
Cheatsheet Produced by Tian Xiao

CS2103/T Software Engineering

AY2021/22 Semester 2

Software Engineering

1. Introduction
- Software engineering is the application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software.

Programming Paradigms

1. Object-Oriented Programming
- Object-Oriented Programming (OOP) is a
programming paradigm. A programming paradigm
guides programmers to analyse programming
problems, and structure programming solutions, in a
specific way.
- OOP does not dispute the view of world as data
and operations, but restructure it to a higher level. It
groups operations and data into modular units called
objects and combines objects into structured
networks. Objects and object interactions are the
basic elements of design.
- OOP is mainly an abstraction mechanism, which is a
higher level mechanism than procedural paradigm.

2. Other Programming Paradigms
Procedural Programming

Paradigm1
C

Functional Programming
Paradigm2

F#, Haskell, Scala

Logic Programming
Paradigm3

Prolog

OOP + (limited) 1 + 2 C++, Java
1 + 2 + 3 JavaScript, Python

3. Objects
- OOP views the world as a network of interacting
objects.
- Every object has state (data) and behaviour.
- OOP solutions try to create a similar object network
inside the computer’s memory so that a similar result
can be achieved programmatically. However, it does
not demand that the virtual world object network
follows the real work exactly.
- Every object has an interface (through which other
objects can interact with it) and an implementation
(that supports the interface but may not be
accessible to other objects).
- Objects interact by sending messages.
- Abstraction allows us to abstract away the lower
level details and work with bigger granularly entities.
- Encapsulation protects an implementation from
unintended actions and from inadvertent access. An
object is an encapsulation of some data and related
behaviour in terms of two aspects, packaging (an
object packages data and related behaviours together
into one self-contained unit) and information hiding
(the data inside an object is hidden from the outside
world and are only accessible using the object’s
interface).
- Encapsulation strengthens abstraction.

4. Classes
- A class contains instructions for creating a specific
kind of objects.
- Class-level members = class-level attributes + class-
level methods.

5. Enumerations
- An enumeration is a fixed set of values that can be
considered as a data type.

6. Associations

- Associations are connections between objects to
form a network so that they can interact with each
other.
- Associations among objects change over time.
- Associations among objects can be generalised as
associations between the corresponding classes.
- Navigability is the concept of which object in the
association knows about the other object. It can be
unidirectional or bidirectional.
- Multiplicity is the aspect of an OOP solution that
dictates how many objects take part in each
association.
- A dependency is a need for one class to depend on
another without having a direct association in the
same direction.
- A composition is an association that represents a
strong whole-part relationship. When the whole is
destroyed, parts are destroyed too (i.e. the part
should not exist without being attached to a whole).
Composition also implies that there cannot be cyclical
links.
- An aggregation represents a container-contained
relationship. It is a weaker relationship than
composition.
- An association class represents additional
information about an association.

7. Inheritance
- Inheritance allows one to define a new class based
on an existing class. A superclass is said to be more
general than the subclass.
- Method overriding is when a subclass changes the
behaviour inherited from the parent class by
reimplementing the method.
- Method overloading is when there are multiple
methods with the same name but different type
signatures.

Cheatsheet Produced by Tian Xiao
- An interface is a behaviour specification. A class
implementing an interface results in an is-a
relationship.
- An abstract class is a representation of
commonalities among its subclasses. It cannot be
instantiated, but can be subclassed. An abstract
method is a method signature without a method
implementation.
- Substitutability: Every instance of a subclass is an
instance of the superclass, but not vice versa.
- Dynamic VS Static Binding: Overridden methods are
resolved using dynamic binding during runtime,
whereas overloaded methods are resolved using static
binding during compile time.

8. Polymorphism
- Polymorphism is the ability of different objects to
respond, each in its own way, to identical messages.
It allows you to write code targeting superclass
objects, use that code on subclass objects, and
achieve possibility different results based on the
actual class of the object. It is achieved by
substitutability, operation overriding and dynamic
binding altogether.

4 Main OOP Principles

Abstraction
Encapsulation
Inheritance

Polymorphism

Requirements

1. Requirements
- A software requirement specifies a need to be
fulfilled by the software product.
- A software project may be a brown-field project
(replace/update an existing product) or a green-field

project (develop a totally new system with no
precedent).
- Requirements come from stakeholders. A
stakeholder is a party that is potentially affected by
the software project (e.g. users, sponsors,
developers, interest groups, government agencies,
etc.).
- Requirements can be priortised based on the
importance and urgency (e.g. High, Medium, Low).
Some requirements can be discarded if they are
considered “out of scope”.

2. Non-Functional Requirements
- Functional requirements specify what the system
should do.
- Non-functional requirements (NFR) specify the
constraints under which the system is developed and
operated. For example,
 1. Data requirements (size, volatility,
persistency, etc.).
 2. Environment requirements (technical
environment in which the system would operate in or
needs to be compatible with.).
 3. Accessibility, capacity, compliance with
regulations, documentation, disaster recovery,
efficiency, extensibility, fault tolerance,
interoperability, maintainability, privacy, portability,
quality, reliability, response time, robustness,
scalability, security, stability, testability, etc.
- NFRs are easier to miss yet sometimes critical to
the success of the software.

3. Gathering Requirements
- Brainstorming: A group activity designed to
generate a large number of diverse and creative ideas
for the solution of a problem. The aim is to generate
ideas but not to validate them.

- User surveys can be used to solicit responses and
opinions from a large number of stakeholders
regarding a current product or a new product.
- Observing users in their natural work environment
can uncover product requirements.
- Interviewing stakeholders and domain experts can
produce useful information about project
requirements.
- Focus groups are a kind of informal interview within
an interactive group setting. A group of people are
asked about their understanding of a specific issue,
process, product, advertisement, etc.
- A prototype is a mock up, a scaled down version,
or a partial system constructed to get users’
feedback, tp validate a technical concept, to give a
preview of what is to come, or to compare multiple
alternatives on a small scale before committing fully
to one alternative, or to be used for early field
testing under controlled conditions. Prototyping can
uncover requirements, in particular those related to
how users interact with the system.
- Product surveys about existing products are used to
unearth shortcomings of existing solutions that can
be addressed by a new product.

4. Prose
- Prose: A textual description used to describe
requirements. Prose is useful when describing abstract
ideas such as the vision of a product.

5. Feature List
- Feature List: A list of features of a product grouped
according to some criteria such as aspect, priority,
order of delivery, etc.

