CS3230 Design and Analysis of Algorithms

AY2021/22 Semester 2

1. Introduction

- 1.1. Adversary Argument
 - There are two different cases resulting in different outcomes but cannot be differentiated.

1.2. Minimum Step Problems

- No. of comparisons to find largest element: n-1
- Second largest element: n 1 + lg n 1
 No. of comparisons in sorting algorithm: n lg n
- No. of edges checked to tell connectivity: ⁽ⁿ⁾
- No. of edges checked to tell connectivity: (

2. Asymptotic Analysis

2.1. Asymptotic Notations

Notation	Definition	$\lim_{n\to\infty}\frac{f(n)}{g(n)}$
f(n) = O(g(n))	$\exists c > 0, n_0 > 0 \text{ s. t.}$ $\forall n \ge n_0, 0 \le f(n) \le cg(n)$	8 >
f(n) = o(g(n))	$\begin{aligned} \forall c > 0, \exists n_0 > 0 \text{ s. t.} \\ \forall n \ge n_0, 0 \le f(n) < cg(n) \end{aligned}$	= 0
$f(n) = \Omega(g(n))$	$\exists c > 0, n_0 > 0 \text{ s. t.} \forall n \ge n_0, o \le cg(n) \le f(n)$	> 0
$f(n) = \omega(g(n))$	$\begin{aligned} \forall c > 0, \exists n_0 > 0 \text{ s. t.} \\ \forall n \ge n_0, 0 \le cg(n) < f(n) \end{aligned}$	= ∞
$f(n) = \Theta(g(n))$	$\exists c_1, c_2 > 0, n_0 > 0 \text{ s. t.} \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n)$	(0,∞)

2.2. Useful Facts

- $\forall k, d > 0, (\lg n)^k = o(n^d)$
- $\forall d > 0, u > 1, n^d = o(u^n)$
- Stirling's Formula: $n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$
 - $\begin{array}{l} & & \sqrt{e^{n}} \\ \circ & & \lg(n!) = \Theta(n \lg n) \\ \circ & & \lg\lg n + \lg\lg\frac{n}{2} + \lg\lg\frac{n}{4} + \dots + 1 = \lg(\lg n \, !) = \\ & & \lg n \lg\lg n \end{array}$
- Harmonic Series: $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \Theta(\lg n)$
- Decision Tree with n variables (e.g. sorting): $\circ h = \Omega(\lg(n!)) = \Omega(n \lg n)$
- $\lim_{n \to \infty} \left(\frac{n-1}{n}\right)^n = \frac{1}{e}$

3. Iteration, Recursion and Divide and Conquer

3.1. Correctness of Iterative Algorithm (Loop Invariant)

- Initialisation: The invariant is true before the first iteration of the loop.
- Maintenance: If the invariant is true before an iteration, it remains true before the next iteration.
- Termination: When the algorithm terminates, the invariant provides a useful property for showing correctness.

3.2. Correctness of Recursive Algorithm (Strong Induction)

- Prove base cases.
- Assuming the algorithm works for smaller cases, show that it works correctly.

3.3. Solve a Recurrence

- Recursion Tree: Draw the recursion tree and count total number of operations.
- Master Method for $T(n) = aT\left(\frac{n}{b}\right) + \Theta(f(n))$:

Condition	Solution	
$f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$	$T(n) = \Theta(n^{\log_b a})$	
$f(n) = \Theta(n^{\log_b a} \log^k n)$ for some $k \ge 0$	$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$	
$f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ $af\left(\frac{n}{b}\right) \le cf(n)$ for some $c < 1$	$T(n) = \Omega(f(n))$	

- Substitution Method:
 - Guess the form of the solution.
 - \circ Verify by induction.

Example: Solve $T(n) = 4T\left(\frac{n}{2}\right) + n$. 1. Guess $T(n) = O(n^2)$. Assume T(1) = q. 2. We are to show that $\exists c_1, c_2 > 0, n_0 > 0$ s.t. $\forall n \ge n_0, 0 \le T(n) \le c_1 n^2 - c_2 n$. 3. Set $c_1 = q + 1, c_2 = 1, n_0 = 1$. 4. Base case: $T(1) = q \le (q + 1) - 1$. 5. Recursive case: $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4\left(c_1 \cdot \frac{n^2}{4} - c_2 \cdot \frac{n}{2}\right) + n$ $= n^2 - n = c_1 n^2 - c_2 n$

4. Average Case Analysis and Randomised Algorithms

4.1. MergeSort vs QuickSort

- MergeSort is more efficient theoretically, but QuickSort is preferred empirically.
 - MergeSort requires extra memory.
 - Cache misses.

Colin McDiarmid Theorem: Probability that the runtime of Randomised QuickSort exceeds average by $x\% = n^{-\frac{x}{100}\ln\ln n}$.

4.2. Geometric Distribution

• Suppose
$$X \sim Geo(p)$$
, then $E(X) = \frac{1}{p}$.

5. Hashing

5.1. Universal Hashing

• Suppose \mathcal{H} is a set of hash functions mapping U to [*M*]. We say \mathcal{H} is universal if:

$$\forall x \neq y, \frac{|h \in \mathcal{H} : h(x) = h(y)|}{|\mathcal{H}|} \le \frac{1}{M}$$

That is, if we choose *h* randomly from \mathcal{H} , then for any $x \neq y$, the probability of them having the same hash value is smaller than or equal to $\frac{1}{M}$.

