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1 Information Measures

Information of an Event: If event A occurs with probability p, then
we have

Info(A) =  (p) = log
b

1

p
.

• When b = 2, information is measured in bits.
• Axiomatization of  (p):

. Non-Negativity:  (p) > 0;

. Zero for Definite Events:  (1) = 1;

. Monotonicity: p  p
0 )  (p) �  (p0);

. Continuity:  (p) is continuous in p;

. Additivity under Independence:  (p1p2) =  (p1) +  (p2).

Shannon Entropy: LetX be a discrete random variable with probability
mass function PX . The Shannon entropy of X is the average information

we learn from observing X = x (note: 0 log2
1
0 = 0):

H(X) = EX⇠PX
[ (X = x)] =

X

x

PX(x) log2
1

PX(x)
.

• Joint entropy:

H(X,Y ) = E(X,Y )⇠P (X,Y ) [ (X = x, Y = y)]

=
X

x,y

PXY (x, y) log2
1

PXY (x, y)
.

• Conditional entropy:

H(Y |X) = E(X,Y )⇠P (X,Y ) [ (Y = y|X = x)]

=
X

x,y

PXY (x, y) log2
1

PY |X(y|x)

=
X

x

PX(x)H(Y |X = x).

• Entropy measures information or uncertainty in X.

. Binary source: H(X) = H2(p) = p log2
1
p
+ (1� p) log2

1
1�p

;

. Uniform source: H(X) = log2 |X |.
• Axiomatization of  (p): Suppose that X is a discrete random vari-

able taking N values with probabilities p = {p1, · · · , pN}. Consider
an information measure  (p) =  (p1, · · · , pn):
. Continuity:  (p) is continuous as a function of p;
. Uniform Case: If 8i

⇥
pi =

1
N

⇤
, then  (p) is increasing in N ;

. Successive Decisions:
 (p1, · · · , pN ) =  (p1 + p2, p3, · · · , pN )+

(p1 + p2) 

✓
p1

p1 + p2
,

p2

p1 + p2

◆
.

• Properties of entropy:
. Non-Negativity: H(X) � 0;
. Upper Bound: H(X)  log2 |X|;
. Chain Rule (2 var): H(X,Y ) = H(X) +H(Y |X);
. Chain Rule (n var):

H(X1, · · · , Xn) =
nX

i=1

H(Xi|X1, · · · , Xi�1);

. Conditioning Reduces Entropy: H(X|Y )  H(X) with equal-
ity if and only if X and Y are independent;

. Sub-Additivity: H(X1, · · · , Xn) 
nP

i=1
H(Xi).

KL Divergence:

D(P ||Q) = EX⇠P


log2

P (x)

Q(x)

�
=
X

x

P (x) log2
P (x)

Q(x)
.

• D(P ||Q) � 0 with equality if and only if P = Q.

Mutual Information: Information between random variables:

I(X;Y ) = H(Y )�H(Y |X).

• Terminologies:
. H(Y ): Prior uncertainty in Y ;
. H(Y |X): Remaining uncertainty in Y after observing X;
. I(X;Y ): Information we learn about Y after observing X.

• Joint mutual information:

I(X1, X2;Y1, Y2) = H(Y1.Y2)�H(Y1, Y2|X1, X2).

• Conditional mutual information:

I(X;Y |Z) = H(Y |Z)�H(Y |X,Z).

• Properties of mutual information:

. Alternative Forms:
I(X;Y ) = D(PXY ||P (X)⇥ P (Y ))

=
X

x,y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)

=
X

x,y

PXY (x, y) log2
PY |X(y|x)
PY (y)

;

. Symmetry: I(X;Y ) = I(Y ;X) = H(X) +H(Y )�H(X,Y );

. Non-Negativity: I(X;Y ) � 0 with equality if and only if X and
Y are independent;

. Upper Bounds: I(X;Y )  H(X); I(X;Y )  H(Y ).

. Chain Rule: I(X1, · · · , Xn|Y ) =
nP

i=1
I(Xi;Y |X1, · · · , Xi�1);

. Data Processing Inequality: If X and Z are conditionally in-
dependent given Y , then I(X;Z)  I(X;Y );

. Partial Sub-Additivity: If Y1, · · · , Yn are conditionally inde-
pendent given X1, · · · , Xn, and Yi depends on X1, · · · , Xn only
through Xi, then

I(X1, · · · , Xn;Y1, · · · , Yn) 
nX

i=1

I(Xi;Yi).

2 Symbol-Wise Source Coding

Symbol-Wise Coding: Symbol-wise source coding maps each x 2 X to
some binary sequence C(x). The length of this sequence is denoted by
`(x). The average length of a code C(·) is given by

L(C) =
X

x2X
PX(x)`(x).