Example: Minesweeper Game feature list
1. Basic play – Single player play.

Cheatsheet Produced by Tian Xiao
2. Difficulty levels
 • Medium levels
 • Advanced levels
3. Versus play – Two players can play against each
other.
4. Timer – Additional fixed time restriction on the
player.
5. …

6. User Story
- User story: Short, simple descriptions of a feature
told from the perspective of the person who desires
the new capability, usually a user or customer of the
system.
- User stories capture user requirements in a way
that is convenient for scoping, estimation and
scheduling.
- User stories should only provide enough details to
make a reasonably low risk estimate of how long the
user story will take to implement.
- User stories can capture NFRs too.
- Given their lightweight nature, user stories are quite
handy for recording requirements during early states
of requirements gathering.

Format: As a {user type/role} I can {function} so
that {benefit}.
Example: Learning Management System
1. As a student, I can download files uploaded by
lecturers so that I can get my own copy of the
files.
2. As a lecturer, I can create discussion forums so
that students can discuss things online.
3. As a tutor, I can print attendance sheets so
that I can take attendance during the class.
4. As a forgetful user, I can view a password hint,
so that I can recall my password.

7. Use Case
- Use case: A description of a set of sequences of
actions, including variants, that a system performs to
yield a observable result of value to an actor (a role
played by a user). It describes an interaction between
the user and the system for a specific functionality of
the system.

Example: Use case diagram

Example: Transfer Money use case for a online
banking system

System: Online Banking System (OBS)
User case: UC23 – Transfer Money
Actor: User
MSS:
 1. User chooses to transfer money.
 2. OBS requests for details of the
transfer.
 3. User enters the requested details.
 4. OBS requests for confirmation.
 5. User confirms.
 6. OBS transfers the money and displays
the new account balance.
 Use case ends.

Extensions:
 3a. OBS detects an error in the entered
data.

3a1. OBS requests for the correct
data.

3a2. User enters new data.
Steps 3a1-3a2 are repeated until the

data entered are correct.
Use case resumes from step 4.

 3b. User requests to effect the
transfer in a future date.

3b1. OBS requests for confirmation.
3b2. User confirms future transfer.
Use case ends.

- Use cases capture the functional requirements of a
system.
- To identify a use case, one needs to identify:
 1. Actors: A use case can involve multiple
actors. An actor can be involved in many use cases.
A single person/system can play many roles. Many
persons/systems can play a single role. Use cases can
be specified at various levels of detail.
 2. Details: The main body of the use case is
a sequence of steps that describes the interaction
between the system and the actors. A user case
describes only the externally visible behaviours, not
internal details of a system. A step gives the
intention of the actor, not the mechanics (i.e. UI
details should be omitted). The Main Success Scenario
(MSS) describes the most straightforward interaction
for a given use case, which assumes that nothing
goes wrong. Extensions are add-ons to MSS that
describe exceptional/alternative flow of events.

Format: Extensions in use cases
1. Numbering: An extension marked 3a can happen
just after step 3 of MSS. An extension marked *a
can happen at any step.

Cheatsheet Produced by Tian Xiao
2. A use case can include another use case.
Underlined text is used to show an inclusion of a
use case. For example:
MSS:
 1. Staff creates the survey (UC44).
3. Preconditions specify the specific state you
expect the system to be in before the use case
starts. For example:
Actor: User
Preconditions: User is logged in.
MSS:
 …
4. Guarantees specify what the use case promises
to give us at the end of its operation.
Actor: User
Preconditions: User is logged in.
Guarantees:
 • Money will be deducted from the
source account only if the transfer to
the destination account is successful.
 • The transfer will not result in the
account balance going below the minimum
balance required.
MSS:
 …

- Advantages:
 1. Easy to understand and give feedback
because of simple notation and plain English
descriptions.
 2. Decouples user intention from mechanism,
allowing the system designers more freedom to
optimise how a functionality is provided to a user.
 3. Identifies all possible extensions
encourages us to consider all situations that a
software product might face during its operation.
 4. Separates typical scenarios from special
cases encourages us to optimise the typical scenarios.
- Disadvantage: Not good for capturing requirements
that do not involve a user interacting with the

system. Hence, use cases should not be used as the
sole means to specify requirements.

8. Glossary
- A glossary serves to ensure that all stakeholders
have a common understanding of the noteworthy
terms, abbreviations, acronyms, etc.

9. Supplementary Requirements
- A supplementary requirements section can be used
to capture requirements that do not fit elsewhere.
Typically, this is where most NFRs will be listed.

Design

1. Software Design
- Design is the creative process of transforming the
problem into a solution; the solution is also called
design.
- Software design has two main aspects,
product/external design (designing the external
behaviour of the product to meet the users’
requirements) and implementation/internal design
(designing how the product will be implemented to
meet the requires external behaviour).

2. Abstraction
- Abstraction is a technique for dealing with
complexity. It works by establishing a level of
complexity we are interested in, and suppressing the
more complex details below that level. The guiding
principle of abstraction is that only details that are
relevant to the current perspective or the task at
hand need to be considered.
- Data abstraction: Abstracting away the lower level
data items and thinking in terms of bigger entities.

- Control abstraction: Abstracting away details of the
actual control flow to focus on tasks at a higher
level.
- Abstraction can be applied repeatedly to obtain
progressively higher levels of abstraction.
- Abstraction is a general concept that is not limited
to just data or control abstractions.

3. Coupling
- Coupling is a measure of the degree of dependence
between components, classes, methods, etc. X is
coupled to Y is a change to Y can potentially require
a change in X.

Examples: A is coupled to B if
• A has access to the internal structure of B.
• A and B depend on the same global variable.
• A calls B.
• A received an object of B as a parameter or a
return value.
• A inherits from B.
• A and B are required to follow the same data
format or communication protocal.

- High coupling (aka. tight coupling, strong coupling)
is discourages due to the following disadvantages:
 1. Maintenance is harder, because a change
in one module would cause changes in other modules
coupled to it.
 2. Integration is harder, because multiple
components coupled with each other have to be
integrated at the same time.
 3. Testing and reuse of the module is harder,
because of its dependence on other modules.
- Types of Coupling

Content
Coupling

One module modifies or relies on
the internal workings of another

Cheatsheet Produced by Tian Xiao
module (e.g. accessing local data
of another module).

Common/Global
Coupling

Two modules share the same
global data.

