
Cheatsheet Produced by Tian Xiao

CS3244 Machine Learning
AY2021/22 Semester 2

1. Concept Learning

1.1. Definitions

• Concept: A boolean-valued function over a set of input
instances (each comprising input attributes).

• Hypothesis Space (!): Each hypothesis ℎ ∈ ! (ℎ: % →
{0,1}) is represented by a conjunction of constraints on
input attributes.

o Each constraint can be a specific value,
don’t care (?), or no value allowed (∅).

o An input instance . ∈ % satisfies a
hypothesis ℎ ∈ ! if and only if ℎ(.) = 1. In
other words, ℎ classifies . as a +ve example.

• Concept Learning: Given an unknown target concept
2: % → {0,1} and noise-free training examples 3: +ve
and -ve examples of the target concept, determine a
hypothesis ℎ ∈ ! that is consistent with 3.

o A hypothesis ℎ is consistent with a set of
training examples 3 if and only if ℎ(.) = 2(.)
for all 〈., 2(.)〉 ∈ 3.

o ℎ is consistent with 3 if and only if every +ve
training instance satisfies ℎ and every -ve
training instance does not satisfy ℎ.

• Inductive Learning Assumption: Any hypothesis found
to approximate the targe function well over a
sufficiently large set of training examples will also
approximate the target function well over other
unobserved examples.

• Version Space (67
!,#

): The version space (67
!,#

) w.r.t.
hypothesis space ! and training examples 3, is the
subset of hypotheses from ! consistent with 3:

67
!,#

= {ℎ ∈ !	|	ℎ	is	consistent	with	3}
o If 2 ∈ !, then a large enough 3 can reduce

67
!,#

 to {2}.
o If 3 is insufficient, then 67

!,#
 represents the

uncertainty of what the target concept is.
o The general boundary C of 67

!,#
 is the set of

maximally general members of ! consistent
with 3.

o The specific boundary 7 of 67
!,#

 is the set of
maximally specific members of ! consistent
with 3.

o Version Space Representation Theorem
(VSRT):

																																					67
!,#

= {ℎ ∈ !	|	∃E ∈ 7	∃F ∈ C, F ≥
$
ℎ ≥

$
E}

o An input instance . satisfies every
hypothesis in 67

!,#
 if and only if . satisfies

every member of 7.

o An input instance . satisfies none of the
hypotheses in 67

!,#
 if and only if . satisfies

none of the members of C.

1.2. Properties of Hypotheses

• ℎ
%
 is more general than or equal to ℎ

&
 (ℎ

%
≥
$
ℎ
&
) if and

only if any input instance . that satisfies ℎ
&
 also

satisfies ℎ
%
:
∀. ∈ %, (ℎ

&
(.) = 1) → (ℎ

%
(.) = 1)

o ≥
$
 relation defines a partial order (reflexive,

antisymmetric and transitive).
o ℎ

%
 is more general than ℎ

&
 if and only if

ℎ
%
≥
$
ℎ
&
 and ℎ

&
≱
$
ℎ
%
.

o ℎ
%
 is more specific than ℎ

&
 if and only if ℎ

&
 is

more general than ℎ
%
.

• Two hypotheses are syntactically distinct if any one of
their attributes (specific values, ?, ∅) are different.

• Two hypotheses are semantically distinct if any one of
their attributes (specific values, ?) are different.
Specially, all hypotheses containing ∅ are semantically
identical.

1.3. Find-S Algorithm

1. Initialise ℎ to most specific hypothesis in !
2. For each positive training instance .:
 For each attribute constraint J

'
 in ℎ:

 If . satisfies J
'
 in ℎ:

 Do nothing
 Else:
 Replace J

'
 by the next more general constraint that

d is satisfied by .
3. Output hypothesis ℎ

• General idea: Start with most specific hypothesis.

Whenever it wrongly classifies a +ve training example
as -ve, minimally generalize it to satisfy the input
instance.

