Cheatsheet

CS3230 Design and Analysis of Algorithms

AY2021/22 Semester 2

1. Introduction

1.1. Adversary Argument
e There are two different cases resulting in different
outcomes but cannot be differentiated.

1.2. Minimum Step Problems
. No. of comparisons to find largest element: n — 1
o Second largestelement: n —1+1gn—1
. No. of comparisons in sorting algorithm: nlgn

. No. of edges checked to tell connectivity: (;l)

2. Asymptotic Analysis

2.1. Asymptotic Notations

Notation Definition ,{L’E}c%
f() =0(g(n) vn za 2: 00;13’51;); zg) =
fmy=otgm) |y, 2 T ~°
F=a@m) |, Je 20 S >°
fm=o@m) |, L e —”
FO =060 | s 0y) < gy | O

2.2. Useful Facts
e Vkd>0(Ign)*=0n
. vd > 0,u > 1,n% = o(u™)
n

. Stirling’s Formula: n! = (g) 2mn

o lg(n!)=06(nlgn)

o lglgn+lglgg+lglg%+--v+1:lg(lgn!):

Ignlglgn

. Harmonic Series: 1 +§+§+ ~--+%= o(lgn)
. Decision Tree with n variables (e.g. sorting):

o h=0Q(gn)) =Q(nlgn)

_\n

. lim (”_1) _1

n-ooo \ N e

3. Iteration, Recursion and Divide and Conquer

3.1. Correctness of lterative Algorithm (Loop Invariant)

. Initialisation: The invariant is true before the first
iteration of the loop.

. Maintenance: If the invariant is true before an iteration,
it remains true before the next iteration.

e Termination: When the algorithm terminates, the
invariant provides a useful property for showing
correctness.

3.2. Correctness of Recursive Algorithm (Strong Induction)
. Prove base cases.
e Assuming the algorithm works for smaller cases, show
that it works correctly.

3.3. Solve a Recurrence
. Recursion Tree: Draw the recursion tree and count
total number of operations.

e Master Method for T(n) = aT (g) +0(f(m):

Condition Solution

f(n) = 0(ne <)

= logp a
for some e >0 T(n) =6(n)

f(n) = 0(n'°8 ¢ logk n)

— logpa k+1
forsome k >0 T(n) = 6(n log™"n)

) = (e ere)
for some e >0
n
af () < efm)

forsomec <1

T(n) = a(f())

. Substitution Method:
o Guess the form of the solution.
o Verify by induction.

Example: Solve T(n) = 4T (g) +n.
1. Guess T(n) = 0(n?). Assume T(1) = q.
2. We are to show that 3c,,¢c, > 0,ny > 0

s.t.Vn =ny,0 < T(n) < ¢;n? — c,n.
3.Setc;=q+1,c,=1,n,=1.
4.Basecase:T(1)=q<(qg+1)—1.
5. Recursive case:

n n? n

T(n) :4T(E)+ns4(cl-z—cz~z>+n

=n’—-n=cn?®—cn

4. Average Case Analysis and Randomised
Algorithms

4.1. MergeSort vs QuickSort
. MergeSort is more efficient theoretically, but QuickSort
is preferred empirically.
o MergeSort requires extra memory.
o Cache misses.
. Colin McDiarmid Theorem: Probability that the runtime
of Randomised QuickSort exceeds average by x% =
n 100

Inlnn

Produced by Tian Xiao

4.2. Geometric Distribution
e Suppose X~Geo(p), then E(X) =

1
>

5. Hashing

5.1. Universal Hashing

. Suppose H is a set of hash functions mapping U to

[M]. We say H is universal if:
|lh e H : h(x) = h(y)| < 1
|| M

That is, if we choose h randomly from X, then for any
x # y, the probability of them having the same hash
value is smaller than or equal to i

Vx £y,

1,if event A occurs

0, if event A does not occur

o For n elements, the expected number of
collisions between any pair of them is:

<(3) %

. Indicator Variable: X = {

5.2. Karp-Rabin Algorithm
. Faster string equality:
Total runtime for pattern matching
= |hashp| + (n —m + 1)(hashX + 0(1))

n

AL
r N

| [x | |
E hash(X) == hash(P)?

[—
m

. Rolling hash — Division Hash:
1. Choose p to be a random prime number in the
range {1, ..., K}.
2. Define, for any integer x, h,,(x) = x mod p.

o Useful fact: Number of prime numbers in

{1,..,K} > K/InK.
o Hence,if0 <x <y< 2P, then
blnK

Pr(h,(x) == h,(¥)) < &
o Set K = 200mnIn(200mn). Then the
probability of getting a false positive is <
1%.
o RollfromT[1,.., m]toT[2,.., m+1]:
hy(X) = (hy(X) = T[1] - By (27 D)) - 2
+ T[m + 1] (mod p)

. Monte-Carlo Algorithm
1. Pick random prime p from {1, [200mn In 200mn]}.
2. Compute h,(P), h,(2™) and h,(T[1, ..., m]).
3. Check if h,(P) == h,(T]1, ..., m]).
4. Start rolling and check each substring equality.
o Runtime: 0(m +n)
o Error probability: < 1%