Control
Coupling

One module controlling the flow
of another by passing it
information on what to do (e.g.
passing a flag).

Data Coupling
One module sharing data with
another module (e.g. via passing
parameters).

External
Coupling

Two modules share an externally
imposed convention (e.g. data
formats, communication
protocols, device interfaces).

Subclass
Coupling

A class inherits from another
class. A child class is coupled to
the parent class.

Temporal
Coupling

Two actions are bundled together
just because they happen to
occur at the same time
(extracting a contiguous block of
code as a method although the
code block contains statements
unrelated to each other).

4. Cohesion
- Cohesion is a measure of how strongly-related and
focused the various responsibilities of a component
are.
- Higher cohesion is better. Lower cohesion (aka.
weak cohesion) is worse because:
 1. Lowers the understandability of modules
as it is difficult to express module functionalities at a
higher level.
 2. Lowers maintainability because a module
can be modified due to unrelated causes or many

modules may need to be modified to achieve a small
change in behaviour.
 3. Lowers reusability of modules because
they do not represent logical units of functionality.
- Cohesion can be present in many forms. For
example, code related to a single concept, or invoked
close together in time, or manipulates the same data
structure, is kept together.

5. Modelling
- A model is a representation of something else. For
example, a class diagram is a model that represents a
software design. Models are abstractions.
- A model provides a simpler view of a complex entity
because a model captures only a selected aspect. For
example, a class diagram captures the structure of
the software design but not the behaviour.
- Multiple models of the same entity may be needed
to capture it fully.
- In software development, models are useful in the
following ways:
 1. To analyse a complex entity related to
software development.
 2. To communicate information among
stakeholders, hence generating models from code is
useful.
 3. As a blueprint for creating software.
- UML class diagrams are used to model structures
(Appendix I).
- UML object diagrams are used to complement class
diagrams (Appendix II).
- UML activity diagrams are used to model workflows,
which define the flow in which a process or a set of
tasks is executed (Appendix III).
- UML sequence diagrams are used to model the
interactions between various entities in a system, in a
specific scenario (Appendix IV).

6. Software Architecture
- Software architecture shows the overall organisation
of the system and can be viewed as a very high-level
design. It usually consists of a set of interacting
components that fit together to achieve the required
functionality. It should be a simple and technically
viable structure that is well-understood and agreed-
upon by everyone in the development team, and it
forms the basis for the implementation.
- Architecture is concerned with the public side of
interfaces, not the private details of elements.
- The architecture is typically designed by the
software architect.
- Architecture diagrams are free-form diagrams.
- Software architectures follow various high-level
styles (aka. architectural patterns). Most applications
use a mix of these architectural styles. For example,
 1. N-tier style (aka. multi-layered, layered):
Higher layers make use of services provided by lower
layers.
 2. Client-server style: At least one
component playing the role of a server and at least
one client component accessing the services of the
server.
 3. Transaction processing style: This style
divides the workload of the system down to a
number of transactions which are then given to a
dispatcher that controls the execution of each
transaction.

 4. Service-oriented style: This style builds
applications by combining functionalities packaged as
programmatically accessible services.

Cheatsheet Produced by Tian Xiao
 5. Event-driven style: This style controls the
flow of the application by detecting events from
event emitters and communicating those events to
interested event consumers. Usually used in GUIs.

7. Software Design Patterns
- A design pattern is an elegant reusable solution to
a commonly recurring problem within a given context
in software design. The common format to describe a
pattern consists of the following components:
 1. Context: The situation or scenario where
the design problem is encountered.
 2. Problem: The main difficulty to be
resolved.
 3. Solution: The core of the solution.
 4. Anti-patterns (optional): Commonly used
solutions which are usually incorrect and/or inferior to
the design pattern.
 5. Consequences (optional): Identifying the
pros and cons of applying the pattern.
 6. Other useful information (optional): Code
examples, known users, other related patterns, etc.
- Singleton Pattern

Context

Certain classes should have no
more than one instance (e.g. main
controller of a system). These
single instances are commonly
known as singletons.

Problem
A normal class can be instantiated
multiple times by invoking the
constructor.

Solution

Make the constructor of the
singleton class private, because a
public constructor will allow others
to instantiate the class at will.
Provide a public class-level method
to access the single instance.

Consequences

Pros:
• Easy to apply.
• Effective in achieving its goal
with minimal extra work.
• Provides aa easy way to access
the singleton object from anywhere
in the code base.
Cons:
• The singleton object acts like a
global variable that increases
coupling across the code base.
• In testing, it is difficult to
replace singleton objects with
stubs.
• In testing, singleton objects carry
data from one test to another
even when one wants each test to
be independent.

- Abstraction Occurrence Pattern

Context

There is a group of similar entities
that appear to be “occurrences”
or “copies” of the same thing,
sharing lots of common
information, but also differing in
significant ways.

Problem

Representing such objects as a
single class would be problematic
because it results in duplication of
data which can lead to
inconsistencies in data.

Solution

Let a copy of an entity be
represented by two objects instead
of one, separating the common
and unique information into two
classes to avoid duplication.

- Façade Pattern

Context
Components need to access
functionality deep inside other
components.

Problem
Access to the component should
be allowed without exposing its
internal details.

Solution

Include a Façade class that sits
between the component internals
and users of the component such
that all access to the component
happens through the Façade class.

- Command Pattern

Context
A system is required to execute a
number of commands, each doing
a different task.

Problem

It is preferable that some part of
the code executes these
commands without having to know
each command type.

Solution

The essential element of this
pattern is to have a general
Command object that can be
passed around, stored, executed,
etc. without knowing the type of
command via polymorphism.

- Model View Controller (MVS) Pattern

Context
Most applications support
storage/retrieval of information,

Cheatsheet Produced by Tian Xiao
displaying of information to the
user, and changing stored
information based on external
inputs.

Problem
The high coupling that can result
from the interlinked nature of the
features described above.

Solution

Decouple data, presentation, and
control logic of an application by
separating them into three
different components: Model, View,
and Controller.

- Observer Pattern

Context
An object is interested in being
notified when a change happens to
another object.

Problem
The observed object does not
want to be coupled to objects that
are observing it.

Solution

Force the communication through
an interface know to both parties.

- Design patterns are usually embedded in a larger
design and sometimes applied in combination with
other design patterns.
- The most famous source of design patterns is the
Gang of Four book which contains 23 design patterns
divided into three categories – creational, structural
and behavioural.