- Indicator Variable: $X = \begin{cases} 1, & \text{if even}^{T} A \text{ occurs} \\ 0, & \text{if event } A \text{ does not occur} \end{cases}$
 - For n elements, the expected number of collisions between any pair of them is:

$$\leq \binom{n}{2} \cdot \frac{1}{M}$$

5.2. Karp-Rabin Algorithm

Faster string equality:
Total runtime for pattern matching

$$= |hash_P| + (n - m + 1)(hash_X + O(1))$$

$$\underbrace{n}_{n}$$

$$\underbrace{\mathbf{x}}_{n}$$

$$\underbrace{\mathbf{p}}_{m}$$

$$hash(X) == hash(P)?$$

Rolling hash – Division Hash:

Choose *p* to be a random prime number in the range {1, ..., *K*}.
 Define, for any integer *x*, *h_p(x) = x* mod *p*.

- Useful fact: Number of prime numbers in $\{1, ..., K\} > K / \ln K$.
- Hence, if $0 \le x < y < 2^b$, then

$$\Pr(h_p(x) == h_p(y)) < \frac{b \ln K}{K}$$

- Set K = 200mn ln(200mn). Then the probability of getting a false positive is < 1%.
- Roll from T[1, ..., m] to T[2, ..., m + 1]: $h_p(X') = (h_p(X) - T[1] \cdot h_p(2^{m-1})) \cdot 2$ $+ T[m + 1] \pmod{p}$

Cheatsheet

Monte-Carlo Algorithm

Pick random prime *p* from {1, [200mn ln 200mn]}.
 Compute h_p(P), h_p(2^m) and h_p(T[1,...,m]).
 Check if h_p(P) == h_p(T]1,...,m]).
 Start rolling and check each substring equality.

• Runtime: O(m + n)

 \circ Error probability: < 1%

6. Amortized Analysis

6.1. Aggregate Method

• Average cost of *n* operations:

 $\frac{\sum_{i=1}^{n} t(i)}{n}$

6.2. Accounting Method

• Basic idea: Save additional money for fast method, use the saved money for costly method.

6.3. Potential Method

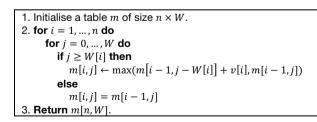
 $c_i = t_i + \phi(i) - \phi(i-1)$

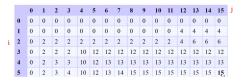
- c_i : Amortised cost of *i*-th operation
- t_i : True cost of *i*-th operation
- φ: Potential function associated with the algorithm/data structure
- $\phi(i)$: Potential at the end of *i*-th operation
- $c_i = t_i + \phi(i) \phi(i-1)$

7. Dynamic Programming

7.1. Knapsack Problem

Given W, the total weight that a knapsack can hold, and a set of items (w_i, v_i) where i = 1, ..., n with weight w_i and value v_i , what is the optimal strategy to get the highest value?





8. Greedy Algorithm

8.1. Correctness of Greedy Algorithm

Optimal Substructure

Suppose *S* is any optimal solution, and *S* contains item *i*.
 Claim: S - {*i*} is optimal for the subproblem with *i* removed and *necessary changes made* (e.g. *n* to *n* - 1).
 Cut & Paste Proof: Assume instead *T* is the optimal solution to the subproblem, then *T* + {*i*} would be optimal for the current problem, leading to contradiction.

Greedy-Choice Property

Suppose *i* is the element that *is chosen greedily* (e.g. max).
 Claim: There exists an optimal solution that contains *i*.
 Proof: Suppose there is an optimal solution that does not contain *i*. By replacing any item in the solution with *i*, the solution will become *more or as optimal* (elaboration), leading to contradiction.

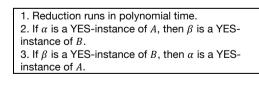
Conclusion

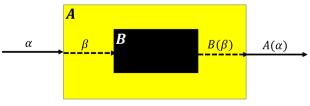
By Greedy-Choice Property, the *greedily chosen* (elaboration) element is in the optimal solution. By Optimal Substructure, this can be combined with solutions to remaining subproblems.

9. Reduction and Intractability

9.1. Reduction

- Polynomial-time Reduction: $A \leq_p B$ if there exists a p(n) time reduction from A to B where $p(n) = O(n^c)$ for some constant c.
- Correctness of Reduction





9.2. NP-Completeness

Proof of NP

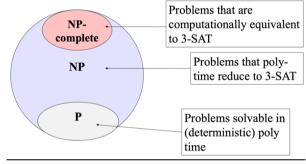
A YES-instance has a certificate that can be verified in polynomial time.

Proof of NP-hard

To show that a valid polynomial time reduction exists from another NP-hard problem *A*.

- 1. The reduction should run in polynomial time.
- 2. If the instance of the current problem *X* is a YES-instance, then the corresponding instance of *A* is also a YES-instance.3. If the instance of *A* is a YES-instance, then the corresponding instance of *X* is also a YES instance.

9.3. Complexity Classes



Good luck!

