
Cheatsheet Properties of Tian Xiao

 1

CS2106 Operating Systems
AY2021/22 Semester 2

1. Introduction

1.1. Introduction to Operating Systems
• OS is a program that acts as an intermediary

between a computer user and the computer
hardware.

• Monolithic VS Microkernel

Pros:
(1) Well understood
(2) Good performance
Cons:
(1) Highly coupled
components
(2) Complicated
internal structure

Pros:
(1) Kernel is more robust
and extendable.
(2) Better isolation and
protection between
kernel and high-level
services.
Cons: Low performance

1.2. Virtual Machines (Hypervisors)
• Type 1 Hypervisor: Provides individual virtual

machines to guest OSes.

o Faster than Type 2 due to fewer overheads

(one less layer)
• Type 2 Hypervisor: Runs in host OS.

o Simpler to build than Type 1

2. Process Management

2.1. Process Abstraction

• Process is a dynamic abstraction for executing
programmes. It includes all information required to
describe a running programme.

• Memory Regions

o Global Variable → Data Section
o Function Variable → Stack Section
o malloc() → Heap Section; The pointer itself is

in the stack section.

• Generic 5-State Process Model

o New: New process created.
o Ready: Process is waiting to run.
o Running: Process is being executed on CPU.
o Blocked: Process is waiting for event.
o Termination: Process has finished execution.
o Block – Ready – Running

• System Calls: Changes from user mode to kernel

mode (made by a library call).
o Hides the lower level hardware details from user

program.
o Protects system integrity from user program.
o Requires execution mode change and possibly

context change, introducing overheads.

• Process Creation in UNIX – fork()
o Returns PID for parent process and 0 for child

process.
o Child process is a duplicate of parent process.

Parent process and child process have
independent memory space.

o exec(): Replaces current executing process
image with a new one.
§ Code replacement
§ PID and other information still intact

o fork() + exec(): Spawns off a child process
and get parent process ready to accept another
request.

o Root process: init

• Process Termination in UNIX – exit()
o Returns status to parent process.

Cheatsheet Properties of Tian Xiao

 2

o Unix convention: 0 for normal termination, !0 for
problems.

o Releases most system resources except PID,
status, process accounting info, etc.

• Parent/Child Synchronisation in UNIX – wait()
o Returns the PID of the terminated child process.
o Blocks parent process until at least one child

process terminates.
o If there is no child, continue immediately.
o Cleans up the remainder of child system

resources and kills zombie processes.

2.2. Process Scheduling
• Evaluating Criteria
o Fairness: Ensures fair sharing of CPU time, no

starvation.
o Balanced utilisation of system resources

• Non-preemptive VS Preemptive (CPU can be taken

from Running state at any time)

• Scheduling Algorithms for Batch Processing
o Batch processing: Long running without user

intervention. Non-preemptive scheduling is
dominant.

o Criteria: (1) Throughput: Number of tasks finished
per unit time, (2) Turnaround time: Total wall
clock time taken, (3) CPU utilisation: Related to
overheads.

o First-Come First-Served (FCFS): Guaranteed to
have no starvation.
§ FCFS minimises the average response time if

the jobs arrive in the ready queue in order of
increasing job lengths.

o Shortest Job First (SJF): Minimises average
waiting time but may cause starvation – long jobs
may never get a chance.

o Shortest Remaining Time (SRT): Preemptive. May
cause starvation.

• Scheduling Algorithms for Interactive Processing
o Interactive processing: With active users

interacting with the system.
o Criteria: (1) Response time, (2) Predictability.
o Round Robin (RR): FIFO with a fixed time slice

(quantum). Guarantees response time.
§ Shorter time interval → More responsive but

longer time spent by OS in context switching
→ Increasing average turnaround time

§ Behaves identically to FCFS if the job lengths
are shorter than the time quantum.

o Priority Scheduling: May cause starvation.
o Multi-Level Feedback Queue (MLFQ): New job

has the highest priority. If a job fully utilises its

time slice, its priority reduces. If a job gives up or
blocks before finishing its time slice, its priority
retains. Jobs with same priority runs in RR.
§ Favours I/O intensive processes

o Lottery Scheduling:

• Real-time Processing
o Real-time processing: Have a strict deadline to

meet.

