
Midterm Examination Cheatsheet Produced by Tian Xiao

CS3243 Introduction to Artificial Intelligence
AY2021/22 Semester 2

1. Introduction

• Agent Function: 𝑓: 𝑃 → 𝑎!, where 𝑃 is the sequence of
percepts captured by sensors
and 𝑎! ∈ 𝐴 is the selected action
by activators.

• Rational agent optimises performance measure.
o An agent that senses only partial information can also be

perfectly rational.
• Environment Properties:

o Fully Observable vs Partially Observable
o Deterministic vs Stochastic: Whether immediate state can

be determined based on action.
o Episodic vs Sequential: Whether actions only impact

current state or all future states.
o Discrete vs Continuous
o Single-agent vs Multi-agent: Opponents might be

competitive or cooperative.
o Known vs Unknown: Refers to the agent/designer.
o Static vs Dynamic

• Taxonomy of Agents:
o Reflex Agents: Uses if-statements.
o Model-based Reflex Agents: Makes decisions based on an

internal model.
o Goal-based/Utility-based Agents
o Learning Agents

2. Uninformed Search
• Formulation of search problem:

o State Representation (𝑠!): ADT containing data describing
an instance of the environment.

o Initial State (𝑠"): Initial values of the data above.
o Action
o Transition Model: How each data change corresponding to

the action given.
o Step Cost
o Goal Test

• Uninformed Search: No domain knowledge beyond
search problem formulation.

• General Search Algorithm:
frontier = {initial state}
while frontier not empty:

current = frontier.pop()
if current is goal:
 return path found
for a in actions(current):
 frontier.push(T(current, a))

return failure
• State vs Node:

o State: A representation of the environment at some
timestamp.

o Node: Includes state, parent node, action, path cost (for
UCS), depth.

• Algorithm Criteria:
o Time/Space Complexity
o Completeness: Complete if can find a solution when one

exists and report failure if it does not.
o Optimality: Optimal if it finds a solution with the lowest

path cost among all solutions.
• Tree Search vs Graph Search: In graph search, we only

add nodes to frontier and reached if (1) state
represented by node not previously reached and (2) path
to state already reached is cheaper than the one stored.

• Performance Summary:
1. If 𝑏 is finite and state space is finite or contains a goal.
2. Same as 1.
3. If action costs are all equal.
4. 𝑏 is branching factor, 𝑑 is depth of shallowest goal. Can be improved

by early goal test (when pushing): Assuming the worst case, we can
save the time and space associated with (𝑏# − 𝑏) nodes.

5. May get caught in a cycle.
6. If search space is finite.
7. Where 𝑚 is the maximum depth. Can be improved to 𝑂(𝑚) by

backtracking.
8. If BFS is complete and all action cost > 𝜀 > 0. Must perform late goal

test (when popping).

9. 𝑒 = 1 + ⌊𝐶∗/𝜀⌋, where 𝐶∗ is the optimal path cost and 𝜀 is some small
positive constant.

10. Where 𝑙 is the
limited depth.

11. Number of nodes
explored: (𝑑 +
1)𝑂(𝑏") + 𝑑𝑂(𝑏%) +
⋯+ 𝑂(𝑏#).

3. Informed Search
• Heuristic Function (ℎ): Approximates the path cost from

n.state to its nearest goal 𝐺.

o ℎ∗(𝑛): True path cost from 𝑛 to 𝐺.

• Evaluation Function (𝑓): Priority for a node 𝑛.
• Best-First Search Algorithm:

frontier = {initial state}
reached = {}
while frontier not empty:

current = frontier.pop()
if current is goal:
 return path found
for a in actions(current):
 next = T(current, a)
 s = next.state
 if s not reached or
 next has a smaller path cost:
 reached[s] = next
 frontier.push(next)

return failure
• Greedy Best-First Search:

o 𝑓(𝑛) = ℎ(𝑛)
o Tree search version is incomplete (may get stuck in a loop

between nodes where ℎ values are lowest). Graph search
version is complete if search space is finite.

o Optimal: No.
• A* Search:

o 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
o Limited Graph Search Version 1: No exceptions on lower

path costs.
o Limited Graph Search Version 2: Adds to reached when

popping.
o Complete if UCS is complete.
o Tree search and graph search version is optimal if ℎ is

admissible. Limited graph search version 2 is optimal if ℎ is
consistent.

