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CS3244 Machine Learning 
AY2021/22 Semester 2 

 
1. Concept Learning 
 
1.1. Definitions 

• Concept: A boolean-valued function over a set of input 
instances (each comprising input attributes). 

• Hypothesis Space (!): Each hypothesis ℎ ∈ ! (ℎ: % →
{0,1}) is represented by a conjunction of constraints on 
input attributes.  

o Each constraint can be a specific value, 
don’t care (?), or no value allowed (∅). 

o An input instance . ∈ % satisfies a 
hypothesis ℎ ∈ ! if and only if ℎ(.) = 1. In 
other words, ℎ classifies . as a +ve example. 

• Concept Learning: Given an unknown target concept 
2: % → {0,1} and noise-free training examples 3: +ve 
and -ve examples of the target concept, determine a 
hypothesis ℎ ∈ ! that is consistent with 3. 

o A hypothesis ℎ is consistent with a set of 
training examples 3 if and only if ℎ(.) = 2(.) 
for all 〈., 2(.)〉 ∈ 3. 

o ℎ is consistent with 3 if and only if every +ve 
training instance satisfies ℎ and every -ve 
training instance does not satisfy ℎ. 

• Inductive Learning Assumption: Any hypothesis found 
to approximate the targe function well over a 
sufficiently large set of training examples will also 
approximate the target function well over other 
unobserved examples. 

• Version Space (67
!,#

): The version space (67
!,#

) w.r.t. 
hypothesis space ! and training examples 3, is the 
subset of hypotheses from ! consistent with 3: 

67
!,#

= {ℎ ∈ !	|	ℎ	is	consistent	with	3} 
o If 2 ∈ !, then a large enough 3 can reduce 

67
!,#

 to {2}. 
o If 3 is insufficient, then 67

!,#
 represents the 

uncertainty of what the target concept is. 
o The general boundary C of 67

!,#
 is the set of 

maximally general members of ! consistent 
with 3. 

o The specific boundary 7 of 67
!,#

 is the set of 
maximally specific members of ! consistent 
with 3. 

o Version Space Representation Theorem 
(VSRT): 

																																					67
!,#

= {ℎ ∈ !	|	∃E ∈ 7	∃F ∈ C, F ≥
$
ℎ ≥

$
E} 

o An input instance . satisfies every 
hypothesis in 67

!,#
 if and only if . satisfies 

every member of 7. 

o An input instance . satisfies none of the 
hypotheses in 67

!,#
 if and only if . satisfies 

none of the members of C. 
 
1.2. Properties of Hypotheses 

• ℎ
%
 is more general than or equal to ℎ

&
 (ℎ

%
≥
$
ℎ
&
) if and 

only if any input instance . that satisfies ℎ
&
 also 

satisfies ℎ
%
: 
∀. ∈ %, (ℎ

&
(.) = 1) → (ℎ

%
(.) = 1) 

o ≥
$
 relation defines a partial order (reflexive, 

antisymmetric and transitive). 
o ℎ

%
 is more general than ℎ

&
 if and only if 

ℎ
%
≥
$
ℎ
&
 and ℎ

&
≱
$
ℎ
%
. 

o ℎ
%
 is more specific than ℎ

&
 if and only if ℎ

&
 is 

more general than ℎ
%
. 

• Two hypotheses are syntactically distinct if any one of 
their attributes (specific values, ?, ∅) are different. 

• Two hypotheses are semantically distinct if any one of 
their attributes (specific values, ?) are different. 
Specially, all hypotheses containing ∅ are semantically 
identical. 

 
1.3. Find-S Algorithm 
 

1. Initialise ℎ to most specific hypothesis in ! 
2. For each positive training instance .: 
        For each attribute constraint J

'
 in ℎ: 

            If . satisfies J
'
 in ℎ: 

                Do nothing 
            Else: 
                Replace J

'
 by the next more general constraint that                              

d              is satisfied by . 
3. Output hypothesis ℎ 

 
• General idea: Start with most specific hypothesis. 

Whenever it wrongly classifies a +ve training example 
as -ve, minimally generalize it to satisfy the input 
instance. 

• Correctness: Suppose that 2 ∈ !. Then, ℎ
(
 is 

consistent with 3 = {〈.
&
, 2(.