• Correctness: Suppose that 2 ∈ !. Then, ℎ
(
 is

consistent with 3 = {〈.
&
, 2(.

&
)〉}

&)*,+,…,(
.

• Limitations:
o Cannot tell whether Find-S has learnt target

concept.
o Cannot tell when training examples are

inconsistent (contain error or noise).
o Picks a maximally specific ℎ.
o Depending on !, there might be many

maximally specific ℎ.

1.4. List-Then-Eliminate Algorithm

1. 6KLEMNO7PJ2K ← a list containing every hypothesis in !
2. For each training example 〈., 2(.)〉:

 Remove from 6KLEMNO7PJ2K any hypothesis ℎ for which
aaaaℎ(.) ≠ 2(.)
3. Output the list of hypotheses in 6KLEMNO7PJ2K

• General idea: Start with all hypotheses in !. Then

eliminate any hypothesis found inconsistent with any
training example.

• Limitations:
o Prohibitively expensive to exhaustively

enumerate all hypotheses in finite !.

1.5. Candidate-Elimination Algorithm

1. C ← maximally general hypotheses in !
2. 7 ← maximally specific hypotheses in !
3. For each training example S:
 If S is a +ve example:
 Remove from C any hypothesis inconsistent with S
 For each E ∈ 7 not consistent with S:
 Remove E from 7
 Add to 7 all minimal generalisations ℎ of E such that
aaaaaaaaaaa ℎ is consistent with S and some member of C is
aaaaaaaaaaaamore general than or equal to ℎ
 Remove from 7 any hypothesis that is more general
aaaaaaaaaaaathan another hypothesis in 7
 If S is a -ve example:
 Remove from 7 any hypothesis inconsistent with S
 For each F ∈ C not consistent with S:
 Remove F from C
 Add to C all minimal specialisations ℎ of F such that
aaaaaaaaaaaaℎ is consistent with S and some member of 7 is
aaaaaaaaaaaamore specific than or equal to ℎ
 Remove from C any hypothesis that is more
aaaaaaaaaaaaspecific than another hypothesis in C

• Limitations:

o 7 and C may reduce to ∅ with error/noise in
training data.

o 7 and C may reduce to ∅ with insufficiently
expressive hypothesis representation
(biased hypothesis space where 2 ∉ !).

• Active learner should query input instance that
satisfies exactly half of hypotheses in version space,
so that version space reduces by half with each
training example and requires at least Ulog

+
X67

!,#
XY

examples to find target concept 2.
• Inductive Bias: Z = {2 ∈ !}

2. Decision Tree

2.1. Decision Tree Algorithm

Cheatsheet Produced by Tian Xiao

• Number of distinct binary decision trees with [
Boolean attributes: 2+!

function]^_`a(K.J[PbKE, JccLMdecKE, PJLKOc_K.J[PbKE):
if K.J[PbKE is empty then return

g]h`_]ijk_6_]h^(PJLKOc_K.J[PbKE)
else if all K.J[PbKE have the same classification then

return the classification
else if JccLMdecKE is empty then return

g]h`_]ijk_6_]h^(K.J[PbKE)
else:
 _ ← JLF[J.

-∈-//0'12/34
Imporance(J, K.J[PbKE)

 cLKK ← a new decision tree with root test _
 for each value q

&
 of _ do:

 K.E ← {K: K ∈ K.J[PbKE	and	K. _ = q
&
}

 EedcLKK ← Learn(K.E, JccLMdecKE − _, K.J[PbKE)
 add a branch to cLKK with label (_ = q

&
) and subtree

EedcLKK
 return cLKK

2.2. Entropy and Information Gain

• Entropy: Entropy measures uncertainty of 2 ∈
{2
*
, … , 2

&
}:

!(2) = ^(log
+
g(2

'
)) = −wg(2

'
) log

+
g(2

'
)

&

')*

o Entropy of Boolean function that is true with
probability x:

Z(x) = −x log
+
x − (1 − x) log

+
(1 − x)

o Entropy of target concept 2 with a training
set containing P +ve examples and O -ve
examples:

