
Cheatsheet Produced by Tian Xiao

CS3230 Design and Analysis of Algorithms

AY2021/22 Semester 2

1. Introduction

1.1. Adversary Argument

• There are two different cases resulting in different
outcomes but cannot be differentiated.

1.2. Minimum Step Problems

• No. of comparisons to find largest element: 𝑛 − 1
o Second largest element: 𝑛 − 1 + lg 𝑛 − 1

• No. of comparisons in sorting algorithm: 𝑛 lg 𝑛
• No. of edges checked to tell connectivity: '𝑛2)

2. Asymptotic Analysis

2.1. Asymptotic Notations

Notation Definition lim
!→#

𝑓(𝑛)
𝑔(𝑛)

𝑓(𝑛) = 𝑂(𝑔(𝑛)) ∃𝑐 > 0, 𝑛! > 0	s. t.	
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) < ∞

𝑓(𝑛) = 𝑜(𝑔(𝑛)) ∀𝑐 > 0, ∃𝑛! > 0	s. t.	
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛) = 0

𝑓(𝑛) = Ω(𝑔(𝑛)) ∃𝑐 > 0, 𝑛! > 0	s. t.
∀𝑛 ≥ 𝑛!, 𝑜 ≤ 𝑐𝑔(𝑛) ≤ 𝑓(𝑛) > 0

𝑓(𝑛) = 𝜔(𝑔(𝑛)) ∀𝑐 > 0, ∃𝑛! > 0	s. t.	
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑐𝑔(𝑛) < 𝑓(𝑛) = ∞

𝑓(𝑛) = Θ(𝑔(𝑛)) ∃𝑐", 𝑐# > 0, 𝑛! > 0	s. t.
∀𝑛 ≥ 𝑛!, 𝑐"𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐#𝑔(𝑛)

(0,∞)

2.2. Useful Facts

• ∀𝑘, 𝑑 > 0, (lg 𝑛)$ = 𝑜(𝑛%)
• ∀𝑑 > 0, 𝑢 > 1, 𝑛% = 𝑜(𝑢&)
• Stirling’s Formula: 𝑛! ≈ '&

'
)
&
√2𝜋𝑛

o lg(𝑛!) = Θ(𝑛 lg 𝑛)
o lg lg 𝑛 + lg lg &

#
+ lg lg &

(
+⋯+ 1 = lg(lg 𝑛 !) =

lg 𝑛 lg lg 𝑛
• Harmonic Series: 1 + "

#
+ "

)
+⋯+ "

&
= Θ(lg 𝑛)

• Decision Tree with 𝑛 variables (e.g. sorting):
o ℎ = Ω(lg(𝑛!)) = Ω(𝑛 lg 𝑛)

• lim
&→+

'&,"
&
)
&
= "

'

3. Iteration, Recursion and Divide and Conquer

3.1. Correctness of Iterative Algorithm (Loop Invariant)

• Initialisation: The invariant is true before the first
iteration of the loop.

• Maintenance: If the invariant is true before an iteration,
it remains true before the next iteration.

• Termination: When the algorithm terminates, the
invariant provides a useful property for showing
correctness.

3.2. Correctness of Recursive Algorithm (Strong Induction)

• Prove base cases.
• Assuming the algorithm works for smaller cases, show

that it works correctly.

3.3. Solve a Recurrence

• Recursion Tree: Draw the recursion tree and count
total number of operations.

• Master Method for 𝑇(𝑛) = 𝑎𝑇 '&
-
) + ΘO𝑓(𝑛)P:

Condition Solution
𝑓(𝑛) = 𝑂(𝑛./0$ 1,2)

for some 𝜖 > 0 𝑇(𝑛) = Θ(𝑛./0$ 1)

𝑓(𝑛) = Θ(𝑛./0$ 1 log$ 𝑛)
for some 𝑘 ≥ 0 𝑇(𝑛) = Θ(𝑛./0$ 1 log$3" 𝑛)

𝑓(𝑛) = Ω(𝑛./0$ 132)
for some 𝜖 > 0
𝑎𝑓 '

𝑛
𝑏) ≤ 𝑐𝑓(𝑛)

for some 𝑐 < 1

𝑇(𝑛) = ΩO𝑓(𝑛)P

• Substitution Method:
o Guess the form of the solution.
o Verify by induction.

