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CS3243 Introduction to Artificial Intelligence 
AY2021/22 Semester 2 

 
1. Introduction 

• Agent Function: 𝑓: 𝑃 → 𝑎!, where 𝑃 is the sequence of 
percepts captured by sensors 
and 𝑎! ∈ 𝐴 is the selected action 
by activators. 

• Rational agent optimises performance measure. 
o An agent that senses only partial information can also be 

perfectly rational. 
• Environment Properties: 

o Fully Observable vs Partially Observable 
o Deterministic vs Stochastic: Whether immediate state can 

be determined based on action. 
o Episodic vs Sequential: Whether actions only impact 

current state or all future states. 
o Discrete vs Continuous 
o Single-agent vs Multi-agent: Opponents might be 

competitive or cooperative. 
o Known vs Unknown: Refers to the agent/designer. 
o Static vs Dynamic 

• Taxonomy of Agents: 
o Reflex Agents: Uses if-statements. 
o Model-based Reflex Agents: Makes decisions based on an 

internal model. 
o Goal-based/Utility-based Agents 
o Learning Agents 

2. Uninformed Search 
• Formulation of search problem: 

o State Representation (𝑠!): ADT containing data describing 
an instance of the environment.  

o Initial State (𝑠"): Initial values of the data above. 
o Action 
o Transition Model: How each data change corresponding to 

the action given. 
o Step Cost 
o Goal Test 

• Uninformed Search: No domain knowledge beyond 
search problem formulation. 

• General Search Algorithm: 
frontier = {initial state} 
while frontier not empty: 

current = frontier.pop() 
if current is goal:  
    return path found 
for a in actions(current): 
    frontier.push(T(current, a)) 

return failure 
• State vs Node: 

o State: A representation of the environment at some 
timestamp. 

o Node: Includes state, parent node, action, path cost (for 
UCS), depth. 

• Algorithm Criteria: 
o Time/Space Complexity 
o Completeness: Complete if can find a solution when one 

exists and report failure if it does not. 
o Optimality: Optimal if it finds a solution with the lowest 

path cost among all solutions. 
• Tree Search vs Graph Search: In graph search, we only 

add nodes to frontier and reached if (1) state 
represented by node not previously reached and (2) path 
to state already reached is cheaper than the one stored. 

• Performance Summary: 
1. If 𝑏 is finite and state space is finite or contains a goal. 
2. Same as 1. 
3. If action costs are all equal. 
4. 𝑏 is branching factor, 𝑑 is depth of shallowest goal. Can be improved 

by early goal test (when pushing): Assuming the worst case, we can 
save the time and space associated with (𝑏# − 𝑏) nodes. 

5. May get caught in a cycle. 
6. If search space is finite. 
7. Where 𝑚 is the maximum depth. Can be improved to 𝑂(𝑚) by 

backtracking. 
8. If BFS is complete and all action cost > 𝜀 > 0. Must perform late goal 

test (when popping). 

9. 𝑒 = 1 + ⌊𝐶∗/𝜀⌋, where 𝐶∗ is the optimal path cost and 𝜀 is some small 
positive constant. 

10. Where 𝑙 is the 
limited depth. 

11. Number of nodes 
explored: (𝑑 +
1)𝑂(𝑏") + 𝑑𝑂(𝑏%) +
⋯+ 𝑂(𝑏#). 

3. Informed Search 
• Heuristic Function (ℎ): Approximates the path cost from 

n.state to its nearest goal 𝐺. 

 
o ℎ∗(𝑛): True path cost from 𝑛 to 𝐺. 

• Evaluation Function (𝑓): Priority for a node 𝑛. 
• Best-First Search Algorithm: 

frontier = {initial state} 
reached = {} 
while frontier not empty: 

current = frontier.pop() 
if current is goal: 
    return path found 
for a in actions(current): 
    next = T(current, a) 
    s = next.state 
    if s not reached or 
       next has a smaller path cost: 
        reached[s] = next 
        frontier.push(next) 

return failure 
• Greedy Best-First Search: 

o 𝑓(𝑛) = ℎ(𝑛) 
o Tree search version is incomplete (may get stuck in a loop 

between nodes where ℎ values are lowest). Graph search 
version is complete if search space is finite. 

o Optimal: No. 
• A* Search: 

o 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 
o Limited Graph Search Version 1: No exceptions on lower 

path costs. 
o Limited Graph Search Version 2: Adds to reached when 

popping. 
o Complete if UCS is complete. 
o Tree search and graph search version is optimal if ℎ is 

admissible. Limited graph search version 2 is optimal if ℎ is 
consistent. 