!(2) = Z y
P

P + O
{ = −

P

P + O
log

+

P

P + O

−
O

P + O
log

+

O

P + O

For example,
if P = O ≠ 0, !(2) = 1 (maximum uncertainty)
if P = 0, O ≠ 0, !(2) = 0 (no uncertainty)

• Information Gain: Expected reduction in entropy from

the attribute test on _:
CJMO(2, _) = Z y

P

P + O
{ − !(2|_)

o Expected remaining entropy after testing _:

!(2|_) = ^ |Z y
P
'

P
'
+ O

'

{} =w
P
'
+ O

'

P + O
Z y

P
'

P
'
+ O

'

{

5

')*

o Continuous-valued attributes: Partition into a
discrete set of intervals.

o Attributes with many values: Use CJMO`JcMN:

CJMO`JcMN(~, _) =
CJMO(~, _)

7PbMciO�NL[JcMNO(~, _)

7PbMciO�NL[JcMNO(~, _) = −w
|
'̂
|

|^|
log

+

|
'̂
|

|^|

5

')*

where
'̂
 is the subsets of ^ divided by _.

o Attributes with differing costs: Use
CJMO+(~, _)

~NEc(_)

26-'((8,9) − 1
(~NEc(_) + 1);

where Ä ∈ [0,1] denotes importance of cost.
o Attributes with missing values:

§ Assign most common value
§ Assign most common value with

same value of target concept
§ Assign probability P

'
 to each

possible values
• Inductive Bias of Decision Tree Learning:

(a) Shorter trees are preferred.
(b) Trees that place high information gain attributes
close to the root are preferred.

o Occam’s Razor: Prefer shortest/simplest
hypothesis that fits the data.

§ Short hypothesis unlikely to be
coincidence

§ Many ways to define small set of
hypotheses

§ Can be obtained using different
hypothesis representations

2.4. Overfitting

• Hypothesis ℎ ∈ ! overfits the set 3 of training
examples if and only if

∃ℎ< ∈ !\{ℎ}	s. t.	
(KLLNL

#
(ℎ) < KLLNL

#
(ℎ<)) ∧ (KLLNL

#"(ℎ) > KLLNL
#"(ℎ

<))
where KLLNL

#
(ℎ) and KLLNL

#"(ℎ) denotes errors of ℎ
over 3 and set 3

=
 of examples corresponding to

instance space %.
• How to select best decision tree?

o Measure performance over training data.
o Measure performance over a separate

validation data set.
o Minimise

EMáK(cLKK)	&	EMáK([ME2bJEEM�M2JcMNOE(cLKK))
• Avoiding overfitting:

o Stop growing decision tree when expanding
a node is not statistically significant.

o Allow decision tree to grow and overfit the
data, then post-prune it.

• Pruning:
o Reduced-Error Pruning

Partition data into training and validation
sets
Do until further pruning is harmful:
1. Evaluate impact on validation set of
pruning each possible node

2. Greedily remove the one that most
improves validation set accuracy

o Rule Post-Pruning

1. Convert learning decision tree to an
equivalent set of rules
2. Prune each rule by removing any
precondition that improves its estimated
accuracy
3. Sort pruned rules by estimated
accuracy into desired sequence for use
when classifying unobserved input
instances

3. Neural Network

3.1. Perceptron Training Rule

• Perceptron Unit:
N(.

*
, … , .

(
) = { 1

−1
, if	Ä

>
+ Ä

*
.
*
+⋯+ Ä

(
.
(
> 0

, otherwise																																					

Ä
>
+ Ä

*
.
*
+⋯+ Ä

(
.
(
 can also be written as ã ⋅ ç.

• Perception Training Rule: Initialise ã randomly, apply
perception training rule to every training example, and
iterate through all training examples till ã is consistent:

Ä
'
← Ä

'
+ ΔÄ

'
, ΔÄ

'
= è(c − N).

