CS5234 Algorithms at Scale

Notes

AY2024/25 Semester 1 · Prepared by Tian Xiao @snoidetx

1 Sampling

Probability bounds:

• Markov bound: Let X be a **non-negative** r.v., then for any t > 0, $\mathbb{E}[X]$

$$\Pr[X \ge t] \le \frac{m[X]}{t}$$

- Chebychev bound: Let X be a r.v. For any t > 0, $\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\operatorname{Var}(X)}{t^2}.$
- Chernoff bound: Let X_1, \dots, X_t be independent r.v. $\in \{0, 1\}, X = \sum_i X_i$ and $\mu = \mathbb{E}[X]$, then

$$\Pr[X > (1+\epsilon)\mu] \le \left(\frac{e^{-\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{-\epsilon} \text{ for any } \epsilon > 0;$$
$$\Pr[X \le (1-\epsilon)\mu] \le \left(\frac{e^{-\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}\right)^{\mu} \text{ for any } \epsilon \in (0, 1).$$

$$\Pr[X < (1-\epsilon)\mu] \le \left(\frac{c}{(1-\epsilon)^{(1-\epsilon)}}\right) \text{ for any } \epsilon \in (0,1).$$

$$\triangleright \text{ Simplified Chernoff bounds:} \\ \Pr[X \ge (1+\epsilon)\mu] \le e^{-\frac{\epsilon^2\mu}{3}} \text{ for any } \epsilon \in (0,1);$$

$$\Pr[X \le (1 - \epsilon)\mu] \le e^{-\frac{\epsilon^2 \mu}{2}} \text{ for any } \epsilon \in (0, 1);$$

 $\Pr[|X - \mu| \ge \epsilon \mu] \le 2e^{-\frac{\epsilon^2 \mu}{3}} \text{ for any } \epsilon \in (0, 1).$ • Hoeffding bound: Let X_1, \dots, X_t be independent r.v., where X_i takes values from $[a_i, b_i]$. Let $X = \sum_{\substack{n \ge 2\\ n \ge 2}} X_i$ and $\mu = \mathbb{E}[X]$, then

$$\Pr[|X - \mu| \ge t] \le 2e^{-\sum_i (b_i - a_i)^2} \text{ for any } t > 0.$$

Median Approximation

Given a set of numbers $S = \{x_1, x_2, \cdots, x_m\}$, define rank $(x) = |\{x_i \in S \mid x_i \leq x\}|$. Find a number $x \in S$ s.t. $\frac{m}{2} - \epsilon m \leq \operatorname{rank}(x) \leq \epsilon |x_i \leq x\}|$. $\frac{m}{2} + \epsilon m.$

- Randomly pick one: W.p. $2\epsilon + \frac{1}{m}$
- Median trick: Sample t and use their median:
 - (1) Fails when at least $\frac{t}{2}$ samples are from S_L or S_U ;
 - (2) X_k denotes the Bernoulli of k-th sample from S_L or S_U ;
 - (a) $\sum_{k}^{n} X_{k}$ can apply Chernoff bound; (a) Set $t = \Theta\left(\epsilon^{-2}\log\left(\frac{2}{\delta}\right)\right)$.

Reservoir Sampling

Find a uniform sample s from a stream $x_1 x_2 \cdots x_m$ and we do not know m. Each $x_i \in [n]$.

(1) Initialize $s \leftarrow x_1$;

(2) On the arrival of each $x_i, s \leftarrow x_i$ w.p. $\frac{1}{i}$.

• Space: $O(\log n)$.

 \triangleright t uniform samples without replacement: $O(t \log n)$.

$\mathbf{2}$ **Distinct Elements**

Streaming model: A sequence of tokens $\sigma_1 \sigma_2 \cdots$ where each $\sigma \in [n]$.