- Design principles have varying degrees of formality
– rules, opinions, rules of thumb, observations and
axioms. They are more general, have wider
xapplicability with correspondingly greater overlap
among them than design patterns.

8. Design Approaches
- Multi-level design: The design of bigger systems
needs to be done/shown at multiple levels.
- Top-down and bottom-up design: Multi-level design
can be done in a top-down manner (when designing
big and novel systems where the high-level design
needs to be stable before lower levels can be
designed), bottom-up manner (when designing a
variation of an existing system or repurposing existing
components to build a new system), or as a mix.
- Agile design: Agile designs are emergent that are
not defined upfront.

Implementation

1. IDEs
- Professional software engineers often write code
using Integrated Development Environments (IDEs).
IDEs support most development-related work within
the same tool.
- An IDE generally consists of
 1. Source code editor: Includes features such
as syntax colouring, auto-completion, easy code
navigation, error highlighting and code-snippet
generation.
 2. Compiler/Interpreter: Facilitates the
compilation/linking/running/deployment of a program.
 3. Debugger: Allows the developer to execute
the program one step at a time to observe the
runtime behaviour in order to locate bugs.

 4. Other tools that aid various aspects of
coding (e.g. support for automated testing, drag-and-
drop construction of UI components, version
management support, simulation of the target runtime
platform, and modelling support).
- Popular IDEs:

Java Eclipse, IntelliJ IDEA, NetBeans
C#, C++ Visual Studio
Swift XCode
Python PyCharm

2. Debugging
- Debugging is the process of discovering defects in
the program.

✔ ✘

• Using a debugger

• Inserting temporary print
statements
• Manually tracing through
the code

3. Code Quality
- Production code needs to be of high quality.
- Among various dimensions of code quality, one of
the most important is understandability/readability.

✔ ✘

• Making the code
obvious
• Structuring code
logically
• KISSing (“keep it
simple, stupid”)
• SLAP (Single Level
of Abstraction
Principle)

• Long methods
• Deep nesting
• Complicated expressions
• Magic numbers
• Unused parameters in
method signature
• Similar things that look
different
• Different things that
look similar

Cheatsheet Produced by Tian Xiao
• Making the happy
path prominent

• Multiple statements in
the same line
• Data flow anomalies
such as preassigning
values to variables and
modifying it without any
use of the preassigned
value
• Premature optimisations

- Guidelines:
 1. Follow a consistent style (Appendix V).
 2. Name well: Use nouns for things and verbs
for actions, use standard words, use name to explain,
not too long & not too short, avoid misleading
names.
 3. Avoid unsafe shortcuts: Use the default
branch, do not recycle variables or parameters, avoid
empty catch blocks, delete dead code, minimise
scope of variables, minimised code duplication.
 4. Comment minimally but sufficiently: do not
repeat the obvious, write into the reader, explain
what and why, not how.

4. Refactoring
- Refactoring is the process of improving a program’s
internal structure in small steps without modifying its
external behaviour. Refactoring is neither rewriting nor
bug fixing.
- Two common refactorings: Consolidate duplicate
conditional fragments + extract method.
- Code smells are one way to identify refactoring
opportunities. Periodic refactoring is a good way to
pay off the technical debt a code base has
accumulated.

5. Documentation

- Developer-to-developer documentation can be in one
of two forms:
 1. Documentation for developer-as-user.
 2. Documentation for developer-as-maintainer.
- Software documentation is best kept in a text
format for ease of version tracking. A writer-friendly
source format (e.g. Markdown, AsciiDoc, PlantUML) is
also desirable as non-programmers may need to
author/edit such documents.
- Guidelines:
 1. Go top-down, not bottom-up: A top-down
breadth-first explanation is easier to understand.
 2. Aim for comprehensibility: Use plenty of
diagrams, examples, simple and direct explanations,
get rid of statements that do not add value, do not
have separate sections for each type of artifact.
 3. Document minimally, but sufficiently.
- JavaDoc: A tool for generating API documentation in
HTML format from comments in the source code.

Example: Minimal JavaDoc comments for methods
and classes

6. Error Handling

- Exceptions are used to deal with unusual but not
entirely unexpected situations that the program might
encounter at runtime. When an error occurs at some
point in the execution, the code being executed
creates an exception object and hands it off to the
runtime system. The runtime system then attempts
to find an exception handler to handle it in the call
stack. The exception handler chosen is said to catch
the exception.
- Assertions are used to define assumptions about
the program state so that the runtime can verify
them. An assertion failure indicates a possible bug in
the code. If the runtime detects an assertion failure,
it typically takes some drastic action (e.g. terminating
the execution with an error message). Assertions can
be disabled without modifying the code (e.g. java -
disableassertions HelloWorld).

Example:
x = getX();
assert x == 0 : “x should be 0”;
This assertion will fail with the message x should
be 0 if x is not 0 at this point.

- Java assert VS JUnit assertions: They are similar in
purpose but Junit assertions are more powerful and
customised for testing. Moreover, Junit assertions are
not disabled by default.
- Exceptions VS Assertions: The raising of an
exception indicates an unusual condition created by
the user or the environment whereas an assertion
failure indicates the programmer made a mistake in
the code.
- Logging is the deliberate recording of certain
information during a program execution for future
reference. It can be useful for troubleshooting
problems. A log file is like the black box of an
airplance. Most programming environments come with

Cheatsheet Produced by Tian Xiao
logging systems that allow sophisticated forms of
logging.

Example: Logging uses Java

- Defensive programming: A defensive programmer
codes under the assumption “if you leave room for
things to go wrong, they will go wrong”.
 1. Enforcing compulsory associations.
 2. Enforcing 1-to-1 associations.
 3. Enforcing referential integrity.
 4. Making copies.
- Design by contract (DbC) is an approach for
designing software that requires defining formal,
precise and verifiable interface specifications for
software components. It assumes the caller of a
method is responsible for ensuring all preconditions
are met. It is not natively supported by Java and
C++.

7. Integeration
- Integration is to combine parts of a software
product to form a whole.
- Approaches
“Late and One Time”:
Wait till all components

“Early and Frequent”:

are completed and
integrate all finished
components near the
end of the project.

Integrate early and
evolve each part in
parallel, in small steps,
re-integrating frequently.

Big-Bang Integration:
Integrate all components
at the same time.

Incremental Integration:
Integrate a few
components at a time.

Top-Down Integration:
Higher-level components
are integrated before
bringing in the lower-
level components.