'

for M = 0,1,2, … , O where
o c = 2(ç) is the target output;
o N = N(ç) is the perceptron output;
o è is some small +ve constant called learning

rate.
It is guaranteed to converge if training examples are
linearly separable and è is sufficiently small.

3.2. Linear Unit Training Rule with Gradient Descent
• Loss function:]

#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#

• Training rule: Initialise ã randomly, and then
repeatedly updating it in the direction of steepest
descent:

ã ← ã + ëã,			ëã = −è∇]
#
(ã)

o Gradient: ∇]
#
(ã) = ì

?@#
?;$

,
?@#
?;%

, … ,
?@#
?;&

î

1. Initialise each Ä
'
 to some small random value

2. Until termination condition is met, do:
2.1. Initialise each ΔÄ

'
 to zero

2.2. For each S ∈ 3, do:
 2.2.1. Input instance ç

5
 to linear unit and compute N

 2.2.2. For each linear unit weight Ä
'
, do

ΔÄ
'
← ΔÄ

'
+ è(c − N).

'5

2.3. For each linear unit weight Ä
'
, do

Ä
'
← Ä

'
+ ΔÄ

'

Cheatsheet Produced by Tian Xiao

3.3. Stochastic Gradient Descent
• Batch Gradient Descent:

Do until satisfied:
1. Compute gradient ∇]

#
(ã)

2. ã ← ã − è∇]
#
(ã)

where]
#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#

• Stochastic Gradient Descent:

Do until satisfied:
For each training example S ∈ 3
 1. Compute gradient ∇]

5
(ã)

 2. ã ← ã − è∇]
#
(ã)

 where]
#
(ã) =

*

+

∑ (c
5
− N

5
)+

5∈#

3.4. Backpropagation Algorithm
• Sigmoid Unit: ï(OKc) = *

*A3
'&()

o 5B((3/)

5(3/

= ï(OKc)ñ1 − ï(OKc)ó
• Backpropagation: Initialise ã randomly, propagate

input forward and then errors backward through the
network for each training example.

Initialise all network weights to small random numbers.
Do until satisfied:

For each training example 〈ç, (c
&
)
&∈C

D 〉 do
 1. Input instance ç to the network and compute output

															of every sigmoid unit in the hidden and output layers.
 2. For each output unit ò, compute error ô

&
← N

&
(1 −

															N
&
)(c

&
− N

&
)

 3. For each hidden unit ℎ, compute error ô
E
← N

E
(1 −

															N
E
)∑ Ä

E&
ô
&&∈C

 4. Update each weight Ä
E&
← Ä

E&
+ ΔÄ

E&

 where Δ
F*+ = èô

&
N
&

 5. Update each weight Ä
'E
← Ä

'E
+ ΔÄ

'E

 where Δ
F,* = èô

E
.
'

3.5. Alternative Loss Functions

• Penalise large weights:
]
#
(ã) =

1

2
ww(c

&5
− N

&5
)+

&∈C5∈#

+ öwÄ
%,G

+

%,G

• Train on target values as well as slopes:

]
#
(ã) =

1

2
wwõ(c

&5
− N

&5
)+ + úwy

ùc
&5

ù.
'5

−
ùN

&5

ù.
'5

{
+

(

')*

û
&∈C5∈#

• Tie together weights

4. Bayesian Inference

4.1. Bayes Theorem

g(ℎ|3) =
g(3|ℎ)g(ℎ)

g(3)

• g(ℎ): Prior belief of hypothesis ℎ
• g(3|ℎ): Likelihood of data 3 given ℎ
• g(3) = ∑ g(3|ℎ)g(ℎ)	

E∈!
: Marginal likelihood of 3

• g(ℎ|3): Posterior belief of ℎ given 3

4.2. Choosing Hypothesis

• Maximum a posteriori hypothesis:
ℎ
I9J

= argmax
E∈!

g(ℎ|3) = argmax
E∈!

g(3|ℎ)g(ℎ)

• Maximum likelihood hypothesis: Used when g(ℎ) =
g(ℎ<) for all ℎ, ℎ< ∈ !.

