CS3243 Introduction to Artificial Intelligence

AY2021/22 Semester 2

1. Introduction

- Agent Function: $f: P \rightarrow a_t$, where P is the sequence of percepts captured by sensors and $a_t \in A$ is the selected action by activators.
- Rational agent optimises performance measure. An agent that senses only partial information can also be 0 perfectly rational.
- **Environment Properties:**
 - Fully Observable vs Partially Observable
 - Deterministic vs Stochastic: Whether immediate state can 0 be determined based on action.
 - Episodic vs Sequential: Whether actions only impact 0
 - current state or all future states.
 - Discrete vs Continuous 0
 - Single-agent vs Multi-agent: Opponents might be 0 competitive or cooperative.
 - Known vs Unknown: Refers to the agent/designer. 0
 - Static vs Dvnamic 0
 - Taxonomy of Agents:
 - Reflex Agents: Uses if-statements. 0
 - Model-based Reflex Agents: Makes decisions based on an internal model.
 - Goal-based/Utility-based Agents 0
- Learning Agents

0

2. Uninformed Search

- Formulation of search problem:
 - State Representation (s_i): ADT containing data describing 0
 - an instance of the environment. Initial State (s_0) : Initial values of the data above. 0
 - Action 0
 - 0 Transition Model: How each data change corresponding to the action given.
 - Step Cost 0
 - Goal Test
- Uninformed Search: No domain knowledge beyond search problem formulation.
- General Search Algorithm

deneral ocaron / ligonann.			
<pre>frontier = {initial state} while frontion not omnty;</pre>	BFS – queue		
current = frontier.pop()	DFS – stack		
if current is goal:	005 – pq		
return path found			
frontier push(T(current a))			
return failure			

State vs Node:

0

0

- State: A representation of the environment at some 0 timestamp
 - Node: Includes state, parent node, action, path cost (for UCS), depth.
- Algorithm Criteria:
 - Time/Space Complexity 0
 - Completeness: Complete if can find a solution when one
 - exists and report failure if it does not. Optimality: Optimal if it finds a solution with the lowest 0
 - path cost among all solutions Tree Search vs Graph Search: In graph search, we only
- add nodes to frontier and reached if (1) state represented by node not previously reached and (2) path to state already reached is cheaper than the one stored.
- Performance Summary:
- If *b* is finite and state space is finite or contains a goal. 1.
- 2. Same as 1.
- If action costs are all equal. З.
- 4 *b* is branching factor. *d* is depth of shallowest goal. Can be improved by early goal test (when pushing): Assuming the worst case, we can save the time and space associated with $(b^d - b)$ nodes.
- 5. May get caught in a cycle.
- If search space is finite. 6.
- Where *m* is the maximum depth. Can be improved to O(m) by 7. backtracking.
- 8 If BFS is complete and all action $\cos t > \varepsilon > 0$. Must perform late goal test (when popping)

- 9. $e = 1 + |C^*/\varepsilon|$, where C^* is the optimal path cost and ε is some small BFS DFS UCS DLS IDS11 positive constant. Criterion
- 10. Where l is the C (Tre limited depth. Number of nodes C 11. explored: (d +(Tre $1)O(b^0) + dO(b^1) +$

Complete	$\sqrt{1}$	X 5	√8	Х	\checkmark
(Tree/Graph)	√ ²	√6	\checkmark	Х	\checkmark
Optimal	X 3	Х	\checkmark	Х	\checkmark
Time	$O(b^{d})^{4}$	$O(b^m)$	$O(b^{e})^{9}$	$O(b^{l})^{10}$	$O(b^d)$
(Tree/Graph)	O(V + E)				
Space	$O(b^d)$	$O(bm)^7$	$O(b^e)$	0(bl)	0(bd)
(Tree/Graph)	O(V + E)				

3. Informed Search

 $\cdots + O(b^d).$

Heuristic Function (h): Approximates the path cost from n.state to its nearest goal G.

$$(S) \xrightarrow{g(n)} (n) \xrightarrow{h(n)} (G)$$

- with values better than current. May take longer to find a solution but sometimes leads to better solutions.
- First-choice Hill Climbing: Randomly generating 0 successors until one better than current is found.
- Random-restart Hill Climbing: Adds an outer loop which 0
- Local Beam Search:
 - Always stores k states instead of 1. 0
 - Begins with k random starts and chooses best k among all 0 successors until a solution is found.

Produced by Tian Xiao

4. Local Search

- Sideways Move: Replaces <= with <. This allows the 0 algorithm to traverse shoulders. Stochastic Hill Climbing: Chooses randomly among states 0

 - randomly picks a new starting state. Keeps attempting random restarts until a solution is found.

Midterm Examination Cheatsheet

5. Constraint Satisfaction Problems

Formulation of CSPs:

- State Representation (s_i) : Variables $(X = \{x_1, x_2, ..., x_n\})$ and 0 their domains $(D = \{d_1, d_2, ..., d_n\}).$
- Initial State (s_0) : All variables unassigned. 0
- Action 0
- Transition Model 0
- Goal Test: Whether all constraints $C = \{c_1, c_2, \dots, c_m\}$ is 0 satisfied. Each constraint corresponds to a subset of X. Each constraint contains a scope and a relation (e.g. scope = (x_1, x_2) ; relation = $x_1 < x_2$).
- Constraint Graph:
 - One binary constraint is two arcs.

assignment.remove {var=value}

- return failure
 - Total number of leaves: d^n , where d is number of values 0 and n is number of variables.
 - Solution is found at depth n. 0
 - Variable order: Minimum-remaining-value heuristic + 0 degree heuristic
 - Value order: Least-constraining-value heuristic 0
 - Maximum backtrack times: $O(2^n)$ (whole tree)

