CS3230 Design and Analysis of Algorithms

AY2021/22 Semester 2

1. Introduction

1.1. Adversary Argument

- There are two different cases resulting in different outcomes but cannot be differentiated.

1.2. Minimum Step Problems

- No. of comparisons to find largest element: $n-1$
- Second largest element: $n-1+\lg n-$
- No. of comparisons in sorting algorithm: $n \lg n$
- No. of edges checked to tell connectivity: $\binom{n}{2}$

2. Asymptotic Analysis

2.1. Asymptotic Notations

Notation	Definition	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$
$f(n)=O(g(n))$	$\exists c>0, n_{0}>0$ s.t. $\forall n \geq n_{0}, 0 \leq f(n) \leq c g(n)$	$<\infty$
$f(n)=o(g(n))$	$\forall c>0, \exists n_{0}>0$ s. t. $\forall n \geq n_{0}, 0 \leq f(n)<c g(n)$	$=0$
$f(n)=\Omega(g(n))$	$\exists c>0, n_{0}>0$ s.t. $\forall n \geq n_{0}, o \leq c g(n) \leq f(n)$	>0
$f(n)=\omega(g(n))$	$\forall c>0, \exists n_{0}>0$ s.t. $\forall n \geq n_{0}, 0 \leq c g(n)<f(n)$	$=\infty$
$f(n)=\Theta(g(n))$	$\exists c_{1}, c_{2}>0, n_{0}>0$ s. t. $\forall n \geq n_{0}, c_{1} g(n) \leq f(n) \leq c_{2} g(n)$	$(0, \infty)$

2.2. Useful Facts

- $\quad \forall k, d>0,(\lg n)^{k}=o\left(n^{d}\right)$
- $\quad \forall d>0, u>1, n^{d}=o\left(u^{n}\right)$
- Stirling's Formula: $n!\approx\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$
- $\quad \lg (n!)=\Theta(n \lg n)$
- $\lg \lg n+\lg \lg \frac{n}{2}+\lg \lg \frac{n}{4}+\cdots+1=\lg (\lg n!)=$ $\lg n \lg \lg n$
- Harmonic Series: $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\Theta(\lg n)$
- Decision Tree with n variables (e.g. sorting):
- $\quad \begin{array}{r}\circ \\ \lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{n}\end{array}=\frac{1}{e}$

3. Iteration, Recursion and Divide and Conquer

3.1. Correctness of Iterative Algorithm (Loop Invariant)

- Initialisation: The invariant is true before the first iteration of the loop.
- Maintenance: If the invariant is true before an iteration,
it remains true before the next iteration.
- Termination: When the algorithm terminates, the invariant provides a useful property for showing correctness.
3.2. Correctness of Recursive Algorithm (Strong Induction)
- Prove base cases.
- Assuming the algorithm works for smaller cases, show that it works correctly.

3.3. Solve a Recurrence

- Recursion Tree: Draw the recursion tree and count total number of operations.
- Master Method for $T(n)=a T\left(\frac{n}{b}\right)+\Theta(f(n))$:

Condition	Solution
$f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$	$T(n)=\Theta\left(n^{\log _{b} a}\right)$
$f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some $k \geq 0$	$T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
$f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ $a f\left(\frac{n}{b}\right) \leq c f(n)$ for some $c<1$	$T(n)=\Omega(f(n))$

- Substitution Method:
- Guess the form of the solution.
- Verify by induction.

Example: Solve $T(n)=4 T\left(\frac{n}{2}\right)+n$.

1. Guess $T(n)=O\left(n^{2}\right)$. Assume $T(1)=q$.
2. We are to show that $\exists c_{1}, c_{2}>0, n_{0}>0$
s.t. $\forall n \geq n_{0}, 0 \leq T(n) \leq c_{1} n^{2}-c_{2} n$.
3. Set $c_{1}=q+1, c_{2}=1, n_{0}=1$.
4. Base case: $T(1)=q \leq(q+1)-1$.
5. Recursive case:

$$
T(n)=4 T\left(\frac{n}{2}\right)+n \leq 4\left(c_{1} \cdot \frac{n^{2}}{4}-c_{2} \cdot \frac{n}{2}\right)+n
$$

$=n^{2}-n=c_{1} n^{2}-c_{2} n$

4. Average Case Analysis and Randomised
 Algorithms

4.1. MergeSort vs QuickSort

- MergeSort is more efficient theoretically, but QuickSort is preferred empirically.
- MergeSort requires extra memory.
- Cache misses.
- Colin McDiarmid Theorem: Probability that the runtime of Randomised QuickSort exceeds average by $x \%=$ $n^{-\frac{x}{100} \ln \ln n}$.

4.2. Geometric Distribution

- \quad Suppose $X \sim \operatorname{Geo}(p)$, then $E(X)=\frac{1}{p}$.

5. Hashing

5.1. Universal Hashing

Suppose \mathcal{H} is a set of hash functions mapping U to $[M]$. We say \mathcal{H} is universal if.

$$
\forall x \neq y, \frac{|h \in \mathcal{H}: h(x)=h(y)|}{|\mathcal{H}|} \leq \frac{1}{M}
$$

That is, if we choose h randomly from \mathcal{H}, then for any $x \neq y$, the probability of them having the same hash value is smaller than or equal to $\frac{1}{M}$.

