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CS3230 Design and Analysis of Algorithms 

AY2021/22 Semester 2 
 
1. Introduction 
 
1.1. Adversary Argument 

• There are two different cases resulting in different 
outcomes but cannot be differentiated. 

 
1.2. Minimum Step Problems 

• No. of comparisons to find largest element: ! − 1 
o Second largest element: ! − 1 + lg ! − 1 

• No. of comparisons in sorting algorithm: ! lg ! 
• No. of edges checked to tell connectivity: '!2) 

 
2. Asymptotic Analysis 
 
2.1. Asymptotic Notations 
 

Notation Definition lim!→#
$(&)
((&) 

*(!) = .(/(!)) ∃1 > 0, !! > 0	s. t.	 
∀! ≥ !!, 0 ≤ *(!) ≤ 1/(!) < ∞ 

*(!) = >(/(!)) ∀1 > 0, ∃!! > 0	s. t.	 
∀! ≥ !!, 0 ≤ *(!) < 1/(!) = 0 

*(!) = Ω(/(!)) ∃1 > 0, !! > 0	s. t. 
∀! ≥ !!, > ≤ 1/(!) ≤ *(!) > 0 

*(!) = @(/(!)) ∀1 > 0, ∃!! > 0	s. t.	 
∀! ≥ !!, 0 ≤ 1/(!) < *(!) = ∞ 

*(!) = Θ(/(!)) ∃1", 1# > 0, !! > 0	s. t. 
∀! ≥ !!, 1"/(!) ≤ *(!) ≤ 1#/(!) 

(0,∞) 

 
2.2. Useful Facts 

• ∀B, C > 0, (lg !)$ = >(!%) 
• ∀C > 0, D > 1, !% = >(D&) 
• Stirling’s Formula: !! ≈ '&')

&
√2H! 

o lg(!!) = Θ(! lg !) 
o lg lg ! + lg lg &# + lg lg

&
( +⋯+ 1 = lg(lg ! !) =

lg ! lg lg ! 
• Harmonic Series: 1 + "

#+
"
)+⋯+ "

& = Θ(lg !) 
• Decision Tree with ! variables (e.g. sorting): 

o ℎ = Ω(lg(!!)) = Ω(! lg !) 
• lim

&→+
'&,"& )

&
= "

' 
 
3. Iteration, Recursion and Divide and Conquer 
 
3.1. Correctness of Iterative Algorithm (Loop Invariant) 

• Initialisation: The invariant is true before the first 
iteration of the loop. 

• Maintenance: If the invariant is true before an iteration, 
it remains true before the next iteration. 

• Termination: When the algorithm terminates, the 
invariant provides a useful property for showing 
correctness. 

 
3.2. Correctness of Recursive Algorithm (Strong Induction) 

• Prove base cases. 
• Assuming the algorithm works for smaller cases, show 

that it works correctly. 
 
3.3. Solve a Recurrence 

• Recursion Tree: Draw the recursion tree and count 
total number of operations. 

• Master Method for M(!) = NM '&-) + ΘO*(!)P: 
 

Condition Solution 
*(!) = .(!./0$ 1,2) 

for some Q > 0 M(!) = Θ(!./0$ 1) 

*(!) = Θ(!./0$ 1 log$ !) 
for some B ≥ 0 M(!) = Θ(!./0$ 1 log$3" !) 

*(!) = Ω(!./0$ 132) 
for some Q > 0 
N* '

!
S) ≤ 1*(!) 

for some 1 < 1 

M(!) = ΩO*(!)P 

 
• Substitution Method: 

o Guess the form of the solution. 
o Verify by induction. 

 
Example: Solve M(!) = 4M '&#) + !. 
1. Guess M(!) = .(!#). Assume M(1) = U. 
2. We are to show that ∃1", 1# > 0, !! > 0	 
s. t. ∀! ≥ !!, 0 ≤ M(!) ≤ 1"!# − 1#!. 

3. Set 1" = U + 1, 1# = 1, !! = 1. 
4. Base case: M(1) = U ≤ (U + 1) − 1. 
5. Recursive case:  

M(!) = 4M '
!
2) + ! ≤ 4V1" ⋅

!#

4 − 1# ⋅
!
2X + ! 

= !# − ! = 1"!# − 1#! 
 
4. Average Case Analysis and Randomised 
Algorithms 
 
4.1. MergeSort vs QuickSort 

• MergeSort is more efficient theoretically, but QuickSort 
is preferred empirically. 

o MergeSort requires extra memory. 
o Cache misses. 

• Colin McDiarmid Theorem: Probability that the runtime 
of Randomised QuickSort exceeds average by Y% =
!,

%
&'' .4 .4&. 

 
4.2. Geometric Distribution 

• Suppose [~]^>(_), then `([) = "
5. 

 
5. Hashing 
 
5.1. Universal Hashing 

• Suppose ℋ is a set of hash functions mapping b to 
[d]. We say ℋ is universal if: 

∀Y ≠ g,
|ℎ ∈ ℋ ∶ ℎ(Y) = ℎ(g)|

|ℋ| ≤
1
d 

That is, if we choose ℎ randomly from ℋ, then for any 
Y ≠ g, the probability of them having the same hash 
value is smaller than or equal to "6. 