- Represented by frequency vector (f_1, f_2, \cdots, f_n) , where f_i is number of occurences of i.
- Turnstile model: Each token $\in [n] \times \{-L, \cdots, L\}$.
 - \triangleright Each token (i, c) updates $f_i \leftarrow f_i + c$.
 - $\triangleright |f_1| + |f_2| + \dots + |f_n| = m.$
 - \triangleright Strict turnstile: Each $f_i \ge 0$ at any point of time.
 - \triangleright Cash register: Each c > 0 (no deletion).
- General aim: Use sublinear space, best $O(\log n + \log m)$ space.

k-Universal hashing: For $h \in H$ picked randomly, for any $x \neq x'$, the probability of them having the same hashing $\leq \frac{1}{|Y|^k}$.

Distinct Elements

Find the value of $d(\sigma) = \sum_{i} f_{i}^{0}$. **Goal:** Find an (ϵ, δ) -estimation:

 $\Pr[|A(\sigma) - d(\sigma)| > \epsilon \cdot d(\sigma)] \le \delta.$

• Algorithm 1:

(1) Take a perfectly random hash function $h : [n] \to [n]; z \leftarrow 0;$ (2) For each token (i, *),

 \triangleright Let zeros(h(i)) be the maximum j such that 2^{j} divides h(j).

$$\triangleright \text{ If } \operatorname{zeros}(h(i)) > z, \, z \leftarrow \operatorname{zeros}(h(i)).$$

3 Output
$$2^{z+\frac{1}{2}}$$

- Algorithm 1 + median trick (improves probability)
- Algorithm 1 + median trick + 2-universal hashing (improves space)
 - \triangleright Guarantee: $\frac{d}{3} \leq \hat{d} \leq 3d$ w.p. at least 1δ when t = $\Theta(\log \frac{1}{\delta}).$

 \triangleright Space: $O(\log \frac{1}{\delta} \log n)$.

Frequency Moment 3

Frequency Moment

Problem: Find the value of $F_k(\sigma) = \sum_i f_i^k$. **Estimation:** Find an (ϵ, δ) -estimation: $\Pr[|A(\sigma) - F_k(\sigma)| > \epsilon \cdot F_k(\sigma)] \le \delta.$

- AMS estimator:
 - (1) Pick a token J uniformly at random using reservoir sampling from a stream of length m;
 - (2) Maintain a counter to count m;
 - $\begin{array}{l} \hline \texttt{3} & \text{Computer } r \coloneqq |\{p \ge J \mid \sigma_p = \sigma_J\}|; \\ \hline \texttt{4} & \text{Output } X = m\left(r^k r^{k-1}\right). \end{array}$
- ▷ Analyzed using Chebyshev bound (depending on variance). AMS estimator + median of mean trick.

Sketching: Let σ_1, σ_2 be streams and $\sigma_1 \circ \sigma_2$ be their concatenation. A data structure sk() is called *a stretch* if

$$COMB(sk(\sigma_1), sk(\sigma_2)) = sk(\sigma_1 \circ \sigma_2).$$

• Linear sketch: sk() is a linear function of the frequency vector.

F_2 Estimation

Problem: Find the value of $F_2(\sigma) = \sum_i f_i^2$.

Estimation: Find an (ϵ, δ) -estimation:

 $\Pr[|A(\sigma) - F_2(\sigma)| > \epsilon \cdot F_2(\sigma)] \le \delta.$

- Another AMS sketch for turnstile models:
 - (1) Pick a hash function h \rightarrow $\{-1,+1\}$ uniformly at random from a 4-universal family; $z \leftarrow 0$;
 - (2) For each token $(i, c), z \leftarrow z + c \cdot h(i);$
- (3) Output z^2 .
- Another AMS sketch + median of mean trick

Heavy Hitter and Sparse Recovery $\mathbf{4}$

Heavy Hitters

For an insertion only model, find and output every item with frequency $> \epsilon m$.

Goal: Count: $f_i - \epsilon m \leq \text{count}(i) \leq f_i + \epsilon m$. Heavy hitter: return every item with frequency $> 2\epsilon m$ and no item with frequency $< \epsilon m$.

