CS5234 Algorithms at Scale
Notes

AY2024/25 Semester 1 - Prepared by Tian Xiao @snoidetz

1 Sampling

Probability bounds:

e Markov bound: Let X be a non-negative r.v., then for any

t>0,
PrX >t < M
e Chebychev bound: Let X be a r.v. For any t > 0,
PrllX — BX]| > 1) < V2K

e Chernoff bound: Let Xi,---,X; be independent r.v. € {0,1},
X =3, X; and p = E[X], then

"
Pr[X > (1+e)pu] < (uiw) for any € > 0;
676
_ P
Prix < (1= o) < (=5
> Simplified Chernoff bounds:
62
Pr[X > (14 €)u] < e~ 3 for any € € (0, 1);

€

"
) for any € € (0,1).

521.
PriX <(1—epu] < e~ 2 for any € € (0,1);

52
Pr[|X — p| > ep] < 23 for any € € (0, 1).
e Hoeffding bound: Let X1, -, Xt be independent r.v., where X;
takes values from [a;,b;]. Let X =3, X; and p = E[X], then
2

2t
Pr[|X —p| > t] < 2e ZiC®i—2D?for any t > 0.

Median Approximation

Given a set of numbers S = {x1,z2, -+ ,Zm}, define rank(zx)
{z; € S| z; < x}|. Find a number x € S s.t. 7 —em < rank(z)
S+ em.

IN I

e Randomly pick one: W.p. 2¢ + %
e Median trick: Sample ¢t and use their median:
@ Fails when at least % samples are from Sy, or Sy;
@ X}, denotes the Bernoulli of k-th sample from S, or Sy ;

® >, Xk can apply Chernoff bound;
@ Sett=06 (672 log (%))

Reservoir Sampling

Find a uniform sample s from a stream zjxs3 - - -z, and we do not
know m. Each z; € [n].

@ Initialize s + x1;
(® On the arrival of each x;, s < x; W.p. %
e Space: O(logn).
> ¢ uniform samples without replacement: O(tlogn).

2 Distinct Elements

Streaming model: A sequence of tokens o102 -+ where each o € [n].

e Represented by frequency vector (fi,f2, -, fn), whree f; is
number of occurences of i.
e Turnstile model: Each token € [n] x {—L,---,L}.
> Each token (3,c) updates f; < fi +c.
o [fil+ fol 4 + | ful = m.
> Strict turnstile: Each f; > 0 at any point of time.
> Cash register: Each ¢ > 0 (no deletion).

e General aim: Use sublinear space, best O(logn + logm) space.

k-Universal hashing: For h € H picked randomly, for any = # x/,

the probability of them having the same hashing < ﬁ

Distinct Elements
Find the value of d(o) =3, fio.

Goal: Find an (e, d)-estimation:
Pr[|A(o) —d(o)| > e-d(0)] < 4.

e Algorithm 1:

(® Take a perfectly random hash function h : [n] — [n]; 2z + 0;
(@ For each token (i,),

> Let zeros(h(i)) be the maximum j such that 27 divides
h(3).
> If zeros(h(i)) > z, z + zeros(h()).
(® Output 25+
e Algorithm 1 + median trick (improves probability)
e Algorithm 1 + median trick + 2-universal hashing (improves
space)
> Guarantee: g < d < 3d w.p. at least 1 — § when t =
O(log $).
> Space: O(log % logn).

3 Frequency Moment

Frequency Moment

Problem: Find the value of Fj (o) =Y, fF.

Estimation: Find an (¢, §)-estimation:
Pr[|A(c) — Fy(o)| > €- Fi(0)] < 6.

e AMS estimator:

® Pick a token J uniformly at random using reservoir sam-

pling from a stream of length m;

(@ Maintain a counter to count m;

® Computer 7 == [{p > J | op = 0,}|;

® OutputX:m(rkfr -1),

> Analyzed using Chebyshev bound (depending on variance).

e AMS estimator 4+ median of mean trick.

Sketching: Let 01,02 be streams and o1 0 02 be their concatenation.
A data structure sk() is called a stretch if
COMB(sk(o1),sk(o2)) = sk(o1 0 02).

e Linear sketch: sk() is a linear function of the frequency vector.

F> Estimation
Problem: Find the value of Fy(c) =3, f2.
Estimation: Find an (¢, §)-estimation:

Pr[|A(o) — Fa(o)| > € Fa(o)] < 6.

e Another AMS sketch for turnstile models:
® Pick a hash function h — {—1,+1} uniformly at random
from a 4-universal family; z < 0;
(® For each token (i,c), z + z + ¢ - h(i);
(® Output 22.

e Another AMS sketch + median of mean trick

4 Heavy Hitter and Sparse Recovery

Heavy Hitters

For an insertion only model, find and output every item with fre-
quency > em.