• Heuristics 
o Admissible: ℎ(𝑛) is admissible if ∀𝑛, ℎ(𝑛) ≤ ℎ∗(𝑛). If ℎ(𝑛) is 

admissible, then A* Search using tree/graph search is 
optimal. 

o Consistent: ℎ(𝑛) is consistent if ∀𝑛, 𝑛′, ℎ(𝑛) ≤
cost(𝑛, 𝑎, 𝑛&) + ℎ(𝑛&), where 𝑛& denotes all successors of 𝑛. 
If ℎ(𝑛) is consistent, then A* Search using limited graph 
search version 2 is optimal. 

o If ℎ is consistent, then it is admissible. 
o If ∀𝑛, ℎ%(𝑛) ≥ ℎ'(𝑛), then ℎ% dominates ℎ'. If ℎ% is 

admissible, then it is more efficient than or as efficient as 
ℎ'. 

4. Local Search 
• Hill-Climbing Algorithm: 

current = initial state 
while true: 

neighbour = highest-valued successor 
if neighbour.value <= current.value: 
    return current 
current = neighbour 

o 𝑓(𝑛) = −ℎ(𝑛) 
o May get stuck at (1) local maxima, (2) shoulder or plateau 

and (3) ridge (sequence of local maxima). 
o Sideways Move: Replaces <= with <. This allows the 

algorithm to traverse shoulders. 
o Stochastic Hill Climbing: Chooses randomly among states 

with values better than current. May take longer to find a 
solution but sometimes leads to better solutions. 

o First-choice Hill Climbing: Randomly generating 
successors until one better than current is found. 

o Random-restart Hill Climbing: Adds an outer loop which 
randomly picks a new starting state. Keeps attempting 
random restarts until a solution is found. 

• Local Beam Search: 
o Always stores 𝑘 states instead of 1. 
o Begins with 𝑘 random starts and chooses best 𝑘 among all 

successors until a solution is found. 

BFS – queue 
DFS – stack 
UCS – pq  
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o May be improved by stochastic. 

5. Constraint Satisfaction Problems 
• Formulation of CSPs: 

o State Representation (𝑠!): Variables (𝑋 = {𝑥%, 𝑥', … , 𝑥(}) and 
their domains (𝐷 = {𝑑%, 𝑑', … , 𝑑(}).  

o Initial State (𝑠"): All variables unassigned. 
o Action 
o Transition Model 
o Goal Test: Whether all constraints 𝐶 = {𝑐%, 𝑐', … , 𝑐)} is 

satisfied. Each constraint corresponds to a subset of 𝑋. 
Each constraint contains a scope and a relation (e.g. 
scope = (𝑥%, 𝑥'); relation = 𝑥% < 𝑥'). 

• Constraint Graph: 
o One binary constraint is two arcs. 

   
Unary Binary Global 

• Backtracking Algorithm: 
assignment = {} 
function backtrack(csp, assignment): 

if assignment is complete: 
    return assignment 
var = select unassigned variable  
      from assignment 
for each value in domain of var: 
    if value consistent with csp: 
    assignment.add {var=value} 
    inference = infer(assignment) 
    if inference not failure: 
        csp.add(inference) 

            result = backtrack(csp,  
                     assignment) 
            if result not failure: 
                return result 
            csp.remove(inference) 
        assignment.remove {var=value} 
    return failure 

o Total number of leaves: 𝑑(, where 𝑑 is number of values 
and 𝑛 is number of variables. 

o Solution is found at depth 𝑛. 
o Variable order: Minimum-remaining-value heuristic + 

degree heuristic 
o Value order: Least-constraining-value heuristic 
o Maximum backtrack times: 𝑂(2() (whole tree) 

• AC-3 Algorithm 
function AC3(csp): 

queue = a queue of all arcs 
while queue is not empty do: 
    (Xi, Xj) = queue.pop() 
    if REVISE(csp, Xi, Xj): 
        if size of Di == 0: 
            return false 
        for Xk in Xi.neighbours –  

aaaaaaaaaaaaaaaaaaaaaa{Xj}: 
            add (Xk, Xi) to queue 
return true 
 

function REVISE(csp, Xi, Xj): 
revised = false 
for each x in Di do: 
    if no y in Dj satisfies 

aaaaaaaaaaaaaaaaaaaaaaconstraint: 
        delete x from Di 
        revised = true 
return revised 

o Time complexity: 𝑂(𝑛'𝑑*) 

6. Adversarial Search 
• Formulation of games: 

o State representation  
o TO − MOVE(𝑠): The player to move in state 𝑠. 
o ACTIONS(𝑠): The legal moves in state 𝑠. 
o RESULT(𝑠, 𝑎): The transition model. 
o IS − TERMINAL(𝑠): Whether game is over. 
o UTILITY(𝑠, 𝑝): Defines the final numerical value to player 𝑝 

when the game ends in state 𝑠. 
• Winning Strategy: A winning strategy for player 1, 𝑠"∗, 

implies that for any strategy 𝑠$ for player 2, the game 
ends in a win for player 1. 