&
)〉}

&)*,+,…,(
. 

• Limitations: 
o Cannot tell whether Find-S has learnt target 

concept. 
o Cannot tell when training examples are 

inconsistent (contain error or noise). 
o Picks a maximally specific ℎ. 
o Depending on !, there might be many 

maximally specific ℎ. 
 
1.4. List-Then-Eliminate Algorithm 
 

1. 6KLEMNO7PJ2K ← a list containing every hypothesis in ! 
2. For each training example 〈., 2(.)〉: 

        Remove from 6KLEMNO7PJ2K any hypothesis ℎ for which 
aaaaℎ(.) ≠ 2(.) 
3. Output the list of hypotheses in 6KLEMNO7PJ2K 

 
• General idea: Start with all hypotheses in !. Then 

eliminate any hypothesis found inconsistent with any 
training example. 

• Limitations: 
o Prohibitively expensive to exhaustively 

enumerate all hypotheses in finite !. 
 
1.5. Candidate-Elimination Algorithm 
 

1. C ← maximally general hypotheses in ! 
2. 7 ← maximally specific hypotheses in ! 
3. For each training example S: 
        If S is a +ve example: 
            Remove from C any hypothesis inconsistent with S 
            For each E ∈ 7 not consistent with S: 
                Remove E from 7 
                Add to 7 all minimal generalisations ℎ of E such that 
aaaaaaaaaaa ℎ is consistent with S and some member of C is 
aaaaaaaaaaaamore general than or equal to ℎ 
                Remove from 7 any hypothesis that is more general 
aaaaaaaaaaaathan another hypothesis in 7 
        If S is a -ve example: 
            Remove from 7 any hypothesis inconsistent with S 
            For each F ∈ C not consistent with S: 
                Remove F from C 
                Add to C all minimal specialisations ℎ of F such that 
aaaaaaaaaaaaℎ is consistent with S and some member of 7 is 
aaaaaaaaaaaamore specific than or equal to ℎ 
                Remove from C any hypothesis that is more 
aaaaaaaaaaaaspecific than another hypothesis in C 

 
• Limitations: 

o 7 and C may reduce to ∅ with error/noise in 
training data. 

o 7 and C may reduce to ∅ with insufficiently 
expressive hypothesis representation 
(biased hypothesis space where 2 ∉ !). 

• Active learner should query input instance that 
satisfies exactly half of hypotheses in version space, 
so that version space reduces by half with each 
training example and requires at least Ulog

+
X67

!,#
XY 

examples to find target concept 2. 
• Inductive Bias: Z = {2 ∈ !} 

 
 
2. Decision Tree 
 
2.1. Decision Tree Algorithm 
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• Number of distinct binary decision trees with [ 
Boolean attributes: 2+! 

function ]^_`a(K.J[PbKE, JccLMdecKE, PJLKOc_K.J[PbKE): 
if K.J[PbKE is empty then return 

g]h`_]ijk_6_]h^(PJLKOc_K.J[PbKE) 
else if all K.J[PbKE have the same classification then 

return the classification 
else if JccLMdecKE is empty then return 

g]h`_]ijk_6_]h^(K.J[PbKE) 
else: 
    _ ← JLF[J.

-∈-//0'12/34
Imporance(J, K.J[PbKE) 

    cLKK ← a new decision tree with root test _ 
    for each value q

&
 of _ do: 

        K.E ← {K: K ∈ K.J[PbKE	and	K. _ = q
&
} 

        EedcLKK ← Learn(K.E, JccLMdecKE − _, K.J[PbKE) 
        add a branch to cLKK with label (_ = q

&
) and subtree 

EedcLKK 
    return cLKK 

 
2.2. Entropy and Information Gain 

• Entropy: Entropy measures uncertainty of 2 ∈
{2
*
, … , 2

&
}: 

!(2) = ^(log
+
g(2

'
)) = −wg(2

'
) log

+
g(2

'
)

&

')*

 

o Entropy of Boolean function that is true with 
probability x: 

Z(x) = −x log
+
x − (1 − x) log

+
(1 − x) 

o Entropy of target concept 2 with a training 
set containing P +ve examples and O -ve 
examples: 