Goal: Count: f; —em < count(i) < f; + em. Heavy hitter: return
every item with frequency > 2em and no item with frequency < em.

e Misra-Gries algorithm (deterministic):
@ Item-count pairs L < {};
@) For each token i:
> If ¢ € L then increment its count; else add (i,1) to L;
> If |[L| > k, decrement count of each stored item;
> Remove all items with count = 0;
(® For query j, if j € L then report the corresponding count;
else return 0.
> Space: O(e~!(logn + logm)).
> Guarantee:
* Count: f; —em < count(i) < f;.
* Heavy hitters: Return every item with frequence >
2em; no item with frequency < em.
e Count sketch algorithm:
@ Initialize an empty array C[1---t][1---k].
t = 6(log(1/5));
® Choose t independent hi,--- ,ht
universal family;
(® Choose t independent g1,---,g¢ : [n] — [~1,+1] from a
2-universal family;
(@ For each token (i, c):
> Forr=1,---,t,

Set k = 3/€2,

: [n] — [k] from a 2-

, Clr[he (9)] = Clr][hr (9)] + cgr(2);

(® For query j, return f; = mediany <,<¢ gr(3)C[r][hr(5)]-
> Space: O(e~21log(1/6)(logn + logm)).

)

> Guarantee: (e, d)-approximation.

1-Sparse Recovery

For a turnstile model, define the support of frequency vector f as
supp(f) :=={i € [n] : fi # 0}. We say f is s-sparse if |[supp(f)| < s.
Maintain a sketch sk of the stream s.t. if f is l-sparse, recover f
from sk; else detect non-sparsity.

e Algorithm:
@ £, z,p < 0 and pick a random 7 € F where n? < |F| < 2n?;
(® For each token (j,c):
> L0+
> 2z 4+ z+cj;
> p<—p+ crj;
® If £ =2z =p =0, output f is a O-vector; else if z/¢ ¢ [n],
output f is not l-sparse; else if p 7{&"2/2, output f is not
1-sparse; else output f by setting f; = £ if i = z/¢ and 0
otherwise.
> Space: O(logn).
> s-sparse recovery can be reduced to l-sparse recovery by
using hash functions to split the stream.

5 Lower Bound

Lower bound using reduction: Let @ be some streaming problem,
P be some communication problem that uses at least L bits of space.
In P, Alice has z, Bob has y and they want to compute P(z,vy).
Suppose there is a reduction * — 0, and y — oy such that knowing
Q(oz 0 oy) solves P(z,y), then we get that @Q also requires at least L
bits of space.

e Indexing: Alice gets an n-length binary string and Bob gets an
index j € [n]. Bob needs to determine z[j] w.p. > 9/10. Then
Alice must send at least Q(n) bits.

e Equality: Both Alice and Bob has an n-length binary string x,y
and Bob needs to decide whether x = y deterministically. Then
Alice must send at least Q(n) bits.

e Gap-Hamming distance: Both Alice and Bob has an n-length
binary string z,y and Bob needs to estimate H(z,y) up to an
additive ﬂn) factor, i.e.,

H(z,y) - Vn < A(z,y) < H(z,y) +Vn.
Then Alice must send at least Q(n) bits.

e Self-disjointness: Alice and Bob have two subsets X,Y C [n]
and Bob needs to decide whether X N'Y = (. Then Alice must
send at least Q(n) bits.

6 Dimensionality Reduction

Johnson-Lindenstrauss lemma: For any € € (0,1) and any X C R?
where | X| = n, there exists f: X — R™ for m = O(e~2logn) s.t.
Vr,y € X [(1=e)llz —yl3 < [If (@) = FWI3 < A+ e)lle—yl3]-
e f is a linear map.
e m is independent of the original dimension d.
Metric space: An ordered pair (X, dist) is a metric space if
@ dist(z,z) = 0;
® For any two x # y, dist(z,y) > 0;
(® Symmetry: dist(z,y) = dist(y, z);
(@ Triangle inequality: dist(z,y) < dist(z, z) + dist(z, y).
Local sensitive hashing (LSH): Consider a metric space (X, dist).
Let S C X be the input set of points. We say that a family of functions
H={h:X — Z} (r,cr,p1,p2)-LSH if for all z,y € S,

® dist(z,y) <7 = Pr[h() = h(y)] = pas
@ dist(z,y) > er = Pr [h(z) = h(y)] < p-

e Example: Consider the family H = {h1,--- , hq}, where h;(z) =
z;. Then H is a (r,cr,e” "/, e="/4).LSH.

eachpe S.
> Query(q): Foreachi=1,---,¢,
® Compute fi(q);
(@ For all points p with f;(p) = fi(q), check if dist(p, q) <
cr and if so output p.
> Space: O(n!*t?), where p =

> Time: O(nP).

log(1/p1)
log(1/p2) "

7 Clustering

k-Median Clustering
Given points P = {p1,---
that minimizes

,Pn}, find points C = {c1,--- ,cr} in P

n
D(P,C) = Zcmgé d(pi,cj).
i=1"7

Goal: Find a C s.t. D(P,C) < yD(P,C*).