Bottom-up Integration:
The reverse of top-
down integration.
Sandwich Integration: A
mix of top-down and
bottom-up approaches.

- Build automation tools automate the steps of the
build process, usually by means of build scripts (e.g.
Gradle, Maven, Apache Ant, GNU Make). Some build
tools also serve as dependency management tools.
- Continuous Integration (CI): Integration, building, and
testing happens automatically after each code change
(e.g. Travis, Jenkins, Appveyor, CircleCI, GitHub
Actions).
- Continuous Deployment (CD): The changes are not
only integrated continuously, but also deployed to
end-users at the same time.

8. Reuse
- By reusing tried-and-tested components, the
robustness of a new software system can be
enhanced while reducing the manpower and time
requirement. Reusable components can be a piece of
code, a subsystem or a whole software.
- Costs associated with reuse:
 1. The reused code may be an overkill, which
increases the size or degrades the performance of
the software.

 2. The reused software may not be
mature/stable enough to be used in an important
product.
 3. Non-mature software has the risk of dying
off as fast as they emerged, leaving one with a
dependency that is no longer maintained.
 4. The license of the reused software restrict
how one can use/develop his software.
 5. The reused software might have bugs,
missing features, or security vulnerabilities.
 6. Malicious code can sneak into one’s own
product via compromised dependencies.
- An Application Programming Interface (API) specifies
the interface through which other programs can
interact with a software component. It is a contract
between the component and its clients.
- A library is a collection of modular code that is
general and can be used by other programs.
- A framework is a reusable implementation of a
software providing generic functionality that can be
selectively customised to produce a specific
application (e.g. Eclipse). Some frameworks provide a
complete implementation of a default behaviour which
makes them immediately usable. A framework
facilitates the adaptation and customisation of some
desired functionality.
- Libraries VS Frameworks: Libraries are meant to be
used “as is” while frameworks are meant to be
customised/extended. One’s code calls the library
code while the framework code calls one’s code.
Frameworks use a technique called inversion of
control (aka. Hollywood principle).
- A platform provides a runtime environment for
applications (e.g. JavaEE, .NET). It is often bundled
with various libraries, tools, frameworks, and
technologies in addition to a runtime environment but
the defining characteristic of a software platform is
the presence of a runtime environment.

Cheatsheet Produced by Tian Xiao
- Cloud computing is the delivery of computing as a
service over the network, rather than a product
running on a local machine. It can deliver computing
services at three levels:
 1. Infrastructure as a service (IaaS): Delivers
computer infrastructure as a service (e.g. virtual
servers).
 2. Platform as a service (PaaS): Provides a
platform on which developers can build applications
(e.g. Google App Engine).
 3. Software as a service (SaaS): Allows
applications to be accessed over the network (e.g.
Google Docs).

Quality Assurance

1. Quality Assurance
- Software Quality Assurance (QA) is the process of
ensuring that the software being built has the
required levels of quality.
- QA = Validation + Verification
 1. Validation: Are you building the right
system? Are the requirements correct?
 2. Verification: Are you building the system
right? Are the requirements implemented correctly?
- It is not important to distinguish whether something
belongs under validation or verification. It is important
that both are done.

2. Code Reviews
- Code review is the systematic examination of code
with the intention of finding where the code can be
improved. It can be done in various forms:
 1. Pull request reviews.
 2. In pair programming: Two programmers
working on the same code at the same time.

 3. Formal inspections: A group of people
systematically examine project artifacts to discover
defects, including the author, moderator, secretary
and inspector/reviewer.
- Advantages of code review over testing:
 1. It can detect functionality defects as well
as other problems such as coding standard violations.
 2. It can verify non-code artifacts and
incomplete code.
 3. It does not require test drivers or stubs.
- Disadvantage: Code review is a manual process and
therefore error prone.

3. Static Analysis
- Static analysis is the analysis of code without
actually executing the code. It can find useful
information such as unused variables. In constrast,
dynamic analysis requires the code to be executed to
gather additional information about the code.
- Higher-end static analysis tools (static analysers,
e.g. CheckStyle, PMD, FindBugs) can perform more
complex analysis such as locating potential bugs,
memory leaks, inefficient code structures, etc.

4. Formal Verifications
- Formal verification uses mathematical techniques to
prove the correctness of a program.
- Advantage: Formal verification can be used to prove
the absence of errors. In constrast, testing can only
prove the presence of errors.
- Disadvantages: Formal verification only proves the
compliance with the specification, but not the actual
utility of the software. Also, it requires highly
specialised notations and knowledge which makes t an
expensive technique to administer. Therefore, formal
verifications are more commonly used in safety-critical
software such as flight control systems.

5. Testing
- Testing is the process of operating a system or
component under specified conditions, observing or
recording the results, and making an evaluation of
some aspect of the system or component.
- When testing, one executes a set of test cases. A
test case specifies how to perform a test. At a
minimum, it specifies the input to the software under
test (SUT) and the expected bebaviour.
 1. Feed the input to the SUT.
 2. Observe the actual output.
 3. Compare actual output with expected
output.
- Test cases can be determined based on the
specification, reviewing similar existing systems, or
comparing to the past behaviour of the SUT.
- A test case failure is a mismatch between the
expected behaviour and the actual behaviour. A
failure indicates a potential defect or a bug, unless
the error is in the test case itself.
- Testability: An indication of how easy it is to test
an SUT.
- Regression testing: The re-testing of the software
to detect regressions (when one modifies a system,
the modification may result in some unintended and
undesirable effects on the system, called regressions).
Regression testing is more effective when it is done
frequently, hence more practical when it is
automated.
- Developer testing: The testing done by the
developers themselves as opposed to professional
testers or end-users, since it is better to do early
testing because if testing is delayed until the full
product is complete:
 1. Locating the cause of a test case failure
is difficult due to a large search space.
 2. Fixing a bug found during such testing
could result in major rework.

