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1. Introduction 
 
1.1. Adversary Argument 

• There are two different cases resulting in different 
outcomes but cannot be differentiated. 

 
1.2. Minimum Step Problems 

• No. of comparisons to find largest element: 𝑛 − 1 
o Second largest element: 𝑛 − 1 + lg 𝑛 − 1 

• No. of comparisons in sorting algorithm: 𝑛 lg 𝑛 
• No. of edges checked to tell connectivity: '𝑛2) 

 
2. Asymptotic Analysis 
 
2.1. Asymptotic Notations 
 

Notation Definition lim
!→#

𝑓(𝑛)
𝑔(𝑛) 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) ∃𝑐 > 0, 𝑛! > 0	s. t.	 
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) < ∞ 

𝑓(𝑛) = 𝑜(𝑔(𝑛)) ∀𝑐 > 0, ∃𝑛! > 0	s. t.	 
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑓(𝑛) < 𝑐𝑔(𝑛) = 0 

𝑓(𝑛) = Ω(𝑔(𝑛)) ∃𝑐 > 0, 𝑛! > 0	s. t. 
∀𝑛 ≥ 𝑛!, 𝑜 ≤ 𝑐𝑔(𝑛) ≤ 𝑓(𝑛) > 0 

𝑓(𝑛) = 𝜔(𝑔(𝑛)) ∀𝑐 > 0, ∃𝑛! > 0	s. t.	 
∀𝑛 ≥ 𝑛!, 0 ≤ 𝑐𝑔(𝑛) < 𝑓(𝑛) = ∞ 

𝑓(𝑛) = Θ(𝑔(𝑛)) ∃𝑐", 𝑐# > 0, 𝑛! > 0	s. t. 
∀𝑛 ≥ 𝑛!, 𝑐"𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐#𝑔(𝑛) 

(0,∞) 

 
2.2. Useful Facts 

• ∀𝑘, 𝑑 > 0, (lg 𝑛)$ = 𝑜(𝑛%) 
• ∀𝑑 > 0, 𝑢 > 1, 𝑛% = 𝑜(𝑢&) 
• Stirling’s Formula: 𝑛! ≈ '&

'
)
&
√2𝜋𝑛 

o lg(𝑛!) = Θ(𝑛 lg 𝑛) 
o lg lg 𝑛 + lg lg &

#
+ lg lg &

(
+⋯+ 1 = lg(lg 𝑛 !) =

lg 𝑛 lg lg 𝑛 
• Harmonic Series: 1 + "

#
+ "

)
+⋯+ "

&
= Θ(lg 𝑛) 

• Decision Tree with 𝑛 variables (e.g. sorting): 
o ℎ = Ω(lg(𝑛!)) = Ω(𝑛 lg 𝑛) 

• lim
&→+

'&,"
&
)
&
= "

'
 

 
3. Iteration, Recursion and Divide and Conquer 
 
3.1. Correctness of Iterative Algorithm (Loop Invariant) 

• Initialisation: The invariant is true before the first 
iteration of the loop. 

• Maintenance: If the invariant is true before an iteration, 
it remains true before the next iteration. 

• Termination: When the algorithm terminates, the 
invariant provides a useful property for showing 
correctness. 

 
3.2. Correctness of Recursive Algorithm (Strong Induction) 

• Prove base cases. 
• Assuming the algorithm works for smaller cases, show 

that it works correctly. 
 
3.3. Solve a Recurrence 

• Recursion Tree: Draw the recursion tree and count 
total number of operations. 

• Master Method for 𝑇(𝑛) = 𝑎𝑇 '&
-
) + ΘO𝑓(𝑛)P: 

Condition Solution 
𝑓(𝑛) = 𝑂(𝑛./0$ 1,2) 

for some 𝜖 > 0 𝑇(𝑛) = Θ(𝑛./0$ 1) 

𝑓(𝑛) = Θ(𝑛./0$ 1 log$ 𝑛) 
for some 𝑘 ≥ 0 𝑇(𝑛) = Θ(𝑛./0$ 1 log$3" 𝑛) 

𝑓(𝑛) = Ω(𝑛./0$ 132) 
for some 𝜖 > 0 
𝑎𝑓 '

𝑛
𝑏) ≤ 𝑐𝑓(𝑛) 

for some 𝑐 < 1 

𝑇(𝑛) = ΩO𝑓(𝑛)P 

• Substitution Method: 
o Guess the form of the solution. 
o Verify by induction. 