e Linear programming formulation:
min Z xi;d(pi, pj)
2%

s.t. Vi inj = 1;Zyj <k
J J

Vi, j [zij < yj]
Vi, j [zij,y5 € {0,1}].
Relaxation: Vi,7 [0 < x5,y; < 1].
> x;; represents whether p; is assigned to center p;.
> y; represents whether p; is a center.
> C; = Zj x;i;d(pi, pj) is the cost of p;.
> V(5) = {pi : 3q [d(pi,q) < 2Ci;d(pj,q) < 2C;]} is the
vicinity of p;.
e Rounding algorithm:
® S+ {h
(@ Repeat until all points are deleted:
> Let p; be the remaining point with minimum Cj;
> Add p; to S;
> Delete all points in V' (j);
(® Return S.
> Guarantee: A (2,4)-approximation: At most 2k points with
Cs.t. D(P,C) < 4D(P,C*).

k-Median Clustering in Streams
Points S = s1, -+, 8, come in an insertion-only stream.
Goal: (2,0(1))-approximation.

Approximate Nearest Neighbor (ANN)

Given a subset S C {0,1}¢ of size n, build a data structure s.t.
upon receiving a query ¢ € {0, 1}d, we can return p* € S that
minimizes dist(p, q) over p € S.

e ANN search using LSH:
> Preprocessing:
® Draw k£ hash functions h11,--- , hg from LSH family
H;
(® Construct ¢ hash tables: for all i € [¢], store in the i-
th table f;(p) = (hi1(p),- - » hix(p)) (along with p) for

e Core-set algorithm:
@ S« {}
(@ Repeat y/n/k times:
> Let P = next v/nk points;
> Find (2,4)-approximate clustering on P;
> Add 2k new cluster centers to S. Weight each cluster
center with number of points attached to it;
> Empty P;
(® Return (2, 4)-approximate (weighted) clustering on S.
> Space: O(V/nk).
> Guarantee: A (2,80)-approximation.
e Hierarchical core-set algorithm: Whenever we see m = n¢ points
in a level, add the (2, 4)-approximation to the next level.
> Space: O(kn€/e).
> Guarantee: A (2,0(8'/¢))-approximation.

8 Graph Stream

Counting Triangles

Given undirected graph G = (V, E) with n nodes and m edges,
count the number of triangles.

Goal: (¢, §)-approximation.

e Simple yet elegant idea: Consider (z) -dimensional vector where
each element is indexed by a triplet 7' = {u,v,w}. Count the
number of 3’s: N3 = 0.5F> — 1.5F + Fp.

> Guarantee: (o, 1/20)-approximation.

Connected Components
Given undirected graph G = (V, E) with n nodes and m edges,
count the number of connected components.

e Must use Q(n) space.
> Reduce from self-disjointness: Alice holds set X and Bob
holds set Y. For a graph with vertex set {s,t,v1, -+ ,vn},
Alice constructs edge set A = {(s,v;) : ¢ # X} and Bob
constructs edge set B = {(v;,t) : i # Y} U{(s,t)}. Then
the graph G with edge set AU B is connected if and only
fXNY =0.
e Maintaining a spanning forest:
® Forest F + {};
(@ For each edge e in stream:
> If FFU{e} has no cycle then add e to F;
(® Return number of components in F.
> Space: O(nlogn).
> Update cost: O(a(n,n)).

Graph Bipartiteness
Given undirected graph G = (V, E) with n nodes and m edges,
check if the graph is bipartite.

e Maintaining a spanning forest:
® Forest F + {};
(@ For each edge e in stream:
> If FU{e} has no cycle then add e to F;
> If FU {e} has odd cycle then return NO;
® Return YES.
> Space: O(nlogn);
> Time: O(a(n,n)).

Shortest Path

Given undirected graph G = (V, E) with n nodes and m edges, find
a shortest path from u to v.
Goal: Find a spanner H C G s.t. dg(u,v) < dg(u,v) < adg(u,v).

e Spanner construction (k):
® Subgraph H + {};
(® For each edge e = (u,v) in the stream:
> If dgg(u,v) > 2k — 1 then add e to H;
® Return H.
> Girth: girth(G) = size of smallest cycle in G.
* If girth(G) > 2k, then it has O(n't1/*) edges.
> H has at most O(n't1/F) edges.

Matching

Given undirected graph G = (V, E) with n nodes and m edges, find

a shortest path from u to v.
Goal: Find a maximum sized matching M™* or an approximation
s.t. | M| > |M*|/c.

e Greedy algorithm:
© M« {}
(@ For each edge e = (u,v) in the stream:
> If w and v are not matched then add e to M;
® Return M.
> Guarantee: 2-approximation.

‘Weighted Matching

Given undirected graph G = (V, E) with n nodes and m edges, find
a shortest path from u to v.

Goal: Find a maximum weight matching M* or an approximation
s.t. |[M| > |M*|/c.

e Less greedy algorithm:
@© M« {}
(@ For each edge e = (u,v) in the stream:
> Let C be edges adjacent to u and v in M,
> If w(e) > (14 v)w(C):
* Remove C from M;
* Add e to M.
(® Return M.
> Guarantee: 5.83-approximation.