Cheatsheet Produced by Tian Xiao
 3. One bug might hide other bugs.
 4. The delivery may have to be delayers.
- Unit testing: Testing individual units to ensure each
piece works correctly. A proper unit test requires the
unit to be tested in isolation, and stubs can isolate
the SUT from its dependencies.
- Integration testing: Testing whether different parts
of the software work together as expected. It is not
simply a case of repeating the unit test cases using
the actual dependencies, but additional test cases
that focus on the interactions between the parts. In
practice, developers use a hybrid of unit and
integration tests to minimise the need for stubs.
- System testing: Taking the whole system and
testing it against the system specification. System
testing is typically done by a testing team (aka. QA
team). System test cases are based on the specified
external behaviour of the system, and it includes
testing against NFRs too (e.g. performance testing,
load testing, security testing, compatibility testing,
interoperability testing, usability testing, portability
testing).
- Alpha and beta testing: Alpha testing is performed
by the users, under controlled conditions set by the
software development team; beta testing is
performed by a selected subset of target users of
the system in their natural work setting.
- Dogfooding: Eating your own dog food (aka.
dogfooding), is when creators use their own product
so as to test the product.
- Exploratory testing (aka. reactive testing, error
guessing technique, attack-based testing, bug
hunting): Devise test cases on-the-fly, creating new
test cases based on the results of the past test
cases. It depends on the tester’s prior experience and
intuition.
- Scripted testing: First write a set of test cases
based on the expected behaviour of the SUT, and

then perform testing based on that set of test cases.
It is more systematic and hence likely to discover
more bugs given sufficient time.
- Acceptance testing: Testing the system to ensure it
meets the user requirements. It comes after system
testing.
- System testing VS Acceptance testing:

System Testing Acceptance Testing
Done against system
specification

Done against
requirement specification

Done by testers of the
project team

Done by a team that
represents the customer

Done on the
development
environment or a test
bed

Done on the deployment
site or on a close
simulation of the
deployment site

Both negative and
positive test cases

More focus on positive
test cases

- System specification VS Requirement specification:

System Specification Requirement Specification
Also includes details on
how the system will fail
gracefully when pushed
beyond limits, how to
recover, etc.

Limited to how the
system behaves in
normal working
conditions

Written in terms of
how the system solves
those problems

Written in terms of
problems that need to
be solved

Could contain additional
APIs not available for
end-users (for the use
of developers/testers)

Specifies the interface
available for intended
end-users

- Passing system tests does not necessarily mean
passing acceptance testing.

6. Test Automation
- An automated test case can be run
programmatically and the result of the test case is
determined programmatically.
- A simple way to semi-automate testing of a
command line interface (CLI) app is by using
input/output redirection.
- A test driver is the code that drivers the SUT for
the purpose of testing.
- Junit is a tool for automated testing of Java
programs.

Example: A JUnit test for a Payroll class

- GUI automated testing tools:

TestFX JavaFX GUIs
Visual Studio “Record replay” type of GUI test

automation
Selenium Web application GUIs

7. Test Coverage
- Test coverage is a metric used to measure the
extent to which testing exercises the code, including
the following criteria:
 1. Functional/method coverage: Based on
functions executed.
 2. Statement coverage: Based on the number
of lines of code executed.

Cheatsheet Produced by Tian Xiao
 3. Decision/branch coverage: Based on the
decision points exercised.
 4. Condition coverage: Based on the boolean
sub-expressions, each evaluated to both true and
false with different test case.
 5.Path coverage: Based on possible paths
through a given part of the code executed. 100%
path coverage implies all possible execution paths
hence the highest intensity of testing.
 6. Entry/exit coverage: Based on possible
calls to and exists from the operations in the SUT.
- Measuring coverage is often done using coverage
analysis tools.
- Coverage analysis can be useful in improving the
quality of testing.

8. Dependency Injection
- Dependency injection is the process of injecting
objects to replace current dependencies with a
different object (e.g. inject stubs to isolate the SUT).
- Polymorphism can be used to implement
dependency injection.

9. Test-Driven Development
- Test-Driven Development (TDD) advocates writing
the tests before writing the SUT, while evolving
functionality and tests in small increments. It
guarantees that the code is testable.
- Steps:
 1. Decide what behaviour to implement.
 2. Write test cases to test that behaviour.
 3. Run those test cases and watch them fail.
 4. Implement the behaviour.
 5. Run the test cases.
 6. Keep modifying the code and rerunning
test cases until they all pass.
 7. Refactor code to improve quality.
 8. Repeat for each small unit of behaviour.

10. Test Case Design
- Except for trivial SUTs, exhaustive testing is not
practical because such testing often requires a
massive/infinite number of test cases. Hence, test
cases need to be designed to make the best use of
testing resources. In particular,
 1. Testing should be effective (i.e. finds a
high percentage of existing bugs).
 2. Testing should be efficient (i.e. has a high
rate of success).
- Positive VS Negative test cases: A positive test
case is when the test is designed to produce an
expected/valid behaviour, whereas a negative test
case is designed to produce a behaviour that
indicates an invalid/unexpected situation, such as an
error message.
- Black-box VS Glass-box: Test case design can be of
three types, based on how much of the SUT’s
internal details are considered when designing test
cases:
 1. Black-box (aka. specification-based,
responsibility-based): Test cases are designed
exclusively based on the SUT’s specified external
behaviour.
 2. White-box (aka. glass-box, structured,
implementation-based): Test cases are designed based
on what is known about the SUT’s implementation
(i.e. the code).
 3. Gray-box: Test cases are designed based
on some important information about the
implementation.
- Equivalence partitions (EP): A test case design
technique that used the observation - most SUTs do
not treat each input in a unique way. Instead, they
process all possible inputs in a small number of
distinct ways - to improve the E&E of testing. One
should avoid testing too many inputs from one
partition, and ensure all partitions are tested.

- Boundary value analysis (BVA): A test case design
heuristic that is based on the observation that bugs
often result from incorrect handling of boundaries of
equivalence partitions. It suggests that when picking
test inputs from an equivalence partition, values near
boundaries are more likely to find bugs. Typically, one
should choose one value from the boundary, one
value just below the boundary and one value just
above the boundary. For example, consider the
partition [1-12], one should choose 0, 1, 2, 11, 12,
13.
- An SUT can take multiple inputs. Testing all possible
combinations is effective but not efficient, hence one
needs strategies to combine test inputs that are both
effective and efficient:
 1. All combinations strategy: Generates test
cases for each unique combination.
 2. At least once strategy: Includes each test
input at least once.
 3. All pairs strategy: For any given pair of
inputs, all combinations between them are tested.
 4. Random strategy: Generates test cases
using one of the other strategies and them picks a
subset randomly.
- Combining test inputs heuristics:
 1. Each valid input must appear at least once
in a positive test case.
 2. No more than one invalid input appears in
a test case.
- Use cases can be used for system testing and
acceptance testing.