Example: Solve 𝑇(𝑛) = 4𝑇 '&
#
) + 𝑛. 

1. Guess 𝑇(𝑛) = 𝑂(𝑛#). Assume 𝑇(1) = 𝑞. 
2. We are to show that ∃𝑐", 𝑐# > 0, 𝑛! > 0	 
s. t. ∀𝑛 ≥ 𝑛!, 0 ≤ 𝑇(𝑛) ≤ 𝑐"𝑛# − 𝑐#𝑛. 

3. Set 𝑐" = 𝑞 + 1, 𝑐# = 1, 𝑛! = 1. 
4. Base case: 𝑇(1) = 𝑞 ≤ (𝑞 + 1) − 1. 
5. Recursive case:  

𝑇(𝑛) = 4𝑇 '
𝑛
2) + 𝑛 ≤ 4V𝑐" ⋅

𝑛#

4 − 𝑐# ⋅
𝑛
2X + 𝑛 

= 𝑛# − 𝑛 = 𝑐"𝑛# − 𝑐#𝑛 
 
4. Average Case Analysis and Randomised 
Algorithms 
 
4.1. MergeSort vs QuickSort 

• MergeSort is more efficient theoretically, but QuickSort 
is preferred empirically. 

o MergeSort requires extra memory. 
o Cache misses. 

• Colin McDiarmid Theorem: Probability that the runtime 
of Randomised QuickSort exceeds average by 𝑥% =
𝑛,

%
&'' .4 .4&. 

 
4.2. Geometric Distribution 

• Suppose 𝑋~𝐺𝑒𝑜(𝑝), then 𝐸(𝑋) = "
5
. 

 
5. Hashing 
 
5.1. Universal Hashing 

• Suppose ℋ is a set of hash functions mapping 𝑈 to 
[𝑀]. We say ℋ is universal if: 

∀𝑥 ≠ 𝑦,
|ℎ ∈ ℋ ∶ ℎ(𝑥) = ℎ(𝑦)|

|ℋ| ≤
1
𝑀 

That is, if we choose ℎ randomly from ℋ, then for any 
𝑥 ≠ 𝑦, the probability of them having the same hash 
value is smaller than or equal to "

6
. 

• Indicator Variable: 𝑋 = {10
, if	event	𝐴	occurs																
, if	event	𝐴	does	not	occur 

o For 𝑛 elements, the expected number of 
collisions between any pair of them is: 

≤ '𝑛2) ⋅
1
𝑀 

5.2. Karp-Rabin Algorithm 
• Faster string equality: 

Total runtime for pattern matching 
= |ℎ𝑎𝑠ℎ7| + (𝑛 − 𝑚 + 1)Oℎ𝑎𝑠ℎ8 + 𝑂(1)P 

 
• Rolling hash – Division Hash: 

1. Choose 𝑝 to be a random prime number in the       
range {1, … , 𝐾}. 
2. Define, for any integer 𝑥, ℎ5(𝑥) = 𝑥	mod	𝑝. 

o Useful fact: Number of prime numbers in 
{1, … , 𝐾} > 𝐾/ ln𝐾. 

o Hence, if 0 ≤ 𝑥 < 𝑦 < 2-, then  

PrOℎ5(𝑥) == ℎ5(𝑦)P <
𝑏 ln𝐾
𝐾  

o Set 𝐾 = 200𝑚𝑛 ln(200𝑚𝑛). Then the 
probability of getting a false positive is <
1%. 

o Roll from 𝑇[1, … ,𝑚] to 𝑇[2, … ,𝑚 + 1]: 
ℎ5(𝑋9) = 'ℎ5(𝑋) − 𝑇[1] ⋅ ℎ5(2:,")) ⋅ 2

+ 𝑇[𝑚 + 1]	(mod	𝑝) 
• Monte-Carlo Algorithm 

1. Pick random prime 𝑝 from {1, ⌈200𝑚𝑛 ln 200𝑚𝑛⌉}. 
2. Compute ℎ5(𝑃), ℎ5(2:) and ℎ5(𝑇[1, … ,𝑚]). 
3. Check if ℎ5(𝑃) == ℎ5(𝑇]1, … ,𝑚]). 
4. Start rolling and check each substring equality. 

o Runtime: 𝑂(𝑚 + 𝑛) 
o Error probability: < 1% 