• Non-Singular: x 6= x
0 ) C(x) 6= C(x0);

• Uniquely Decodable: A code C(·) is said to be uniquely decodable if
no two sequences of symbols in X are coded to the same concatenated
binary sequence;

• Prefix-Free: A code C(·) is said to be prefix-free if no codeword is
a prefix of any other.

Kraft’s Inequality: Any prefix-free code C(·) that maps each x 2 X to
a codeword of length `(x) must satisfy

X

x2X
2�`(x)  1.

• Existence: If a set of integers {`(x)}x2X satisfies
P

x2X
2�`(x)  1,

then it is possible to construct a prefix-free code that maps each
x 2 X to a codeword of length `(x).

Entropy Bound: For X ⇠ PX and any prefix-free code C(·), the ex-
pected length satisfies

L(C) � H(X),

with equality if and only if PX(x) = 2�`(x) for all x 2 X .

Shannon-Fano Code: `(x) =
l
log2

1
PX (x)

m
.

• H(X)  L(C) < H(X) + 1.
• If the true distribution is PX but the lengths are chosen according to

QX , then the Shannon-Fano code satisfies

H(X) +D(PX ||QX)  L(C)  H(X) +D(PX ||QX) + 1.

Hu↵man Code: Construct a tree as follows:

1. List the symbols of X from highest probability to lowest.
2. Draw a branch connecting the two symbols with the lowest probabil-

ity, and label the merged point with the sum of the two associated
probabilities.

3. Repeat the first two steps until everything has merged to a single
point with total probability 1.

• No uniquely decodable symbol code can achieve a smaller average
length L(C) than the Hu↵man code.

• H(X)  L(C) < H(X) + 1.

3 Block Source Coding

Problem Description:

• Source: X = (X1, X2, · · · , Xn).
. Discrete: The alphabet X is finite.

. Memoryless: PX(x) =
nQ

i=1
PX(xi) (i.i.d.).

• Encoder: Received source X ! message m = f(X) 2 {1, · · · ,M}.
• Decoder: Message m ! estimate X̂ = g(m).
• Error probability: Pe = P[X̂ 6= X].

• Rate: Number of bits per source symbol: R = 1
n
log2 M .
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Fix-Length Source Coding Theorem:

• Achievability: If R > H(X), then for any ✏ > 0, there exists a
su�ciently large block length n and a source code (i.e. encoder and
decoder) of rate R such that Pe < ✏.

• Converse: If R < H(X), then there exists ✏ > 0 such that every code
of rate R has Pe < ✏, regardless of the code length.

Typical Set:

Tn(✏) =
n
x 2 Xn : 2�n(H(X)+✏)  PX(x)  2�n(H(X)�✏)

o
.

• Equivalent definition:

H(X)� ✏ 
1

n

nX

i=1

log2
1

PX(xi)
 H(X) + ✏.

• Properties:
. High Probability: P[X 2 Tn(✏)] ! 1 as n ! 1.
. Cardinality Upper Bound: |Tn(✏)|  2n(H(X)+✏).
. Cardinality Lower Bound: |Tn(✏)| � (1 � o(1))2n(H(X)�✏),

where o(1) represents a term that vanishes as n ! 1.
. Asymptotic Equipartition: With High Probability, a ran-

domly drawn i.i.d. sequence X will be one of roughly 2nH(X)

sequences, each of which has probability roughly 2�nH(X).

Fano’s Inequality: H(X|X̂)  H2(Pe) + Pe log2(|X |� 1).

4 Channel Coding

Problem Description:

• Channel: The medium over which we transit information.
. Discrete: X and Y are finite.
. Memoryless: Outputs are conditionally independent, i.e.

PY|X(y|x) =
nY

i=1

PY |X(yi|xi).

• Encoder: Message m ! codeword x
(m) =

⇣
x
(m)
1 , · · · , x(m)

n

⌘
.

. Codebook C: Collection of codewords
�
x
(1)

, · · · ,x(M)
 
.

• Decoder: Received codeword y = (y1, · · · , yn) ! estimate m̂.
• Error probability: Pe = P[m̂ 6= m].

• Rate: Number of bits per channel use (R = 1
n
log2 M).

. M = 2nR.

Channel Capacity: The channel capacity C is defined to be the max-
imum of all rates R such that for any target error probability ✏ > 0,
there exists a block length n and codebook C =

�
x
(1)

, · · · ,x(M)
 

with

M = 2nR codewords such that Pe < ✏.

• Channel Coding Theorem The capacity of a discrete memoryless
channel PY |X is

C = max
PX

I(X;Y ).

. Achievability: For any R < C, there exists a code of rate
at least R with arbitrarily small error probability (via random
coding).

. Converse: For any R > C, any code of rate at least R cannot
have arbitrarily small error probability (via Fano’s Inequality).

• Capacity achieving input distribution: Any input distribution PX

maximizing the mutual information above for a given channel PY |X .