Project Management

1. Revision Control
- Revision control is the process of managing multiple
versions of a piece of information. A revision is a

Cheatsheet Produced by Tian Xiao
state of a piece of information at a specific time that
is a result of some changes to it.
- Revision control software (RCS) are the software
tools that automate the process of revision control. It
will track the history and evolution of one’s project. It
has the following advantages:
 1. Easier to collaborate.
 2. Easier to recover from mistakes.
 3. Easier to work simultaneously on, and
manage the drift between multiple versions of the
project.
- Repository: The database of the history of a
directory being tracked by an RCS. It has the
following functions:
 1. Track: Specifies which file to track.
 2. Ignore: Specifies which file to ignore.
 3. Commit: Saves a snapshot (commit) of
the current state.
 4. Stage: Chooses which changes to commit.
 5. Hash: Identifies each unique commit.
 6. Tag: Gives a commit a more easily
identifiable name.
 7. Diff: Shows the changes between two
points of the history.
 8. Checkout: Restores the state of the
working directory at a point in the past.
 9. Clone: Creates a copy of a remote repo in
another location on computer. The original repo is
called upstream repo.
 10. Pull: Receives new commit from the
upstream repo.
 11. Push: Copies the new commits onto the
destination repo.
 12. Fork: Creates a remote copy of a remote
repo.
 13. Pull request (PR): Requests to contribute
code to a remote repo.

 14. Branch: Evolves multiple versions of the
software in parallel.
 15. Merge: Merges two branches. Merge
conflicts need to be resolved manually.
- CRCS VS DRCS: Centralised RCS (CRCS) uses a
central remote repo that is shared by the team, while
distributed RCS (DRCS) allows multiple remote repos.

2. Project Planning
- A Work Breakdown Structure (WBS) depicts
information about tasks and their details in terms of
subtasks. The effort is traditionally measured in man
hour/day/month. All tasks should be well0defined.
- A milestone is the end of a stage which indicates
significant progress.
- A buffer is a time set aside to absorb any
unforeseen delays.
- Issue trackers are commonly used to track task
assignment and progress.
- A Gantt chart is a 2D bar chart, drawn as time VS
tasks. A solid bar represents the main task, which is
composed of a number of grey bars (subtasks). The
diamond shape indicates an important
deadline/deliverable/milestone.

Example: Gantt chart

- A Program Evaluation Review Technique (PERT)
chart uses a graphical technique to show the
order/sequence of tasks. It can help determine the
order of tasks, which tasks can be done concurrently,
the shortest possible completion time and the critical
path (the path in which any delay can directly affect
the project duration).

Example: PERT chart

3. Teamwork
- Egoless team (aka. democratic): Every team
member is equal in terms of responsibility and
accountability. Good for smaller projects.
- Chief programmer team: There is a single
authoritative figure, the chief programmer.
- Strict hierarchy team: A strictly defined organisation
among the team members. Good in a large, resource-
intensive, complex project.

4. SDLC Process Models
- Software development life cycle (SDLC):
Requirements, analysis, design, implementation and
testing.
- Sequential model (aka. waterfall model) models
software development as a linear process. When one
stage of the process is completed, it should produce
some artifacts to be used in the next stage. This

Cheatsheet Produced by Tian Xiao
could be a useful model when the problem statement
is well-understood and stable, which is yet rare and
keeps changing in real world.

- Iterative model (aka. iterative and incremental
model) advocates having several iterations of SDLC.
Each iteration produces a new version of the product.
It can take a breadth-first (evolves all major
components in parallel) or a depth-first approach
(fleshing out only some components) to iteration
planning. Most projects use a mixture of breadth-first
and depth-first iterations.
- Agile model: Individuals and interactions over
processes and tools, working software over
comprehensive documentation, customer collaboration
over contract negotiation, responding to change over
following a plan (e.g. eXtreme Programming (XP),
Scrum, Unified Process by the Three Amigos).

Principles

1. Single Responsibility Principle (SRP)
- A class should have one, and only one, reason to
change.
- Gather together the things that change for the
same reasons. Separate those things that change for
different reasons.

2. Open-Closed Principle (OCP)

- A module should be open for extension but closed
for modification. That is, modules should be written
so that they can be extended, without requiring them
to be modified.
- OCP aims to make a code entity easy to adapt and
reuse without needing to modify the code entity
itself.

3. Liskov Substitution Principle (LSP)
- A subclass should not be more restrictive than the
behaviour specified by the superclass.
Code that works with the superclass should be able
to work with its subclasses.

4. Interface Segregation Principle (ISP)
- No client should be forced to depend on methods it
does not use.

5. Dependency Inversion Principle (DIP)
- High-level modules should not depend on low-level
modules. Both should depend on abstractions.
- Abstractions should not depend on details. Details
should depend on abstractions.

6. Separation of Concerns Principle (SoC)
- To achieve better modularity, separate the code
into distinct sections, such that each section
addresses a separate concern.
- SoC reduces functional overlaps among code
sections and limits the ripple effect when changes are
introduced to a specific part of the system.
- SoC can be applied at the class level, as well as
higher levels (e.g. N-Tier architecture).
- SoC should lead to higher cohesion and lower
coupling.

7. Law of Demeter (LoD)
- An object should have knowledge of another object.

- An object should only interact with obejcts that are
closely related to it.
- LoD is also known as Don’t talk to strangers and
Principle of Least Knowledge.

8. YAGNI Principle
- “You aren’t gonna need it!”: Do not add code
simply because you might need it in the future.

9. DRY Principle
- “Don’t repeat yourself!”: Every piece of knowledge
must have a single, unambiguous, authoritative
representation within a system.

10. Brook’s Law
- Adding people to a late project will make it later.
- The additional communication overhead will outweigh
the benefit of adding extra manpower, especially if
done near a deadline.

Tools

1. UML
See Appendix I, II, III and IV.

2. IntelliJ IDEA

3. Git and GitHub

References

This cheatsheet (aka. reference sheet) is adapted
from Software Engineering for Self-Directed Learners
(CS2103/T Edition – 2022 Jan-Apr) following the link
(https://nus-cs2103-ay2122s2.github.io/website/se-
book-adapted/index.html). Consequently, it also
reuses material from references in the book.

Cheatsheet Produced by Tian Xiao

Appendix I: UML Class Diagrams

UML class diagrams describe the structure (but not
the behaviour) of an OOP solution.