ℎ
I@

= argmax
E∈!

g(3|ℎ)

• Minimum description length:
ℎ
I#@

= argmin
E∈!

]
8%(ℎ) +]8-(3|ℎ)

o]
8
(.) is the description length of . under

encoding ~.

4.3. Classification

• Bayes-optimal classification:
argmax

/∈K

g(c|3) = argmax
/∈K

wg(c|ℎ)g(ℎ|3)
E∈!

o Computationally costly if ! is large
• Gibbs classifier: Sample a hypothesis ℎ from posterior

belief g(ℎ|3) and use ℎ to classify new instance ç.
• Naïve Bayes classifier:

c
LM

= argmax
/∈K

g(c)†g(.
'
|c)

(

')*

o Naïve Bayes assumption:

g(.
*
, .
+
, … , .

(
|c) =†g(.

'
|c)

(

')*

NAÏVE_BAYES_LEARN(3)

for each value of target output c do
 g°(c) ← estimate g(c) using 3
 for each value of attribute .

'
 do

 g°(.
'
|c) ← estimate g(.

'
|c) using 3

CLASSIFY_NEW_INSTANCE(ç)
 	
				c

LM
= argmax

/∈K

g°(c)∏ g°(.
'
|c)(

')*
	

o Bayesian estimate: Used when none of the
training instances with target value c has
attribute .

'
.

g°(.
'
|c) =

X3
/N,X + [P

|3
/
| + [

where |3
/N,| is the number of training examples with target output

value c and attribute value .
'
; |3

/
| is the number of training

examples with target output value c; P is the prior estimate for
g°(.

'
|c) and [is weight given to prior P.

4.4. Expectation Maximization

• EM Algorithm

Pick random initial ℎ = 〈ú
*
, ú

+
〉. Then, iterate

E step: Calculate the expected value £[á

5O
] of each

hidden/latent variable á
5O

, assuming the current hypothesis
ℎ = 〈ú

*
, ú

+
〉 holds.

£[á
5O
] =

P(.
5
|ú
O
)

∑ P(.
5
|ú
G
)+

G)*

=
KP

*

+B
-(N.PQ!)-

∑ KP
*

+B
-(N.PQ/)-+

G)*

M step: Calculate a new ML hypothesis ℎ< = 〈ú

*

< , ú
+
′〉,

assuming the value taken on by each latent variable á
5O

 is its
expected value £[á

5O
] computed above. Replace ℎ by ℎ< =

〈ú
*

< , ú
+
′〉.

ú
O

< =
∑ £[á

5O
].
5

	

5∈#

∑ £[á
5O
]

5∈#

• General EM Algorithm: Given
o Observed data {ç

5
}
5∈#

o Unobserved data {•

5
}
5∈#

 where á
5
=

〈á
5*
, … , á

5I
〉

o Parametrised probability distribution P(3|ℎ)
where 3 = {S} is the complete data where
S = 〈ç

5
, •
5
〉 and ℎ comprises the parameters

Determine ML hypothesis ℎ′ that locally
maximises £[ln P(3|ℎ<)].

Define function ¶(ℎ<|ℎ) = £[ln P(3|ℎ<)|ℎ , {ç

5
}
5∈#

0] given
current parameters ℎ and observed data {ç

5
}
5∈#

 to estimate
the latent variables {•

5
}
5∈#

.

Pick random initial ℎ. Then, iterate

E Step: Calculate ¶(ℎ|ℎ<) using current hypothesis ℎ and
observed data {ç

5
}
5∈#

 to estimate the latent variables
{•
5
}
5∈#

.
¶(ℎ<|ℎ) ← £[ln P(3|ℎ<)|ℎ , {ç

5
}
5∈#

]

M Step: Replace hypothesis ℎ by the hypothesis ℎ′ that
maximizes this ¶ function:

ℎ ← argmax
E<

¶(ℎ<|ℎ)