- Misra-Gries algorithm (deterministic):
 - (1) Item-count pairs $L \leftarrow \{\};$
 - (2) For each token i:
 - \triangleright If $i \in L$ then increment its count; else add $\langle i, 1 \rangle$ to L;
 - \triangleright If |L| > k, decrement count of each stored item; \triangleright Remove all items with count = 0:
 - (3) For query j, if $j \in L$ then report the corresponding count; else return 0.
 - \triangleright Space: $O(\epsilon^{-1}(\log n + \log m)).$
 - ▷ Guarantee:
 - * Count: $f_i \epsilon m \leq \operatorname{count}(i) \leq f_i$.
 - * Heavy hitters: Return every item with frequence \geq $2\epsilon m$; no item with frequency $<\epsilon m$.
- Count sketch algorithm:
 - (1) Initialize an empty array $C[1 \cdots t][1 \cdots k]$. Set $k = 3/\epsilon^2$, $t = \Theta(\log(1/\delta))$:
 - (2) Choose t independent $h_1, \dots, h_t : [n] \to [k]$ from a 2universal family;
 - Choose t independent g_1, \cdots, g_t : $[n] \, \rightarrow \, [-1,+1]$ from a 2-universal family;
 - (4) For each token (i, c):
 - $\triangleright \text{ For } r = 1, \cdots, t, C[r][h_r(i)] \leftarrow C[r][h_r(i)] + cg_r(i);$
 - (5) For query j, return $\hat{f}_j = \text{median}_{1 \le r \le t} g_r(j)C[r][h_r(j)].$ \triangleright Space: $O(\epsilon^{-2}\log(1/\delta)(\log n + \log m)).$

 \triangleright Guarantee: (ϵ, δ) -approximation.

1-Sparse Recovery

For a turnstile model, define the support of frequency vector f as $\operatorname{supp}(f) := \{i \in [n] : f_i \neq 0\}$. We say f is s-sparse if $|\operatorname{supp}(f)| \leq s$. Maintain a sketch sk of the stream s.t. if f is 1-sparse, recover ffrom sk; else detect non-sparsity.

- Algorithm:
 - (1) $\ell, z, p \leftarrow 0$ and pick a random $r \in \mathbb{F}$ where $n^3 < |\mathbb{F}| \le 2n^3$; (2) For each token (j, c):
 - $\triangleright \ \ell \leftarrow \ell + c;$
 - $\triangleright z \leftarrow z + cj;$
 - $\triangleright p \leftarrow p + cr^j;$
 - (3) If l = z = p = 0, output f is a 0-vector; else if z/l ∉ [n], output f is not 1-sparse; else if p ≠ lr^{z/l}, output f is not 1-sparse; else output \tilde{f} by setting $\tilde{f}_i = \ell$ if $i = z/\ell$ and 0 otherwise.
 - \triangleright Space: $O(\log n)$.
 - \triangleright s-sparse recovery can be reduced to 1-sparse recovery by using hash functions to split the stream.

5 Lower Bound

Lower bound using reduction: Let Q be some streaming problem, P be some communication problem that uses at least L bits of space. In P, Alice has x, Bob has y and they want to compute P(x, y). Suppose there is a reduction $x \to \sigma_x$ and $y \to \sigma_y$ such that knowing $Q(\sigma_x \circ \sigma_y)$ solves P(x, y), then we get that Q also requires at least L bits of space.