Jointly Typical Set:

Tn(✏) =

8
>><

>>:
(x,y) :

2�n(H(X)+✏)  PX(x)  2�n(H(X)�✏)

2�n(H(Y )+✏)  PY(y)  2�n(H(Y )�✏)

2�n(H(X,Y )+✏)  PX,Y(x,y)  2�n(H(X,Y )�✏)

9
>>=

>>;
.

• High Probability: P[(X,Y) 2 Tn(✏)] ! 1 as n ! 1.
• Cardinality Upper Bound: |Tn(✏)|  2n(H(X,Y )+✏).
• If (X0

,Y
0) ⇠ PX(x0)PY(y0) are independent copies of (X,Y), then

the probability of joint typicality is

P[(X0
,Y

0) 2 Tn(✏)]  2�n(I(X;Y )�3✏)
.

5 Continuous Alphabet Channels

Di↵erential Entropy: For a continuous random variable X,

h(X) = EfX


log2

1

fX(X)

�
=

Z

R
fX(x) log2

1

fX(x)
dx.

• Joint entropy:

h(X,Y ) = EfXY


log2

1

fXY (X,Y )

�
.

• Conditional entropy:

h(Y |X) = EfXY

"
log2

1

fY |X(Y |X)

#
=

Z

R
fX(x)h(Y |X = x) dx.

• Properties of di↵erential entropy:

. Chain Rule: h(X1, · · · , Xn) =
nP

i=1
h(Xi|X1, · · · , Xi�1).

. Conditioning Reduces Entropy: h(X|Y )  h(X).

. Sub-Addivity: h(X1, · · · , Xn) 
nP

i=1
h(Xi).

. h(X) = h(X + c) for any constant c.

. Non-Negativity and Invariance Under 1-1 Transformation

no longer holds.
• Examples:

. Uniform source X ⇠ Uniform(a, b): h(X) = log2(b� a).

. Gaussian source X ⇠ N(µ,�2): h(X) = 1
2 log2(2⇡e�

2).

KL Divergence: D(fkg) =
R
R f(x) log2

f(x)
g(x) dx.

Mutual Information:

I(X;Y ) = D(fXY kfX ⇥ fy) = EfXY


log2

fXY (x, y)

fX(x)fY (y)

�

= h(Y )� h(Y |X) = h(X)� h(X|Y )

.

• All key properties still hold, including Non-Negativity.
• For invertible functions � and  , I(X;Y ) = I(�(X); (Y )).

Gaussian Random Variables: X ⇠ N(µ,�2).

• Maximum Entropy Property: For any random variable X with p.d.f.
fX and variance Var[X], h(X)  1

2 log2(2⇡eVar[X]).

Gaussian Channel:

• Channel capacity: C(P ) = max
fX :EfX

[X2]P

I(X;Y ).

. P is the power constraint.

. For the Additive White Gaussian Noise (AWGN) channel with
power constraint P and noise variance �2, the channel capacity
is

C(P ) =
1

2
log2

✓
1 +

P

�2

◆
.

6 Practical Channel Codes

Linear Code: Any code with parity checks is a linear code.

• Types of linear code u ! x:
. Systematic parity-check code: The first k out of n bits of x are

always precisely the original k bits, and the remaining n�k bits
are parity checks.

. General parity-check code: All n codeword bits may be arbi-
trarily parity checks.

• Generator matrix: x = uG, G is the generator matrix.
• Linearity: x� x

0 = (u+ u
0)G.

• Parity-check matrix: xH = 0 , x is valid.

. For systematic codes, G =
⇥
Ik P

⇤
) H =


P

In�k

�
.

Distance Properties:

• Hamming distance: The Hamming distance between two vectors x

and x
0 is the number of positions in which they di↵er:

dH(x,x0) =
nX

i=1

I[xi 6= x
0
i
].

• Minimum distance: The minimum distance of a codebook C of length-
n codewords is

dmin= min
x 6=x02C

dH (x,x0).

.
. If minimum distance is dmin, then it is possible to correct up to

dmin�1 erasures and
dmin�1

2 bit flips.

• Weight: w(x) =
nP

i=1
I[xi = 1].

. For linear codes, minimum distances equal minimum weights.

Minimum Distance Decoding:

• Maximum-likelihood decoder: For any channel PY|X and any code-

book
�
x
(1)

, · · · ,x(M)
 
, the decoding rule that minimizes the error

probabiltiy Pe is the maximum-likelihood (ML) decoder:

m̂ = argmax
j=1,··· ,M

PY|X(y|x(j)).

. For a linear code, if the syndrome is S = yH = zH, then the
minimum-distance codeword to y can be obtained by finding

ẑ = argmin
z̃:z̃H=S

w(z̃),

then computing x̂ = y � ẑ.
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