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1 Information Measures

Information of an Event: If event A occurs with probability p, then
we have

Info(A) = ¥(p) = log, i

e When b = 2, information is measured in bits.
e Axiomatization of ¥ (p):
> Non-Negativity: ¢(p) > 0;
Zero for Definite Events: (1) = 1;
Monotonicity: p < p’ = ¥(p) > ¥(p');
Continuity: ¢(p) is continuous in p;
Additivity under Independence: 1 (pip2) = ¥(p1) + ¥ (p2).
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Shannon Entropy: Let X be a discrete random variable with probability
mass function Px. The Shannon entropy of X is the average information

we learn from observing X = z (note: 0log, % =0):

H(X) =Ex~py (X =2)] =) Px()log, f(r)'

e Joint entropy:
H(X,Y) =Ex y)~p(x,y) WX =2Y =y)]

1
= Pxy(z,y)logy 5———.
o Pxy(z,y)
e Conditional entropy:

H(Y|X) =Ex vy~r(x,y) (Y =yl X = z)]

= Pxy(z,y)log,
@y

=Y Px(@)H(Y|X ==2).
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e Entropy measures information or uncertainty in X.
> Binary source: H(X) = Ha(p) = plog, % + (1 —p)log, ﬁ;
> Uniform source: H(X) = log, |X|.

e Axiomatization of U(p): Suppose that X is a discrete random vari-
able taking N values with probabilities p = {p1,--- ,pn}. Consider
an information measure ¥(p) = ¥(p1,- - ,pn):

> Continuity: ¥(p) is continuous as a function of p;
> Uniform Case: If Vi [p' = %], then ¥(p) is increasing in N;
> Successive Decisions:
¥(p1, -+ ,pn) =¥ (p1+p2,p3, -
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e Properties of entropy:
> Non-Negativity: H(X) > 0;
> Upper Bound: H(X) < log, |X|;
> Chain Rule (2 var): H(X,Y) = H(X)+ H(Y|X);
> Chain Rule (n var):

n

H(X1,-+,Xp)=> H(Xi|X1,"-+, Xi1);

i=1

> Conditioning Reduces Entropy: H(X|Y) < H(X) with equal-
ity if and only if X and Y are independent;

LX) < _g H(X,).

> Sub-Additivity: H(Xq, -

KL Divergence:

DIPIQ) = Exw [lom g3 | = 3 Pla)logs oo

e D(P||Q) > 0 with equality if and only if P = Q.

Mutual Information: Information between random variables:
I(X;Y)=H(Y)—- HY|X).

e Terminologies:

> H(Y): Prior uncertainty in Y;

> H(Y|X): Remaining uncertainty in Y after observing X;

> I(X;Y): Information we learn about Y after observing X.
e Joint mutual information:

I(X1, X2; Y1, Ye) = H(Y1.Y2) — H(Y1, Y2| X1, X2).
e Conditional mutual information:
I(X;Y|2) = H(Y|Z) — H(Y|X, 2).

e Properties of mutual information:

> Alternative Forms:
I(X;Y) = D(Pxy||P(X) x P(Y))
Pxvy (z,y)
Px (z) Py (y)

P
=Y Pxy(z,y)log, M;
oy y ()
> Symmetry: [(X;Y)=I(YV;X)=H(X)+ H(Y)—- H(X,Y);
> Non-Negativity: I(X;Y’) > 0 with equality if and only if X and
Y are independent;
> Upper Bounds: I(X;Y) < H(X); I(X;Y) < H(Y).

n
> Chain Rule: I(X1, -, Xn|Y) = > I(X;;Y|X1, -

= Z Pxy (@,y)log,
z,y

, Xi1);

i=

> Data Processing Inequality: If X and Z are conditionally in-
dependent given Y, then I(X;Z) < I(X;Y);

> Partial Sub-Additivity: If Yi,---,Y), are conditionally inde-
pendent given X1, -, X,, and Y; depends on X1, -, X, only
through X;, then

n
I(X1, o Xns V1,00, Vo) < D I(X5 V).
=1

2 Symbol-Wise Source Coding

Symbol-Wise Coding: Symbol-wise source coding maps each z € X to
some binary sequence C(x). The length of this sequence is denoted by
£(z). The average length of a code C(-) is given by

L(C) = Y Px(a)(x).
rzeX

e Non-Singular: z # 2’ = C(z) # C(2');

e Uniquely Decodable: A code C(-) is said to be uniquely decodable if
no two sequences of symbols in X" are coded to the same concatenated
binary sequence;

e Prefix-Free: A code C(-) is said to be prefix-free if no codeword is
a prefix of any other.