!(2) = Z y
P

P + O
{ = −

P

P + O
log

+

P

P + O

−
O

P + O
log

+

O

P + O
 

For example,  
if P = O ≠ 0, !(2) = 1 (maximum uncertainty) 
if P = 0, O ≠ 0, !(2) = 0 (no uncertainty) 

 
• Information Gain: Expected reduction in entropy from 

the attribute test on _: 
CJMO(2, _) = Z y

P

P + O
{ − !(2|_) 

o Expected remaining entropy after testing _: 

!(2|_) = ^ |Z y
P
'

P
'
+ O

'

{} =w
P
'
+ O

'

P + O
Z y

P
'

P
'
+ O

'

{

5

')*

 

o Continuous-valued attributes: Partition into a 
discrete set of intervals. 

o Attributes with many values: Use CJMO`JcMN: 

CJMO`JcMN(~, _) =
CJMO(~, _)

7PbMciO�NL[JcMNO(~, _)
 

7PbMciO�NL[JcMNO(~, _) = −w
|
'̂
|

|^|
log

+

|
'̂
|

|^|

5

')*

 

where 
'̂
 is the subsets of ^ divided by _. 

o Attributes with differing costs: Use 
CJMO+(~, _)

~NEc(_)
 

26-'((8,9) − 1
(~NEc(_) + 1);

 

where Ä ∈ [0,1] denotes importance of cost. 
o Attributes with missing values: 

§ Assign most common value 
§ Assign most common value with 

same value of target concept 
§ Assign probability P

'
 to each 

possible values 
• Inductive Bias of Decision Tree Learning: 

(a) Shorter trees are preferred. 
(b) Trees that place high information gain attributes 
close to the root are preferred. 

o Occam’s Razor: Prefer shortest/simplest 
hypothesis that fits the data. 

§ Short hypothesis unlikely to be 
coincidence 

§ Many ways to define small set of 
hypotheses 

§ Can be obtained using different 
hypothesis representations 

 
2.4. Overfitting 

• Hypothesis ℎ ∈ ! overfits the set 3 of training 
examples if and only if 

∃ℎ< ∈ !\{ℎ}	s. t.	 
(KLLNL

#
(ℎ) < KLLNL

#
(ℎ<)) ∧ (KLLNL

#"(ℎ) > KLLNL
#"(ℎ

<)) 
where KLLNL

#
(ℎ) and KLLNL

#"(ℎ) denotes errors of ℎ 
over 3 and set 3

=
 of examples corresponding to 

instance space %. 
• How to select best decision tree? 

o Measure performance over training data. 
o Measure performance over a separate 

validation data set. 
o Minimise 

EMáK(cLKK)	&	EMáK([ME2bJEEM�M2JcMNOE(cLKK)) 
• Avoiding overfitting: 

o Stop growing decision tree when expanding 
a node is not statistically significant. 

o Allow decision tree to grow and overfit the 
data, then post-prune it. 

• Pruning: 
o Reduced-Error Pruning 

 
Partition data into training and validation 
sets 
Do until further pruning is harmful: 
1. Evaluate impact on validation set of 
pruning each possible node 

2. Greedily remove the one that most 
improves validation set accuracy 

 
o Rule Post-Pruning 

 
1. Convert learning decision tree to an 
equivalent set of rules 
2. Prune each rule by removing any 
precondition that improves its estimated 
accuracy 
3. Sort pruned rules by estimated 
accuracy into desired sequence for use 
when classifying unobserved input 
instances 

 
 
3. Neural Network 
 
3.1. Perceptron Training Rule 

• Perceptron Unit: 
N(.

*
, … , .

(
) = { 1

−1
, if	Ä

>
+ Ä

*
.
*
+⋯+ Ä

(
.
(
> 0

, otherwise																																					
 

Ä
>
+ Ä

*
.
*
+⋯+ Ä

(
.
(
 can also be written as ã ⋅ ç. 

• Perception Training Rule: Initialise ã randomly, apply 
perception training rule to every training example, and 
iterate through all training examples till ã is consistent: 

Ä
'
← Ä

'
+ ΔÄ

'
, ΔÄ

'
= è(c − N).

