R[rs] R[rt])$		0/27 _{hex}	
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}	
Or Immediate	ori	Ι	R[rt] = R[rs] ZeroExtImm	(3)	dhex	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}	
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}	
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1 : 0	(2,6)	b _{hex}	
Set Less Than Unsig.	.sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0/2b _{hex}	
Shift Left Logical	sll	R	R[rd] = R[rt] << shamt		0 / 00 _{hex}	
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}	
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}	
Store Conditional	SC	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}	
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) =	(2)	29 _{hex}	
Store Word		1	R[rt](15:0) $M[P[re]+SignExtImm] = R[rt]$	(2) (2)		
Subtract	SW	R	M[R[rs]+SignExtImm] = R[rt]		$0/22_{hex}$	
	sub		R[rd] = R[rs] - R[rt]	(1)	$0/22_{hex}$ $0/23_{hex}$	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0/23hex	
			se overflow exception mm = { 16{immediate[15]}, imm	ediate	1	
	1223 O.1		$lmm = \{ 16\{lb`0\}, immediate \}$	culate	1	
			$ddr = \{ 14 \{ immediate[15] \}, immediate[15] \}$	ediate.	2'b0 }	
	(5) Jur	npAd	dr = { PC+4[31:28], address, 2'b	{ 00		
			s considered unsigned numbers (v			
DACIO INCTOUCT			est&set pair; R[rt] = 1 if pair atom	ic, 0 if	not atomic	
BASIC INSTRUCT	-				C	
R opcode		rs	rt rd shami		funct	
I opcode	26 25	21	20 16 15 11 10	65 liate	(
	26 25		20 16 15	inte	(
J opcode	T		address			
31	31 26 25					
Copyright 2009 by E	lsevier,	Inc.,	All rights reserved. From Patterson	and I	lennessy, C	

ARITHMETIC CO		DUCTION SET	OPCODE					
ANITIMETIC CO		HUCHON SET	OPCODE / FMT /FT					
	F	DR-	/ FUNCT					
NAME, MNEMO	ONIC N	AT OPERATION	(Hex)					
Branch On FP True		FI if(FPcond)PC=PC+4+BranchAc	ddr (4) 11/8/1/					
Branch On FP False		FI if(!FPcond)PC=PC+4+BranchA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Divide		R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]						
Divide Unsigned	0.000.000.000.000	R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]						
FPAdd Single FPAdd	add.s	F[fd] = F[fs] + F[ft]	11/10//0					
Double	add.d	$FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} {F[ft],F[ft+1]}$						
FP Compare Single	crs*	FR FPcond = $(F[fs] op F[ft])$? 1:0	CONTRACTOR AND A CONTRACT					
FP Compare		EPoond = ([E[fe] E[fe+1]]) on						
Double	c.x.d*	${\rm FR} = {\rm Freehold} = {\rm F[ft], {\rm F[ft+1]}} p$	$:0 \qquad 11/11//y$					
		is ==, <, or <=) (y is 32, 3c, or 3e)	- 1920/940 - 261					
FP Divide Single	div.s	FR F[fd] = F[fs] / F[ft]	11/10//3					
FP Divide	div.d]	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$						
Double		{r[n],r[n+]]}					
FP Multiply Single	mul.s		11/10//2					
FP Multiply Double	mul.d	${F[fd],F[fd+1]} = {F[fs],F[fs+1]}$	//					
FP Subtract Single	sub.s	{F[ft],F[ft+1 FR F[fd]=F[fs] - F[ft]	11/10//1					
FP Subtract		(E[64] E[64+11) = (E[64] E[64+1])	1)					
Double	sub.d	$\frac{F[ft],F[ft+1]}{F[ft],F[ft+1]}$						
Load FP Single	lwc1	I F[rt]=M[R[rs]+SignExtImm]	(2) 31//					
Load FP	ldc1	F[rt]=M[R[rs]+SignExtImm];	(2) 35///					
Double	IUCI	F[rt+1]=M[R[rs]+SignExtImm+	-4]					
Move From Hi	mfhi	R R[rd] = Hi	0 ///10					
Move From Lo	mflo	R R[rd] = Lo	0 ///12					
Move From Contro		R R[rd] = CR[rs]	10 /0//0					
Multiply Multiply	mult	$R {Hi,Lo} = R[rs] * R[rt]$	0///18					
Multiply Unsigned Shift Right Arith.		$R {Hi,Lo} = R[rs] * R[rt]$ $R {R[rd]} = R[rt] >>> shamt$	(6) 0///19 0///3					
Store FP Single	sra swcl	$ \begin{array}{l} R & R[rd] = R[rt] >>> shamt \\ I & M[R[rs]+SignExtImm] = F[rt] \end{array} $	(2) 39///					
Store FP	SWCI	M[P[rs]+SignExt[mm] - F[rt]	(2)					
Double	sdc1	M[R[rs]+SignExtImm+4] = F[r]						
· · · · · · · · · · · · · · · · · · ·		JCTION FORMATS						
FR opcode	S 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S. 1989 (# 863 / 76	The second second					
31	26 25	21 20 16 15 11 10	65 0					
FI opcode			ediate					
31	26 25	21 20 16 15	0					
PSEUDOINSTRU								
	ME		RATION					
Branch Less Tl Branch Greater		blt if(R[rs] <r[rt]) p<br="">bgt if(R[rs]>R[rt]) P</r[rt])>						
Branch Less T								
Branch Greater								
Load Immedia		1i R[rd] = immedia						
Move		move $R[rd] = R[rs]$						
REGISTER NAME, NUMBER, USE, CALL CONVENTION								
NAME N		USE PRESE	RVEDACROSS					
			A CALL?					
\$zero		The Constant Value 0	N.A.					
\$at		Assembler Temporary	No					
\$v0-\$v1		Values for Function Results and Expression Evaluation	No					
\$a0-\$a3			No					
	4-7	Arguments	INO					
\$t0-\$t7		Arguments Temporaries	No					
\$s0-\$s7	8-15	Arguments Femporaries Saved Temporaries						
	8-15 16-23	Temporaries	No					

Global Pointer

Stack Pointer

Frame Pointer

Return Address

Reserved for OS Kernel

No

Yes

Yes

Yes

Yes

\$k0-\$k1

\$sp

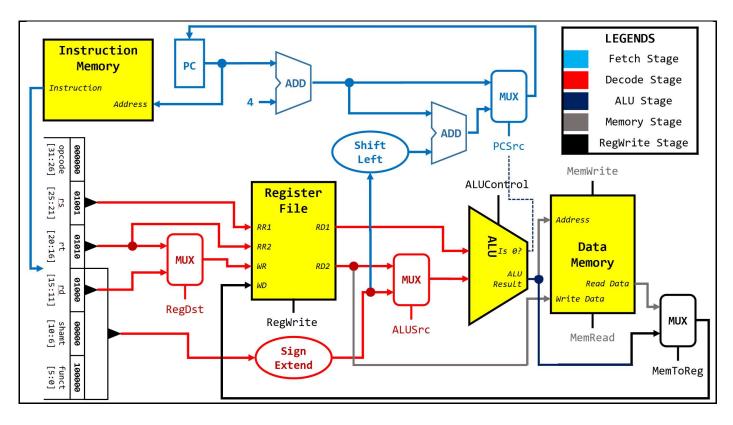
\$fp

\$ra

26-27

28

29


30

31

0 \$gp 0 0

y, Computer Organization and Design, 4th ed.

Appendix C: Complete Datapath (Section 4.2)