Kraft’s Inequality: Any prefix-free code C(-) that maps each z € X to
a codeword of length £(z) must satisfy

> 27t <,

reX

e Existence: If a set of integers {£(z)}zex satisfies > 274 < 1,
rzeX
then it is possible to construct a prefix-free code that maps each
z € X to a codeword of length ¢(z).

Entropy Bound: For X ~ Px and any prefix-free code C(-), the ex-
pected length satisfies
L(C) > H(X),

with equality if and only if Px (z) = 274 for all z € X.
Shannon-Fano Code: /(z) = {10g2 %-‘

e HX)<L(C)< HX)+1.
e If the true distribution is Px but the lengths are chosen according to
Qx, then the Shannon-Fano code satisfies

H(X)+ D(Px||Qx) < L(C) < H(X) + D(Px||Qx) + 1.
Huffman Code: Construct a tree as follows:

1. List the symbols of X from highest probability to lowest.

2. Draw a branch connecting the two symbols with the lowest probabil-
ity, and label the merged point with the sum of the two associated
probabilities.

3. Repeat the first two steps until everything has merged to a single
point with total probability 1.

e No uniquely decodable symbol code can achieve a smaller average
length L(C') than the Huffman code.
e H(X)<L(C) < H(X)+ 1.

3 Block Source Coding

Problem Description:

e Source: X = (X1, X2, -+, Xn).
> Discrete: The alphabet X is finite.

n
> Memoryless: Px(x) = [] Px(z;) (i.id.).
i=1
Encoder: Received source X — message m = f(X) € {1,---
Decoder: Message m — estimate X = g(m).
Error probability: P. = P[X # X].
Rate: Number of bits per source symbol: R = % logy M.

M}



Fix-Length Source Coding Theorem:

e Achievability: If R > H(X), then for any € > 0, there exists a
sufficiently large block length n and a source code (i.e. encoder and
decoder) of rate R such that P. < e.

e Converse: If R < H(X), then there exists € > 0 such that every code
of rate R has P. < ¢, regardless of the code length.

Typical Set:

Trle) = {x € xn 2 M HX)HO) < py(x) < 27n(H(X)7e)}'
e Equivalent definition:

H(X

= < H(X) +e

:M—‘

e Properties:

> High Probability: P[X € T,(e)] = 1 as n — oo.

> Cardinality Upper Bound: |7y (e)| < 27(H(X)+e),

> Cardinality Lower Bound: [Tn(e)] > (1 — o(1))2n(H(X)—e)
where o(1) represents a term that vanishes as n — oo.

> Asymptotic Equipartition: With High Probability, a ran-
domly drawn i.i.d. sequence X will be one of roughly 27H(X)
sequences, each of which has probability roughly 27 (X),

Fano’s Inequality: H(X|X) < Ha(P.) 4+ P.logy(|X]| —1).

4 Channel Coding

Problem Description:

e Channel: The medium over which we transit information.
> Discrete: X and Y are finite.
> Memoryless: Outputs are conditionally independent, i.e.

Pyx (ylx) = HPY\X(yzh:z)
e Encoder: Message m — codeword x(m> = (argm), e ,xﬁl’”)
> Codebook C: Collection of codewords {x(l), o x(M) }

e Decoder: Received codeword y = (y1, - -

e Error probability: Pe = P[rh # m].

e Rate: Number of bits per channel use (R =
> M = 2"k,

,Yn) — estimate m.

% logy M).

Channel Capacity: The channel capacity C is defined to be the max-
imum of all rates R such that for any target error probability ¢ > 0,
there exists a block length n and codebook C = {x(l), s 7x(M>} with
M = 2" codewords such that P, < e.

e Channel Coding Theorem The capacity of a discrete memoryless
channel Py |x is

C=maxI(X;Y).
Px

> Achievability: For any R < C, there exists a code of rate

at least R with arbitrarily small error probability (via random
coding).

