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1 Information Measures

Information of an Event: If event A occurs with probability p, then
we have Information(A) = ψ(p) = logb

1
p
.

- When b = 2, information is measured in bits.
- Axiomatic view of information:

▶ Non-negativity: ψ(p) ≥ 0;
▶ Zero for definite events: ψ(1) = 0;
▶ Monotonicity: p ≤ p′ ⇒ ψ(p) ≥ ψ(p′);
▶ Continuity: ψ(p) is continuous in p;
▶ Additivity under independence: ψ(p1p2) = ψ(p1) + ψ(p2).

Information of a Random Variable - Entropy: Let X be a discrete
random variable with probability mass function PX . The Shannon en-
tropy is the average of information we learn from observingX = x:

H(X) = EX∼P (X) [ψ(X = x)] =
∑
x

PX(x) log2
1

PX(x)
.

- 0 log 1
0
= 0.

- Entropy measures the information of uncertainty in X.
- Examples:

▶ Binary source: H(x) = p log 1
p
+ (1− p) log 1

1−p
.

▶ Uniform source: H(x) = log |X |.
- Axiomatic view of entropy: Suppose that X is a discrete random
variable taking N values with probabilities p = {p1, · · · , pN}.
Consider an information measure of the form Ψ(p) = Ψ(p1, · · · , pN ):
▶ Continuity: Ψ(p) is continuous as a function of p;
▶ Uniform case: If ∀i

[
pi =

1
N

]
, then Ψ(p) is increasing in N ;

▶ Successive decisions:

Ψ(p1, · · · , pN ) = Ψ(p1 + p2, p3, · · · , pN )+

(p1 + p2)Ψ

(
p1

p1 + p2
,

p2

p1 + p2

)
.

- Properties of entropy:
▶ Non-negativity: H(X) ≥ 0;
▶ Uppon bound: H(X) ≤ log2 |X|;
▶ Chain rule (2 var): H(X,Y ) = H(X) +H(Y |X);

▶ Chain rule (n var): H(X1, · · · , Xn) =
n∑

i=1
H(Xi|X1, · · · , Xi−1);

▶ Conditioning reduces entropy: H(X|Y ) ≤ H(X) with equality
if and only if X and Y are independent;

▶ Sub-additivity: H(X1, · · · , Xn) ≤
n∑

i=1
H(Xn).

- Variations:
▶ Joint entropy:

H(X,Y ) = E(X,Y )∼P (X,Y ) [ψ(X = x, Y = y)]

=
∑
x,y

PXY (x, y) log2
1

PXY (x, y)
.

▶ Conditional entropy:

H(Y |X) = E(X,Y )∼P (X,Y ) [ψ(Y = y|X = x)]

=
∑
x,y

PXY (x, y) log2
1

PY |X(y|x)

=
∑
x

PX(x)H(Y |X = x).

KL Divergence: For two PMFs P and Q on a finite alphabet X , the
Kullback-Leibler (KL) divergence (also known as relative entropy) is given
by

D(P ||Q) =
∑
x

P (x) log2
P (x)

Q(x)
= EX∼P

[
log2

P (x)

Q(x)

]
.

- D(P ||Q) ≥ 0 with equality if and only if P = Q.

Information between Random Variables - Mutual Information:

I(X;Y ) = H(Y )−H(Y |X).

- Terminologies:
▶ H(Y ): a priori uncertainty in Y ;
▶ H(Y |X): Remaining uncertainty in Y after observing X;
▶ I(X;Y ): Amount of information we learn about Y after

observing X.
- Properties of mutual information:

▶ Alternative forms:

I(X;Y ) = D(PXY ||P (X)× P (Y ))

=
∑
x,y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)

=
∑
x,y

PXY (x, y) log2
PY |X(y|x)
PY (y)

▶ Symmetry: I(X;Y ) = I(Y ;X) = H(X) +H(Y )−H(X,Y ).
▶ Non-negativity: I(X;Y ) ≥ 0 with equality if and only if X and

Y are independent;
▶ Upper bounds: I(X;Y ) ≤ H(X); I(X;Y ) ≤ H(Y );

▶ Chain rule: I(X1, · · · , Xn|Y ) =
n∑

i=1
I(Xi;Y |X1, · · · , Xi−1);

▶ Data processing inequality: If X ⊥ Z|Y , I(X;Z) ≤ I(X;Y ).
▶ Partial sub-additivity: If Y1, · · · , Yn are conditionally indepen-

dent given X1, · · · , Xn, and Yi depends
on X1, · · · , Xn only through Xi, then

I(X1, · · · , Xn;Y1, · · · , Yn) ≤
n∑

i=1
I(Xi;Yi).

- Variations:
▶ Joint version:

I(X1, X2;Y1, Y2) = H(Y1.Y2)−H(Y1, Y2|X1, X2).

▶ Conditional version:

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z).

2 Symbol-wise Source Coding

Symbol-wise Coding: Symbol-wise source coding maps each x ∈ X to
some binary sequence C(x). The length of this sequence is denoted by
ℓ(x). The average length of a code C(·) is given by

L(C) =
∑
x∈X

PX(x)ℓ(x).

- Non-singular: x ̸= x′ ⇒ C(x) ̸= C(x′).
- Uniquely decodable: A code C(·) is said to be uniquely decodable if
no two sequences of symbols in X are coded to the same concate-
nated binary sequence.

- Prefix-free: A code C(·) is said to be prefix-free if no codeword is a
prefix of any other.

Kraft’s Inequality: Any prefix-free code C(·) that maps each x ∈ X to
a codeword of length ℓ(x) must satisfy∑

x∈X
2−ℓ(x) ≤ 1.

- Existence Property: If a given set of integers {ℓ(x)}x∈X satisfies∑
x∈X

2−ℓ(x) ≤ 1, then it is possible to construct a prefix-free code

that maps each x ∈ X to a codeword of length ℓ(x).

Entropy Bound: For X ∼ PX and any prefix-free code C(·), the
expected length satisfies

L(C) ≥ H(X),

with equality if and only if PX(x) = 2−ℓ(x) for all x ∈ X .

Shannon-Fano Code: ℓ(x) =
⌈
log2

1
PX (x)

⌉
.

- H(X) ≤ L(C) < H(X) + 1.
- If the true distribution is PX but the lengths are chosen according
to QX , then the Shannon-Fano code satisfies

H(X) +D(PX ||QX) ≤ L(C) ≤ H(X) +D(PX ||QX) + 1.

Huffman Code: Construct a tree as follows:
1. List the symbols of X from highest probability to lowest.
2. Draw a branch connecting the two symbols with the lowest prob-

ability, and label the merged point with the sum of the two associated
probabilities.

3. Repeat the first two steps until everything has merged to a single
point with total probability 1.

- No uniquely decodable symbol code can achieve a smaller average
length L(C) than the Huffman code.

- H(X) ≤ L(C) < H(X) + 1.
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