'
 

for M = 0,1,2, … , O where 
o c = 2(ç) is the target output; 
o N = N(ç) is the perceptron output; 
o è is some small +ve constant called learning 

rate. 
It is guaranteed to converge if training examples are 
linearly separable and è is sufficiently small. 
 

3.2. Linear Unit Training Rule with Gradient Descent 
• Loss function: ]

#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#
 

• Training rule: Initialise ã randomly, and then 
repeatedly updating it in the direction of steepest 
descent: 

ã ← ã + ëã,			ëã = −è∇]
#
(ã) 

o Gradient: ∇]
#
(ã) = ì

?@#
?;$

,
?@#
?;%

, … ,
?@#
?;&

î 
 

1. Initialise each Ä
'
 to some small random value 

2. Until termination condition is met, do: 
2.1. Initialise each ΔÄ

'
 to zero 

2.2. For each S ∈ 3, do: 
    2.2.1. Input instance ç

5
 to linear unit and compute N 

    2.2.2. For each linear unit weight Ä
'
, do 

ΔÄ
'
← ΔÄ

'
+ è(c − N).

'5
 

2.3. For each linear unit weight Ä
'
, do 

Ä
'
← Ä

'
+ ΔÄ

'
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3.3. Stochastic Gradient Descent 
• Batch Gradient Descent: 

 
Do until satisfied: 
1. Compute gradient ∇]

#
(ã) 

2. ã ← ã − è∇]
#
(ã)  

where ]
#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#
 

 
 

• Stochastic Gradient Descent: 
 

Do until satisfied: 
For each training example S ∈ 3 
    1. Compute gradient ∇]

5
(ã) 

    2. ã ← ã − è∇]
#
(ã)  

    where ]
#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#
 

 
 

3.4. Backpropagation Algorithm 
• Sigmoid Unit: ï(OKc) = *

*A3
'&() 

o 5B((3/)

5(3/

= ï(OKc)ñ1 − ï(OKc)ó 
• Backpropagation: Initialise ã randomly, propagate 

input forward and then errors backward through the 
network for each training example. 

 
Initialise all network weights to small random numbers. 
Do until satisfied: 

For each training example 〈ç, (c
&
)
&∈C

D 〉 do 
    1. Input instance ç to the network and compute output   

															of every sigmoid unit in the hidden and output layers. 
    2. For each output unit ò, compute error ô

&
← N

&
(1 −

															N
&
)(c

&
− N

&
) 

    3. For each hidden unit ℎ, compute error ô
E
← N

E
(1 −

															N
E
)∑ Ä

E&
ô
&&∈C
 

    4. Update each weight Ä
E&
← Ä

E&
+ ΔÄ

E&
  

        where Δ
F*+ = èô

&
N
&
 

    5. Update each weight Ä
'E
← Ä

'E
+ ΔÄ

'E
  

        where Δ
F,* = èô

E
.
'
 

 
 
3.5. Alternative Loss Functions 

• Penalise large weights: 
]
#
(ã) =

1

2
ww(c

&5
− N

&5
)+

&∈C5∈#

+ öwÄ
%,G

+

%,G

 

• Train on target values as well as slopes: 

]
#
(ã) =

1

2
wwõ(c

&5
− N

&5
)+ + úwy

ùc
&5

ù.
'5

−
ùN

&5

ù.
'5

{
+

(

')*

û
&∈C5∈#

 

• Tie together weights 
 

 

4. Bayesian Inference 
 
4.1. Bayes Theorem 

g(ℎ|3) =
g(3|ℎ)g(ℎ)

g(3)
 

• g(ℎ): Prior belief of hypothesis ℎ 
• g(3|ℎ): Likelihood of data 3 given ℎ 
• g(3) = ∑ g(3|ℎ)g(ℎ)	

E∈!
: Marginal likelihood of 3 

• g(ℎ|3): Posterior belief of ℎ given 3 
 
4.2. Choosing Hypothesis 

• Maximum a posteriori hypothesis: 
ℎ
I9J

= argmax
E∈!

g(ℎ|3) = argmax
E∈!

g(3|ℎ)g(ℎ) 

• Maximum likelihood hypothesis: Used when g(ℎ) =
g(ℎ<) for all ℎ, ℎ< ∈ !. 