1. Classes
- Normal classes

- Generic classes

2. Associations
- Normal association

- Navigability

- Roles in association

- Meanings of association

- Multiplicity

- Association as attributes

3. Dependencies

4. Enumerations

5. Class-Level Members

6. Association Classes

Cheatsheet Produced by Tian Xiao
7. Composition and Aggregation
- Composition

- Aggregation

8. Class Inheritance

9. Interfaces

10. Abstract Classes

11. Combine
Example: The following class and object diagrams
corresponds to the following code.

Class and object diagrams:

Code:

Example: Minefield

12. Notes

13. Constraints

Cheatsheet Produced by Tian Xiao

Appendix II: UML Object Diagrams

UML object diagrams show an object structure at a
given point of time.

1. Objects

2. Associations

3. Object Diagrams VS Class Diagrams
- Object diagrams show objects instead of classes.
- Method compartments are omitted.
- Multiplicities are omitted.
- Multiple object diagrams can correspond to one
class diagram.

Example: Object diagram for professor and student

Cheatsheet Produced by Tian Xiao

Appendix III: UML Activity Diagrams

UML activity diagrams are used to model workflows.

1. Linear Paths

2. Alternate Paths

3. Parallel Paths

4. Rakes

5. Swimlanes

6. Combine
Example:

Appendix III*: UML Use Case Diagrams

Example:

Cheatsheet Produced by Tian Xiao

Appendix IV: UML Sequential Diagrams

UML sequence diagrams are used to capture the
interactions between multiple objects for a given
scenario.

1. Basic Sequential Diagrams

2. Object Construction

3. Object Deletion

4. Loops

5. Self Invocation

6. Alternative Paths

7. Optional Paths

8. Parallel Paths

9. References Frames

10. Calls to Static Methods

11. Combine
Example:

Cheatsheet Produced by Tian Xiao

Appendix V: Java Coding Standard

1. Naming
- Names representing packages should be in all lower
case.
- Class/enum names must be nouns and written in
PascalCase.
- Variable name must be in camelCase.
- Constant name must be all uppercase using
underscore to separate words.
- Names representing methods must be verbs and
written in camelCase.
- All names should be written in English.
- Boolean variables/methods should be named to
sound like booleans.
- Plural forms should be used on names representing
a collection of objects.
- Iterator variables can be called i, j, k, etc.

2. Layout
- Basic indentation should be 4 spaces (not tabs).
- Line length should be no more than 120 characters.
- Indentation for wrapped lines should be 8 spaces.
- Use K&R style (aka. Egyptian style) brackets.
- Method definitions should have the following form:

- The if-else statements should have the following
form:

- The for statements should have the following form:

- The while statements should have the following
form:

- The do-while statements should have the following
form:

- The switch statements should have the following
form:

- The try-catch statements should have the following
form:

3. Statements
- Put every class in a package.
- Import classes should always be listed explicitly.
- Array specifiers must be attached to the type not
the variable.
- The loop body should be wrapped by curly brackets
irrespective of how many lines there are in the body.
- The conditional should be put on a separate line.
- Single statement conditionals should still be wrapped
by curly brackets.

4. Comments
- All comments should be written in English.
- JavaDoc comments should have the following form:

- Comments should be indented relative to their
position in the code.

Cheatsheet Produced by Tian Xiao

Appendix VI: Module Overview

Framework

Platform

Specify requirements…
• Textual descriptions

• Feature list

• User stories

• Use cases

• OO domain models

• Object diagrams

• State machine diagrams

• Activity diagrams

• UI prototypes

• Glossary

• Supplementary

requirements

• …

Combat complexity…
Use abstraction, build models

System

Detailed
designDetailed

design
Detailed
design

BA CD

Possible Improvements:
• Apply OO paradigm

• Apply analysis patterns

• Categorize and prioritize requirements

Possible Improvements:
• ↑Cohesion, ↓Coupling

• Apply design patterns (Singleton, Command,

Observer, Façade, MVC)

• Apply design principles (SOLID, Law of Demeter,

Separation of concerns, …)

• Use polymorphism (inheritance, interfaces,

dynamic binding)

• Good product design guidelines (e.g., usability, …)

Possible Improvements:
• Refactor code

• Coding standards and good coding

pracSces

• Protect code using asserSons,

excepSons, logging, and defensive

coding.

• Build automaSon

Possible Improvements:
• Automate testing

• Use Test-Driven Development

• Increase efficiency and effectiveness of testing

(Equivalence partitioning, Boundary Value analysis)

• Increase test coverage

(function/entry/exit/statement/branch/

condition/path coverage)

• isolate SUT using drivers, stubs and dependency

injection

Unit
testing

Integration
testing

System
testing

Acceptance
testing

Alpha/beta testing

D
e

v
e

lo
p

e
r

te
s
ti

n
g

• Made up as you go

→ Exploratory testing

• Predetermined

→ Scripted testing

• Can be created in these ways:

oBlack-box, Glass-box,

Grey-box

= ValidaSon & VerificaSon

Testing

Other V&V

techniques:

• formal verification

• static analyzers

• code reviews

• …

Unified

process

Agile

processes

B
API (Application

Programming

interface)

Architecture styles such as n-

tier, client-server, peer-to-peer,

broker, pipes-and-filters,

service-oriented, transaction-

processing, and MVC

Top-dow
n design

Bo
tt

om
-u

p
de

sig
n

Integration

Can be late-one-

time, or early-

and-continuous

Can be top-

down, bottom-

up, sandwich,

big-bang

y

x z

yx

z

operations

Class
diagrams

Sequential

Iterative

Breadth-

first

Depth-

first

W
ork

-b
re

akdow
n

st
ru

ct
ure

s

Project plans

Team
structures

C

A

B

D

BA

D

Sequence
diagrams

Architecture

After

modifications…

Regression

testing

Includes buffers

and milestones

Chief-programmer

Egoless

Strict hierarchy

XP

(Complex)
Problem
domain

Establish
requirements…
• brainstorming
• Focus groups
• User surveys
• Product surveys
• Observations
• Interviews
• Prototyping

More agile -> less

upfront detailed design

ANALYSIS DESIGN IMPLEMENTATION QUALITY ASSURANCE

PR
OJ

EC
T

M
AN

AG
EM

EN
T

Library

QA

User

Issue

trackers

Detailed
designDetailed

design
Test

cases

Scrum

CMMI

RCS
We use OO to ‘align the view’.
We use UML as the standard
notation.

Stakeholders

Requirements
SpecificaEon

System
Specification

2