• Minimax Algorithm: 

𝑀𝑖𝑛𝑖𝑚𝑎𝑥(𝑠) = h

UTILITY(𝑠,𝑀𝐴𝑋)
max

+∈-./0123(5)
𝑀𝑖𝑛𝑖𝑚𝑎𝑥(RESULT(𝑠, 𝑎))

min
+∈-./0123(5)

𝑀𝑖𝑛𝑖𝑚𝑎𝑥(RESULT(𝑠, 𝑎))
 

o Minimax Algorithm is complete if game tree is finite, is 
optimal. 

o Time: 𝑂(𝑏)); Space: 𝑂(𝑏𝑚). 
• 𝛼 − 𝛽 Pruning: 

o At MAX node 𝑛, 𝛼(𝑛) is highest observed value found on 
path from 𝑛. Initially 𝛼(𝑛) = −∞. 

o At MIN node 𝑛, 𝛽(𝑛) is lowest observed value found on 
path from 𝑛. Initially 𝛽(𝑛) = ∞. 

o Given a MIN node 𝑛, stop searching below 𝑛 if some MAX 
ancestor 𝑖 with 𝛼(𝑖) ≥ 𝛽(𝑛). 

o Given a MAX node 𝑛, stop searching below 𝑛 if some MIN 
ancestor 𝑖 with 𝛼(𝑛) ≥ 𝛽(𝑖). 

function AB-PRUNING(node, alpha, beta): 
  if node is leaf: 

return node.val 
  if isMaxTurn: 

bestVal = -INFINITY 
for each child: 
  value = AB_PRUNING(child) 
  bestVal = max(bestVal, value) 
  alpha = max(bestVal, alpha) 
  if beta <= alpha: 
    break 
return bestVal 

  if isMinTurn: 
bestVal = +INFINITY 
for each child: 
  value = AB_PRUNING(child, alpha, beta) 
  bestVal = min(bestVal, value) 
  beta = min(bestVal, beta) 
  if beta <= alpha: 
    break 
return bestVal 

7. Knowledge Representation 
• Knowledge: 

o Knowledge Base: Set of sentences in a formal language 
prepopulated with domain knowledge. It is domain-
specific content, while inference engine is domain-
independent algorithm. 

o Entailment: 𝛼 ⊨ 𝛽 → 𝑀(𝛼) ⊆ 𝑀(𝛽) 
• Algorithm Criteria: 

o KB ⊢𝒜 𝛼: Sentence 𝛼 is derived from KB by inference 
algorithm 𝒜. 

o Soundness: 𝒜 is sound if KB ⊢𝒜 𝛼 implies KB ⊨ 𝛼. 𝒜 does 
not infer nonsense. 

o Completeness: 𝒜 is complete if KB ⊨ 𝛼 implies KB ⊢𝒜 𝛼. 
𝒜 can infer any sentence KB entails. 

• Truth Table Enumeration: Checks all 2% truth assignments 
to verify KB entails 𝛼 (DFS). 

o Time: 𝑂(2(); Space: 𝑂(𝑛). 
o Sound and complete. 

• Resolution: 
o Conjunctive Normal Form (CNF): Conjunction of disjunctive 

sentences, 𝑅% ∧ 𝑅' ∧ …∧ 𝑅(. 
o Sound and complete. 
o Rules: 

1. Convert 𝛼 ⇔ 𝛽 to (𝛼 ⇒ 𝛽) ∧ (𝛽 ⇒ 𝛼). 
2. Convert 𝛼 ⇒ 𝛽 to ¬𝛼 ∨ 𝛽. 
3. Convert ¬(𝛼 ∨ 𝛽) to ¬𝛼 ∧ ¬𝛽  
4. Convert ¬(𝛼 ∧ 𝛽) to ¬𝛼 ∨ ¬𝛽. 
5. Convert ¬(¬𝛼) to 𝛼. 
6. Convert (𝛼 ∨ (𝛽 ∧ 𝛾)) to (𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾). 

o Show that 𝐾𝐵 ∧ ¬𝛼 is unsatisfiable. 
o 𝑅%: 𝛼 ∨ 𝛾 and 𝑅': 𝛽 ∨ ¬𝛾 are resolved to 𝛼 ∨ 𝛽. 

8. Uncertainty 
• Bayes Rule:  

Pr[𝐴|𝐵] =
Pr[𝐵|𝐴] ⋅ Pr	[𝐴]

Pr	[𝐵]  

• Chain Rule:  

Pr[𝑅", 𝑅$, … , 𝑅&] = < Pr	[𝑅'|𝑅", 𝑅$, … , 𝑅'("]
')",$,…,&

 

• Path Blocking Scenario: 

   
𝑣 is given 𝑣 is given 𝑣 is not given 

• Suppose given 𝑆, all 𝑇", 𝑇$, … , 𝑇%(" are independent, then: 
Pr[𝑇", 𝑇$, … , 𝑇%(", 𝑆] = Pr[𝑇"|𝑆] ⋅ … ⋅ Pr[𝑇%("|𝑆] ⋅ Pr	[𝑆] 
o A joint distribution for 𝑛 Boolean random variables results 

in at least 2( − 1 entries. 
o A joint distribution for 𝑛 Boolean random variables with 

conditional independence results in 2𝑛 − 1 entries. 
 