• Indicator Variable: [ = {10
, if	event	p	occurs																
, if	event	p	does	not	occur 

o For ! elements, the expected number of 
collisions between any pair of them is: 

≤ '!2) ⋅
1
d 

5.2. Karp-Rabin Algorithm 
• Faster string equality: 

Total runtime for pattern matching 
= |ℎNuℎ7| + (! − v + 1)OℎNuℎ8 + .(1)P 

 
• Rolling hash – Division Hash: 

 
1. Choose _ to be a random prime number in the       
range {1, … , x}. 
2. Define, for any integer Y, ℎ5(Y) = Y	mod	_. 

 
o Useful fact: Number of prime numbers in 

{1, … , x} > x/ lnx. 
o Hence, if 0 ≤ Y < g < 2-, then  

PrOℎ5(Y) == ℎ5(g)P <
S lnx
x  

o Set x = 200v! ln(200v!). Then the 
probability of getting a false positive is <
1%. 

o Roll from M[1, … ,v] to M[2, … ,v + 1]: 
ℎ5([9) = 'ℎ5([) − M[1] ⋅ ℎ5(2:,")) ⋅ 2

+ M[v + 1]	(mod	_) 
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• Monte-Carlo Algorithm 
 

1. Pick random prime _ from {1, ⌈200v! ln 200v!⌉}. 
2. Compute ℎ5(~), ℎ5(2:) and ℎ5(M[1, … ,v]). 
3. Check if ℎ5(~) == ℎ5(M]1, … ,v]). 
4. Start rolling and check each substring equality. 

 
o Runtime: .(v + !) 
o Error probability: < 1% 

 
6. Amortized Analysis 
 
6.1. Aggregate Method 

• Average cost of ! operations: 
 

∑ Ä(Å)&
;<"
!  

 
6.2. Accounting Method 

• Basic idea: Save additional money for fast method, 
use the saved money for costly method. 

 
6.3. Potential Method 

1; = Ä; + Ç(Å) − Ç(Å − 1) 
• 1;: Amortised cost of Å-th operation 
• Ä;: True cost of Å-th operation 
• Ç: Potential function associated with the 

algorithm/data structure 
• Ç(Å): Potential at the end of Å-th operation 
• 1; = Ä; + Ç(Å) − Ç(Å − 1) 

 
7. Dynamic Programming 
 
7.1. Knapsack Problem 
Given É, the total weight that a knapsack can hold, and a set of 
items (Ñ; , Ö;) where Å = 1, … , ! with weight Ñ; and value Ö;, what 
is the optimal strategy to get the highest value? 
 

1. Initialise a table v of size ! ×É. 
2. for Å = 1, … , ! do 
        for á = 0, … ,É do 
            if á ≥ É[Å] then 
                v[Å, á] ← max(vãÅ − 1, á − É[Å]å + Ö[Å], v[Å − 1, á]) 
            else 
                v[Å, á] = v[Å − 1, á] 
3. Return v[!,É]. 

 

 

8. Greedy Algorithm 
 
8.1. Correctness of Greedy Algorithm 
 

Optimal Substructure 
 
1. Suppose ç is any optimal solution, and ç contains item Å. 
2. Claim: ç − {Å} is optimal for the subproblem with Å removed 
and necessary changes made (e.g. ! to ! − 1). 
3. Cut & Paste Proof: Assume instead M is the optimal 
solution to the subproblem, then M + {Å} would be optimal for 
the current problem, leading to contradiction. 
 
Greedy-Choice Property 
 
1. Suppose Å is the element that is chosen greedily (e.g. max). 
2. Claim: There exists an optimal solution that contains Å. 
3. Proof: Suppose there is an optimal solution that does not 
contain Å. By replacing any item in the solution with Å, the 
solution will become more or as optimal (elaboration), leading 
to contradiction. 
 
Conclusion 
 
By Greedy-Choice Property, the greedily chosen (elaboration) 
element is in the optimal solution. By Optimal Substructure, 
this can be combined with solutions to remaining 
subproblems. 

  
 
9. Reduction and Intractability 
 
9.1. Reduction 

• Polynomial-time Reduction: p ≤7 é if there exists a 
_(!) time reduction from p to é where _(!) = .(!=) 
for some constant 1. 

• Correctness of Reduction 
 

1. Reduction runs in polynomial time. 
2. If è is a YES-instance of p, then ê is a YES-
instance of é. 
3. If ê is a YES-instance of é, then è is a YES-
instance of p. 

 

 
 

9.2. NP-Completeness 
 

Proof of NP 
 
A YES-instance has a certificate that can be verified in 
polynomial time. 
 
Proof of NP-hard 
 
To show that a valid polynomial time reduction exists from 
another NP-hard problem p. 
1. The reduction should run in polynomial time. 
2. If the instance of the current problem [ is a YES-instance, 
then the corresponding instance of p is also a YES-instance. 
3. If the instance of p is a YES-instance, then the 
corresponding instance of [ is also a YES instance. 

 
9.3. Complexity Classes 

 
 

Good luck! 
 

Additional Thoughts 
 
This module is quite easy with intuition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