- Indicator Variable: $X=\left\{\begin{array}{l}1, \text { if event } A \text { occurs } \\ 0, \text { if event } A \text { does not occur }\end{array}\right.$
- For n elements, the expected number of collisions between any pair of them is:

$$
\leq\binom{ n}{2} \cdot \frac{1}{M}
$$

5.2. Karp-Rabin Algorithm

- Faster string equality

Total runtime for pattern matching
$=\left|\operatorname{hash}_{P}\right|+(n-m+1)\left(\right.$ hash $\left._{X}+O(1)\right)$

- Rolling hash - Division Hash:

1. Choose p to be a random prime number in the range $\{1, \ldots, K\}$.
2. Define, for any integer $x, h_{p}(x)=x \bmod p$.

- Useful fact: Number of prime numbers in $\{1, \ldots, K\}>K / \ln K$.
- Hence, if $0 \leq x<y<2^{b}$, then

$$
\operatorname{Pr}\left(h_{p}(x)==h_{p}(y)\right)<\frac{b \ln K}{K}
$$

- Set $K=200 \mathrm{mn} \ln (200 \mathrm{mn})$. Then the probability of getting a false positive is $<$ 1\%.
- Roll from $T[1, \ldots, m]$ to $T[2, \ldots, m+1]$:

$$
h_{p}\left(X^{\prime}\right)=\left(h_{p}(X)-T[1] \cdot h_{p}\left(2^{m-1}\right)\right) \cdot 2
$$

$$
+T[m+1](\bmod p)
$$

- Monte-Carlo Algorithm

1. Pick random prime p from $\{1,[200 m n \ln 200 m n]\}$. 2. Compute $h_{p}(P), h_{p}\left(2^{m}\right)$ and $h_{p}(T[1, \ldots, m])$.
2. Check if $\left.\left.h_{p}(P)==h_{p}(T] 1, \ldots, m\right]\right)$
3. Start rolling and check each substring equality.

- Runtime: $O(m+n)$
- Error probability: $<1 \%$

6. Amortized Analysis

6.1. Aggregate Method

- Average cost of n operations:

$$
\frac{\sum_{i=1}^{n} t(i)}{n}
$$

6.2. Accounting Method

- Basic idea: Save additional money for fast method, use the saved money for costly method

6.3. Potential Method

$$
c_{i}=t_{i}+\phi(i)-\phi(i-1)
$$

- $\quad c_{i}$: Amortised cost of i-th operation
- $\quad t_{i}$: True cost of i-th operation
- $\quad \phi$: Potential function associated with the algorithm/data structure
- $\phi(i)$: Potential at the end of i-th operation
- $c_{i}=t_{i}+\phi(i)-\phi(i-1)$

7. Dynamic Programming

7.1. Knapsack Problem

Given W, the total weight that a knapsack can hold, and a set of items $\left(w_{i}, v_{i}\right)$ where $i=1, \ldots, n$ with weight w_{i} and value v_{i}, what is the optimal strategy to get the highest value?

```
1. Initialise a table m}\mathrm{ of size }n\timesW\mathrm{ .
2. for }i=1,\ldots,n\mathrm{ do
    for j=0,\ldots,W do
        f j\geqW[i] then
            m[i,j]\leftarrow\operatorname{max}(m[i-1,j-W[i]]+v[i],m[i-1,j])
        else
            m[i,j]=m[i-1,j]
```

3. Return $m[n, W]$.

8. Greedy Algorithm

8.1. Correctness of Greedy Algorithm

Optimal Substructure

1. Suppose S is any optimal solution, and S contains item i. 2. Claim: $S-\{i\}$ is optimal for the subproblem with i removed and necessary changes made (e.g. n to $n-1$).
2. Cut \& Paste Proof: Assume instead T is the optimal solution to the subproblem, then $T+\{i\}$ would be optimal for the current problem, leading to contradiction

Greedy-Choice Property

1. Suppose i is the element that is chosen greedily (e.g. max). 2. Claim: There exists an optimal solution that contains i. 3. Proof: Suppose there is an optimal solution that does no contain i. By replacing any item in the solution with i, the solution will become more or as optimal (elaboration), leading to contradiction

Conclusion

By Greedy-Choice Property, the greedily chosen (elaboration) element is in the optimal solution. By Optimal Substructure, this can be combined with solutions to remaining
subproblems.

9. Reduction and Intractability

9.1. Reduction

- Polynomial-time Reduction: $A \leq_{P} B$ if there exists a $p(n)$ time reduction from A to B where $p(n)=O\left(n^{c}\right)$ for some constant c
- Correctness of Reduction

1. Reduction runs in polynomial time.

2. If α is a YES-instance of A, then β is a YESinstance of B.
3. If β is a YES-instance of B, then α is a YES-
instance of A

9.2. NP-Completenes

Proof of NP

A YES-instance has a certificate that can be verified in polynomial time.

Proof of NP-hard

To show that a valid polynomial time reduction exists from another NP-hard problem A

1. The reduction should run in polynomial time.
2. If the instance of the current problem X is a YES-instance, then the corresponding instance of A is also a YES-instance. 3. If the instance of A is a YES-instance, then the
corresponding instance of X is also a YES instance
9.3. Complexity Classes

Good luck!
Additional Thoughts
This module is quite with intuition.