• Heuristics
o Admissible: ℎ(𝑛) is admissible if ∀𝑛, ℎ(𝑛) ≤ ℎ∗(𝑛). If ℎ(𝑛) is

admissible, then A* Search using tree/graph search is
optimal.

o Consistent: ℎ(𝑛) is consistent if ∀𝑛, 𝑛′, ℎ(𝑛) ≤
cost(𝑛, 𝑎, 𝑛&) + ℎ(𝑛&), where 𝑛& denotes all successors of 𝑛.
If ℎ(𝑛) is consistent, then A* Search using limited graph
search version 2 is optimal.

o If ℎ is consistent, then it is admissible.
o If ∀𝑛, ℎ%(𝑛) ≥ ℎ'(𝑛), then ℎ% dominates ℎ'. If ℎ% is

admissible, then it is more efficient than or as efficient as
ℎ'.

4. Local Search
• Hill-Climbing Algorithm:

current = initial state
while true:

neighbour = highest-valued successor
if neighbour.value <= current.value:
 return current
current = neighbour

o 𝑓(𝑛) = −ℎ(𝑛)
o May get stuck at (1) local maxima, (2) shoulder or plateau

and (3) ridge (sequence of local maxima).
o Sideways Move: Replaces <= with <. This allows the

algorithm to traverse shoulders.
o Stochastic Hill Climbing: Chooses randomly among states

with values better than current. May take longer to find a
solution but sometimes leads to better solutions.

o First-choice Hill Climbing: Randomly generating
successors until one better than current is found.

o Random-restart Hill Climbing: Adds an outer loop which
randomly picks a new starting state. Keeps attempting
random restarts until a solution is found.

• Local Beam Search:
o Always stores 𝑘 states instead of 1.
o Begins with 𝑘 random starts and chooses best 𝑘 among all

successors until a solution is found.

BFS – queue
DFS – stack
UCS – pq

Midterm Examination Cheatsheet Produced by Tian Xiao
o May be improved by stochastic.

5. Constraint Satisfaction Problems
• Formulation of CSPs:

o State Representation (𝑠!): Variables (𝑋 = {𝑥%, 𝑥', … , 𝑥(}) and
their domains (𝐷 = {𝑑%, 𝑑', … , 𝑑(}).

o Initial State (𝑠"): All variables unassigned.
o Action
o Transition Model
o Goal Test: Whether all constraints 𝐶 = {𝑐%, 𝑐', … , 𝑐)} is

satisfied. Each constraint corresponds to a subset of 𝑋.
Each constraint contains a scope and a relation (e.g.
scope = (𝑥%, 𝑥'); relation = 𝑥% < 𝑥').

• Constraint Graph:
o One binary constraint is two arcs.

Unary Binary Global

• Backtracking Algorithm:
assignment = {}
function backtrack(csp, assignment):

if assignment is complete:
 return assignment
var = select unassigned variable
 from assignment
for each value in domain of var:
 if value consistent with csp:
 assignment.add {var=value}
 inference = infer(assignment)
 if inference not failure:
 csp.add(inference)

 result = backtrack(csp,
 assignment)
 if result not failure:
 return result
 csp.remove(inference)
 assignment.remove {var=value}
 return failure

o Total number of leaves: 𝑑(, where 𝑑 is number of values
and 𝑛 is number of variables.

o Solution is found at depth 𝑛.
o Variable order: Minimum-remaining-value heuristic +

degree heuristic
o Value order: Least-constraining-value heuristic
o Maximum backtrack times: 𝑂(2() (whole tree)

• AC-3 Algorithm
function AC3(csp):

queue = a queue of all arcs
while queue is not empty do:
 (Xi, Xj) = queue.pop()
 if REVISE(csp, Xi, Xj):
 if size of Di == 0:
 return false
 for Xk in Xi.neighbours –

aaaaaaaaaaaaaaaaaaaaaa{Xj}:
 add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, Xj):
revised = false
for each x in Di do:
 if no y in Dj satisfies

aaaaaaaaaaaaaaaaaaaaaaconstraint:
 delete x from Di
 revised = true
return revised

o Time complexity: 𝑂(𝑛'𝑑*)

6. Adversarial Search
• Formulation of games:

o State representation
o TO − MOVE(𝑠): The player to move in state 𝑠.
o ACTIONS(𝑠): The legal moves in state 𝑠.
o RESULT(𝑠, 𝑎): The transition model.
o IS − TERMINAL(𝑠): Whether game is over.
o UTILITY(𝑠, 𝑝): Defines the final numerical value to player 𝑝

when the game ends in state 𝑠.
• Winning Strategy: A winning strategy for player 1, 𝑠"∗,

implies that for any strategy 𝑠$ for player 2, the game
ends in a win for player 1.