AC-3 Algorithm

function AC3(csp): queue = a queue of all arcs while queue is not empty do: (Xi, Xj) = queue.pop() if REVISE(csp, Xi, Xj): if size of Di == 0: return false for Xk in Xi.neighbours -{Xj}: add (Xk, Xi) to queue return true function REVISE(csp, Xi, Xj): revised = false for each x in Di do: if no y in Dj satisfies constraint: delete x from Di revised = true return revised Time complexity: $O(n^2d^3)$

6. Adversarial Search

- Formulation of games:
 - State representation 0
 - 0 TO - MOVE(s): The player to move in state s.
 - ACTIONS(s): The legal moves in state s. 0
 - RESULT(s, a): The transition model. 0
 - IS TERMINAL(s): Whether game is over. 0
 - UTILITY(s, p): Defines the final numerical value to player p0 when the game ends in state s.
- Winning Strategy: A winning strategy for player 1, s_1^* , implies that for any strategy s_2 for player 2, the game ends in a win for player 1.
- Minimax Algorithm:

UTILITY(s, MAX) $\max_{a \in \text{ACTIONS}(s)} Minimax(\text{RESULT}(s, a))$ $Minimax(s) = \langle$ $\left(\min_{a \in \text{ACTIONS}(s)} Minimax(\text{RESULT}(s, a))\right)$

- Produced by Tian Xiao Minimax Algorithm is complete if game tree is finite, is 0 optimal. Time: $O(b^m)$; Space: O(bm). 0 $\alpha - \beta$ Pruning: At MAX node n, $\alpha(n)$ is highest observed value found on 0 path from *n*. Initially $\alpha(n) = -\infty$. At MIN node n, $\beta(n)$ is lowest observed value found on 0 path from *n*. Initially $\beta(n) = \infty$. Given a MIN node n, stop searching below n if some MAX 0 ancestor *i* with $\alpha(i) \ge \beta(n)$. Given a MAX node n, stop searching below n if some MIN 0 ancestor *i* with $\alpha(n) \ge \beta(i)$. function AB-PRUNING(node, alpha, beta): if node is leaf: return node.val if isMaxTurn bestVal = -INFINITYfor each child: value = AB_PRUNING(child) bestVal = \overline{max} (bestVal, value) alpha = **max**(bestVal, alpha) if beta <= alpha:</pre> break return bestVal if isMinTurn: bestVal = +INFINITY for each child: value = AB_PRUNING(child, alpha, beta) bestVal = min(bestVal, value) beta = min(bestVal, beta) if beta <= alpha:</pre> break return bestVal 7. Knowledge Representation Knowledge: Knowledge Base: Set of sentences in a formal language prepopulated with domain knowledge. It is domainspecific content, while inference engine is domainindependent algorithm. Entailment: $\alpha \models \beta \rightarrow M(\alpha) \subseteq M(\beta)$ 0 Algorithm Criteria: KB $\vdash_{\mathcal{A}} \alpha$: Sentence α is derived from KB by inference 0 algorithm \mathcal{A} . Soundness: \mathcal{A} is sound if $KB \vdash_{\mathcal{A}} \alpha$ implies $KB \vDash \alpha$. \mathcal{A} does 0 not infer nonsense. Completeness: \mathcal{A} is complete if KB $\vDash \alpha$ implies KB $\vdash_{\mathcal{A}} \alpha$. 0 $\ensuremath{\mathcal{A}}$ can infer any sentence KB entails. Truth Table Enumeration: Checks all 2^n truth assignments to verify KB entails α (DFS). Time: $O(2^n)$; Space: O(n). 0 Sound and complete. 0 Resolution: Conjunctive Normal Form (CNF): Conjunction of disjunctive 0 sentences, $R_1 \wedge R_2 \wedge ... \wedge R_n$. Sound and complete. 0 Rules: 0 Convert $\alpha \Leftrightarrow \beta$ to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. 1. 2 Convert $\alpha \Rightarrow \beta$ to $\neg \alpha \lor \beta$. Convert $\neg(\alpha \lor \beta)$ to $\neg \alpha \land \neg \beta$ 3. Convert $\neg(\alpha \land \beta)$ to $\neg \alpha \lor \neg \beta$. 4. 5. Convert $\neg(\neg \alpha)$ to α . 6. Convert $(\alpha \lor (\beta \land \gamma))$ to $(\alpha \lor \beta) \land (\alpha \lor \gamma)$. Show that $KB \land \neg \alpha$ is unsatisfiable. 0 $R_1: \alpha \lor \gamma$ and $R_2: \beta \lor \neg \gamma$ are resolved to $\alpha \lor \beta$. Bayes Rule: $\Pr[A|B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B]}$ Chain Rule: $\Pr[R_1, R_2, ..., R_k] = \prod_{j=1, 2, ..., k} \Pr[R_j | R_1, R_2, ..., R_{j-1}]$ Path Blocking Scenario: $\bigcirc \neg (v) \neg \bigcirc$) \rightarrow (v) \rightarrow () $() \rightarrow (v) \rightarrow ()$ v is given v is given v is not given Suppose given *S*, all $T_1, T_2, ..., T_{n-1}$ are independent, then:
 - A joint distribution for n Boolean random variables results 0 in at least $2^n - 1$ entries.
 - A joint distribution for n Boolean random variables with 0 conditional independence results in 2n-1 entries.

8. Uncertainty

- - $\Pr[T_1, T_2, \dots, T_{n-1}, S] = \Pr[T_1|S] \cdot \dots \cdot \Pr[T_{n-1}|S] \cdot \Pr[S]$