> Converse: For any R > C, any code of rate at least R cannot

have arbitrarily small error probability (via Fano’s Inequality).

e Capacity achieving input distribution: Any input distribution Px

maximizing the mutual information above for a given channel Py |x.

Jointly Typical Set:
27n(H(X)+e) < PX(X) <2-

27n(H(Y)+e) < PY(y) <2~
27"(H(X1Y)+5) < Px Y(x, y) < 2771(H(X,Y>7e>

n(H(X)—e)

Tn(e) = q (%, y) : HHOD =)

e High Probability: P[(X,Y) € Tn(e)] = 1 as n — oo.
e Cardinality Upper Bound: |7y, (e)| < 2n(H(X,Y)+e),
o If (X', Y') ~ Px(x')Py(y’) are independent copies of (X,Y), then
the probability of joint typicality is
P[(X,Y) € Tu(e)) < 27 (X739,
5 Continuous Alphabet Channels

Differential Entropy: For a continuous random varlable X,

R(X) =Ey, {logQ } /fx )log2 ()

X, Y)=Efyy {logQ

e Conditional entropy:

h(Y|X) = Ejyy [logz . X(ym} / Fx@h(Y]X = 2) da.

e Joint entropy:

P

e Properties of differential entropy:

> Chain Rule: (X1, -+ ,Xn) = Z h(X;| X1, , Xi—1).

> Conditioning Reduces Entropy h(X|Y) < h(X).
Xa) € 35 (X)),
i=1
> h(X) = h(X + ¢) for any constant c.
> Non-Negativity and Invariance Under 1-1 Transformation
no longer holds.
e Examples:
> Uniform source X ~ Uniform(a,b): h(X
> Gaussian source X ~ N(u,02): h(X) =

> Sub-Addivity: h(Xq,---

) = logy(b — a).
% log, (2mea?).

z) log, H2) qq.

KL Divergence: D(f|lg) = [; f( g(z)

Mutual Information:
I(X;Y) = D(fxvllfx X fy) =

= h(Y) -

Ifxy (z,y)
Efyy |logo 7][

x (2)fy ()

h(Y|X) = h(X) — h(X]Y)

e All key properties still hold, including Non-Negativity.
e For invertible functions ¢ and ¢, I(X;Y) = I(¢(X); ¥ (Y)).

Gaussian Random Variables: X ~ N(u,0?).

e Maximum Entropy Property: For any random variable X with p.d.f.
fx and variance Var[X], h(X) < %logz(QﬂeVar[X}).

Gaussian Channel:

e Channel capacity: C(P) = max I(

fxEpy [X2]<P
> P is the power constraint.
> For the Additive White Gaussian Noise (AWGN) channel with
power constraint P and noise variance o2, the channel capacity
is

X;Y).

1 P
C(P) = 510g2 (1 + ;) .

6 Practical Channel Codes

Linear Code: Any code with parity checks is a linear code.

e Types of linear code u — x:
> Systematic parity-check code: The first k out of n bits of x are
always precisely the original k bits, and the remaining n — k bits
are parity checks.
> General parity-check code:
trarily parity checks.
e Generator matrix: x = uG, G is the generator matrix.
e Linearity: x @ x’ = (u+u')G.
e Parity-check matrix: xH = 0 &< x is valid.

All n codeword bits may be arbi-

> For systematic codes, G = [I, P] = H= {I P k:| .
e

Distance Properties:

e Hamming distance: The Hamming distance between two vectors x
and x’ is the number of positions in which they differ:

n
dy(x,x) = ZH[% # ).
i=1
e Minimum distance: The minimum distance of a codebook C of length-
n codewords is
d min
x#x'ecC

min= dpr (x,x’).

> If minimum distance is dmin, then it is possible to correct up to

dmin —1 1.:1 a:
dmin —1 erasures and w bit flips.

Z [z; = 1.

> For linear codcs minimum distances equal minimum weights.

o Weight: w(x) =

Minimum Distance Decoding:

e Maximum-likelihood decoder: For any channel Py|x and any code-

book {x<1), e ,x(M)}, the decoding rule that minimizes the error
probabiltiy Pe is the maximum-likelihood (ML) decoder:
m= arg max PY‘X(y\x(J))
=1, ,M
> For a linear code, if the syndrome is S = yH = zH, then the
minimum-distance codeword to y can be obtained by finding
z = arg minw(z),
z:zH=S
then computing X =y & 2.