• Minimax Algorithm:

𝑀𝑖𝑛𝑖𝑚𝑎𝑥(𝑠) = h

UTILITY(𝑠,𝑀𝐴𝑋)
max

+∈-./0123(5)
𝑀𝑖𝑛𝑖𝑚𝑎𝑥(RESULT(𝑠, 𝑎))

min
+∈-./0123(5)

𝑀𝑖𝑛𝑖𝑚𝑎𝑥(RESULT(𝑠, 𝑎))

o Minimax Algorithm is complete if game tree is finite, is
optimal.

o Time: 𝑂(𝑏)); Space: 𝑂(𝑏𝑚).
• 𝛼 − 𝛽 Pruning:

o At MAX node 𝑛, 𝛼(𝑛) is highest observed value found on
path from 𝑛. Initially 𝛼(𝑛) = −∞.

o At MIN node 𝑛, 𝛽(𝑛) is lowest observed value found on
path from 𝑛. Initially 𝛽(𝑛) = ∞.

o Given a MIN node 𝑛, stop searching below 𝑛 if some MAX
ancestor 𝑖 with 𝛼(𝑖) ≥ 𝛽(𝑛).

o Given a MAX node 𝑛, stop searching below 𝑛 if some MIN
ancestor 𝑖 with 𝛼(𝑛) ≥ 𝛽(𝑖).

function AB-PRUNING(node, alpha, beta):
 if node is leaf:

return node.val
 if isMaxTurn:

bestVal = -INFINITY
for each child:
 value = AB_PRUNING(child)
 bestVal = max(bestVal, value)
 alpha = max(bestVal, alpha)
 if beta <= alpha:
 break
return bestVal

 if isMinTurn:
bestVal = +INFINITY
for each child:
 value = AB_PRUNING(child, alpha, beta)
 bestVal = min(bestVal, value)
 beta = min(bestVal, beta)
 if beta <= alpha:
 break
return bestVal

7. Knowledge Representation
• Knowledge:

o Knowledge Base: Set of sentences in a formal language
prepopulated with domain knowledge. It is domain-
specific content, while inference engine is domain-
independent algorithm.

o Entailment: 𝛼 ⊨ 𝛽 → 𝑀(𝛼) ⊆ 𝑀(𝛽)
• Algorithm Criteria:

o KB ⊢𝒜 𝛼: Sentence 𝛼 is derived from KB by inference
algorithm 𝒜.

o Soundness: 𝒜 is sound if KB ⊢𝒜 𝛼 implies KB ⊨ 𝛼. 𝒜 does
not infer nonsense.

o Completeness: 𝒜 is complete if KB ⊨ 𝛼 implies KB ⊢𝒜 𝛼.
𝒜 can infer any sentence KB entails.

• Truth Table Enumeration: Checks all 2% truth assignments
to verify KB entails 𝛼 (DFS).

o Time: 𝑂(2(); Space: 𝑂(𝑛).
o Sound and complete.

• Resolution:
o Conjunctive Normal Form (CNF): Conjunction of disjunctive

sentences, 𝑅% ∧ 𝑅' ∧ …∧ 𝑅(.
o Sound and complete.
o Rules:

1. Convert 𝛼 ⇔ 𝛽 to (𝛼 ⇒ 𝛽) ∧ (𝛽 ⇒ 𝛼).
2. Convert 𝛼 ⇒ 𝛽 to ¬𝛼 ∨ 𝛽.
3. Convert ¬(𝛼 ∨ 𝛽) to ¬𝛼 ∧ ¬𝛽
4. Convert ¬(𝛼 ∧ 𝛽) to ¬𝛼 ∨ ¬𝛽.
5. Convert ¬(¬𝛼) to 𝛼.
6. Convert (𝛼 ∨ (𝛽 ∧ 𝛾)) to (𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾).

o Show that 𝐾𝐵 ∧ ¬𝛼 is unsatisfiable.
o 𝑅%: 𝛼 ∨ 𝛾 and 𝑅': 𝛽 ∨ ¬𝛾 are resolved to 𝛼 ∨ 𝛽.

8. Uncertainty
• Bayes Rule:

Pr[𝐴|𝐵] =
Pr[𝐵|𝐴] ⋅ Pr	[𝐴]

Pr	[𝐵]

• Chain Rule:

Pr[𝑅", 𝑅$, … , 𝑅&] = < Pr	[𝑅'|𝑅", 𝑅$, … , 𝑅'("]
')",$,…,&

• Path Blocking Scenario:

𝑣 is given 𝑣 is given 𝑣 is not given

• Suppose given 𝑆, all 𝑇", 𝑇$, … , 𝑇%(" are independent, then:
Pr[𝑇", 𝑇$, … , 𝑇%(", 𝑆] = Pr[𝑇"|𝑆] ⋅ … ⋅ Pr[𝑇%("|𝑆] ⋅ Pr	[𝑆]
o A joint distribution for 𝑛 Boolean random variables results

in at least 2(− 1 entries.
o A joint distribution for 𝑛 Boolean random variables with

conditional independence results in 2𝑛 − 1 entries.