2.3. Inter-Process Communication
• IPC Mechanism – Shared Memory
o General idea: P1 creates a shared memory

region and P2 attaches it to its own.
o Advantages: (1) Efficient, (2) Ease of use.
o Disadvantages: (1) Limited to a single machine,

(2) Requires synchronisation to avoid data races.

• IPC Mechanism – Message Passing
o General idea: P1 sends a message and P2

receives the message.
o The message must be stored in kernel memory

space.
o Direct/Indirect Communication (via a mailbox)
o Synchronisation behaviours:

(1) Blocking: Sender is blocked until the message
is received; Receiver is blocked until a message
has arrived. Non-blocking send message is
buffered in system.
(2) Non-Blocking: Sender resumes immediately; If
no message has arrived, receiver proceeds
empty-handed but does not block.

o Advantages: (1) Applicable beyond a single
machine, (2) Portable, (3) Easier synchronisation
(send/receive).

o Disadvantages: (1) Inefficient, (2) Harder to use.

• UNIX Pipes: 1 end for reading, 1 end for writing.
Pipes may be unidirectional or bidirectional,
depending on UNIX version.

• UNIX Signal: A form of IPC sent to a
process/thread. The recipient must handle the
signal by a default set of handlers or user-supplied
handlers.

2.4. Alternative to Process - Thread
• General Idea: Adds more threads of control to the

same process so that multiple parts of the process
are executing at the same time. Threads in the
same process share memory context (text, data,
heap) and OS context (PID, files, etc.). Each thread
has unique ID, registers and stack. Only hardware
context is switched in thread switch.

Cheatsheet Properties of Tian Xiao

 3

• Advantages
o Economic: Much less resources compared with

multiple processes.
o Resource Sharing: Threads share most of the

resources of a process.
o Responsiveness: Much more responsive.
o Scalability: Take advantage of multiple

cores/CPUs.

• Disadvantages
o Synchronisation around shared memory gets

even worse (all except stack region).
o System call concurrency
o Process behaviour

• Thread models
o User threads: Implemented as user library.

Advantages:
(1) Can have multi-threaded programme on any
OS.
(2) Thread operations are just library calls.
(3) Generally more configurable and flexible.
Disadvantages: OS is not aware of threads. One
thread blocked leads to all threads blocked.
Cannot exploit multiple CPUs.

o Kernel threads: Implemented in OS.
Advantages: Kernel can schedule on thread
levels.
Disadvantages:
(1) Thread operations are system calls (slower
and require more resources).
(2) Generally less flexible.

2.5. Synchronisation
• Race Condition: Incorrect execution due to the

unsynchronised access to a shared modifiable
resource.
o Solution: Designates code segment for critical

section that allows at most one process.
o Properties of critical section:

(1) Mutual exclusion
(2) Progress: If no process is in the critical
section, one waiting process is granted access.
(3) Bounded wait: There exists an upper bound
for waiting time.
(4) Independence: Process not executing in
critical section does not block other process.

o Symptoms of incorrect synchronisation:
(1) Incorrect behaviour
(2) Deadlock: All processes blocked.
(3) Livelock: Processes keep changing states to
avoid deadlock but make no other progress.
(4) Starvation

• Critical Section Implementations
o High-Level Programming Language: Uses only

normal programming constructs.
o Peterson’s Algorithms:

o Assembly-Level: Mechanisms provided by the

hardware through special instructions.
o High-Level Abstractions: Provides abstracted

mechanisms that provide additional useful
features.

o Semaphore:

§ "!"##$%& = "'%'&'() + #&'()*+(") − #/*'0(")
§ Mutex: " = 0	or	1