ℎ
I@

= argmax
E∈!

g(3|ℎ) 

• Minimum description length: 
ℎ
I#@

= argmin
E∈!

]
8%(ℎ) + ]8-(3|ℎ) 

o ]
8
(.) is the description length of . under 

encoding ~. 
 
4.3. Classification 

• Bayes-optimal classification: 
argmax

/∈K

g(c|3) = argmax
/∈K

wg(c|ℎ)g(ℎ|3)
E∈!

 

o Computationally costly if ! is large 
• Gibbs classifier: Sample a hypothesis ℎ from posterior 

belief g(ℎ|3) and use ℎ to classify new instance ç. 
• Naïve Bayes classifier:  

c
LM

= argmax
/∈K

g(c)†g(.
'
|c)

(

')*

 

o Naïve Bayes assumption:  

g(.
*
, .
+
, … , .

(
|c) =†g(.

'
|c)

(

')*

 

 
NAÏVE_BAYES_LEARN(3) 

for each value of target output c do 
    g°(c) ← estimate g(c) using 3 
    for each value of attribute .

'
 do 

        g°(.
'
|c) ← estimate g(.

'
|c) using 3 

 
CLASSIFY_NEW_INSTANCE(ç) 
    	
				c

LM
= argmax

/∈K

g°(c)∏ g°(.
'
|c)(

')*
	 

 
 

o Bayesian estimate: Used when none of the 
training instances with target value c has 
attribute .

'
. 

g°(.
'
|c) =

X3
/N,X + [P

|3
/
| + [

 

where |3
/N,| is the number of training examples with target output 

value c and attribute value .
'
; |3

/
| is the number of training 

examples with target output value c; P is the prior estimate for 
g°(.

'
|c) and [ is weight given to prior P. 

 
4.4. Expectation Maximization 
 

• EM Algorithm 
 

Pick random initial ℎ = 〈ú
*
, ú

+
〉. Then, iterate 

 
E step: Calculate the expected value £[á

5O
] of each 

hidden/latent variable á
5O

, assuming the current hypothesis 
ℎ = 〈ú

*
, ú

+
〉 holds. 

£[á
5O
] =

P(.
5
|ú
O
)

∑ P(.
5
|ú
G
)+

G)*

=
KP

*

+B
-(N.PQ!)-

∑ KP
*

+B
-(N.PQ/)-+

G)*

 

 
M step: Calculate a new ML hypothesis ℎ< = 〈ú

*

< , ú
+
′〉, 

assuming the value taken on by each latent variable á
5O

 is its 
expected value £[á

5O
] computed above. Replace ℎ by ℎ< =

〈ú
*

< , ú
+
′〉. 

ú
O

< =
∑ £[á

5O
].
5

	

5∈#

∑ £[á
5O
]

5∈#

 

 
 

• General EM Algorithm: Given 
o Observed data {ç

5
}
5∈#

 
o Unobserved data {•

5
}
5∈#

 where á
5
=

〈á
5*
, … , á

5I
〉 

o Parametrised probability distribution P(3|ℎ) 
where 3 = {S} is the complete data where 
S = 〈ç

5
, •
5
〉 and ℎ comprises the parameters 

Determine ML hypothesis ℎ′ that locally 
maximises £[ln P(3|ℎ<)]. 

 
Define function ¶(ℎ<|ℎ) = £[ln P(3|ℎ<)|ℎ , {ç

5
}
5∈#

0] given 
current parameters ℎ and observed data {ç

5
}
5∈#

 to estimate 
the latent variables {•

5
}
5∈#

. 
 
Pick random initial ℎ. Then, iterate 
 
E Step: Calculate ¶(ℎ|ℎ<) using current hypothesis ℎ and 
observed data {ç

5
}
5∈#

 to estimate the latent variables 
{•
5
}
5∈#

. 
¶(ℎ<|ℎ) ← £[ln P(3|ℎ<)|ℎ , {ç

5
}
5∈#

] 
 
M Step: Replace hypothesis ℎ by the hypothesis ℎ′ that 
maximizes this ¶ function:  

ℎ ← argmax
E<

¶(ℎ<|ℎ) 

 