Example: Solve 𝑇(𝑛) = 4𝑇 '&
#
) + 𝑛.

1. Guess 𝑇(𝑛) = 𝑂(𝑛#). Assume 𝑇(1) = 𝑞.
2. We are to show that ∃𝑐", 𝑐# > 0, 𝑛! > 0	
s. t. ∀𝑛 ≥ 𝑛!, 0 ≤ 𝑇(𝑛) ≤ 𝑐"𝑛# − 𝑐#𝑛.

3. Set 𝑐" = 𝑞 + 1, 𝑐# = 1, 𝑛! = 1.
4. Base case: 𝑇(1) = 𝑞 ≤ (𝑞 + 1) − 1.
5. Recursive case:

𝑇(𝑛) = 4𝑇 '
𝑛
2) + 𝑛 ≤ 4V𝑐" ⋅

𝑛#

4 − 𝑐# ⋅
𝑛
2X + 𝑛

= 𝑛# − 𝑛 = 𝑐"𝑛# − 𝑐#𝑛

4. Average Case Analysis and Randomised
Algorithms

4.1. MergeSort vs QuickSort

• MergeSort is more efficient theoretically, but QuickSort
is preferred empirically.

o MergeSort requires extra memory.
o Cache misses.

• Colin McDiarmid Theorem: Probability that the runtime
of Randomised QuickSort exceeds average by 𝑥% =
𝑛,

%
&'' .4 .4&.

4.2. Geometric Distribution

• Suppose 𝑋~𝐺𝑒𝑜(𝑝), then 𝐸(𝑋) = "
5
.

5. Hashing

5.1. Universal Hashing

• Suppose ℋ is a set of hash functions mapping 𝑈 to
[𝑀]. We say ℋ is universal if:

∀𝑥 ≠ 𝑦,
|ℎ ∈ ℋ ∶ ℎ(𝑥) = ℎ(𝑦)|

|ℋ| ≤
1
𝑀

That is, if we choose ℎ randomly from ℋ, then for any
𝑥 ≠ 𝑦, the probability of them having the same hash
value is smaller than or equal to "

6
.

• Indicator Variable: 𝑋 = {10
, if	event	𝐴	occurs																
, if	event	𝐴	does	not	occur

o For 𝑛 elements, the expected number of
collisions between any pair of them is:

≤ '𝑛2) ⋅
1
𝑀

5.2. Karp-Rabin Algorithm
• Faster string equality:

Total runtime for pattern matching
= |ℎ𝑎𝑠ℎ7| + (𝑛 − 𝑚 + 1)Oℎ𝑎𝑠ℎ8 + 𝑂(1)P

• Rolling hash – Division Hash:

1. Choose 𝑝 to be a random prime number in the
range {1, … , 𝐾}.
2. Define, for any integer 𝑥, ℎ5(𝑥) = 𝑥	mod	𝑝.

o Useful fact: Number of prime numbers in
{1, … , 𝐾} > 𝐾/ ln𝐾.

o Hence, if 0 ≤ 𝑥 < 𝑦 < 2-, then

PrOℎ5(𝑥) == ℎ5(𝑦)P <
𝑏 ln𝐾
𝐾

o Set 𝐾 = 200𝑚𝑛 ln(200𝑚𝑛). Then the
probability of getting a false positive is <
1%.

o Roll from 𝑇[1, … ,𝑚] to 𝑇[2, … ,𝑚 + 1]:
ℎ5(𝑋9) = 'ℎ5(𝑋) − 𝑇[1] ⋅ ℎ5(2:,")) ⋅ 2

+ 𝑇[𝑚 + 1]	(mod	𝑝)
• Monte-Carlo Algorithm

1. Pick random prime 𝑝 from {1, ⌈200𝑚𝑛 ln 200𝑚𝑛⌉}.
2. Compute ℎ5(𝑃), ℎ5(2:) and ℎ5(𝑇[1, … ,𝑚]).
3. Check if ℎ5(𝑃) == ℎ5(𝑇]1, … ,𝑚]).
4. Start rolling and check each substring equality.

o Runtime: 𝑂(𝑚 + 𝑛)
o Error probability: < 1%