- Indexing: Alice gets an n-length binary string x and Bob gets an index $j \in [n]$. Bob needs to determine x[j] w.p. $\geq 9/10$. Then Alice must send at least $\Omega(n)$ bits.
- Equality: Both Alice and Bob has an *n*-length binary string x, yand Bob needs to decide whether x = y deterministically. Then Alice must send at least $\Omega(n)$ bits.
- Gap-Hamming distance: Both Alice and Bob has an *n*-length binary string x, y and Bob needs to estimate H(x, y) up to an additive $\sqrt{(n)}$ factor, i.e.,

 $H(x,y) - \sqrt{n} \le \Delta(x,y) \le H(x,y) + \sqrt{n}.$

- Then Alice must send at least $\Omega(n)$ bits.
- Self-disjointness: Alice and Bob have two subsets $X, Y \subseteq [n]$ and Bob needs to decide whether $X \cap Y = \emptyset$. Then Alice must send at least $\Omega(n)$ bits.

Dimensionality Reduction 6

Johnson-Lindenstrauss lemma: For any $\epsilon \in (0, 1)$ and any $X \subset \mathbb{R}^d$ where |X| = n, there exists $f: X \to \mathbb{R}^m$ for $m = O(\epsilon^{-2} \log n)$ s.t.

- $\forall x, y \in X \left[(1-\epsilon) \|x y\|_2^2 \le \|f(x) f(y)\|_2^2 \le (1+\epsilon) \|x y\|_2^2 \right].$
- f is a linear map.
- m is independent of the original dimension d.

Metric space: An ordered pair (X, dist) is a metric space if

- (1) dist(x, x) = 0;
- (2) For any two $x \neq y$, dist(x, y) > 0;
- (3) Symmetry: dist(x, y) = dist(y, x);
- (4) Triangle inequality: $dist(x, y) \leq dist(x, z) + dist(z, y)$.

Local sensitive hashing (LSH): Consider a metric space (X, dist). Let $S \subseteq X$ be the input set of points. We say that a family of functions $H = \{h : X \to \mathbb{Z}\} \ (r, cr, p_1, p_2) \text{-}LSH \text{ if for all } x, y \in S,$

(1) dist
$$(x, y) \le r \Rightarrow \Pr_{h \in RH}[h(x) = h(y)] \ge p_1;$$

(2) dist
$$(x, y) > cr \Rightarrow \Pr_{h \in_R H}[h(x) = h(y)] \le p_2$$

• Example: Consider the family $H = \{h_1, \cdots, h_d\}$, where $h_i(x) = x_i$. Then H is a $(r, cr, e^{-r/d}, e^{-cr/d})$ -LSH.

Approximate Nearest Neighbor (ANN)

Given a subset $S \subseteq \{0,1\}^d$ of size n, build a data structure s.t. upon receiving a query $q \in \{0,1\}^d$, we can return $p^* \in S$ that minimizes dist(p,q) over $p \in S$.

- ANN search using LSH:
 - ▷ Preprocessing:
 - (1) Draw $k\ell$ hash functions $h_{11}, \cdots, h_{\ell k}$ from LSH family
 - (2) Construct ℓ hash tables: for all $i \in [\ell]$, store in the *i*th table $f_i(p) = (h_{i1}(p), \dots, h_{ik}(p))$ (along with p) for

each $p \in S$. \triangleright Query(q): For each $i = 1, \dots, \ell$, (1) Compute $f_i(q)$; (2) For all points p with $f_i(p) = f_i(q)$, check if $\operatorname{dist}(p,q) \leq$ cr and if so output p. \triangleright Space: $\tilde{O}(n^{1+\rho})$, where $\rho = \frac{\log(1/p_1)}{\log(1/p_2)}$.

 \triangleright Time: $\tilde{O}(n^{\rho})$.

Clustering 7

k-Median Clustering Given points $P = \{p_1, \cdots, p_n\}$, find points $\mathcal{C} = \{c_1, \cdots, c_k\}$ in P that minimizes

$$D(P, \mathcal{C}) = \sum_{i=1}^{n} \min_{c_j \in \mathcal{C}} d(p_i, c_j)$$

Goal: Find a
$$\mathcal{C}$$
 s.t. $D(P,\mathcal{C}) \leq \gamma D(P,\mathcal{C}^*)$.

$$\begin{array}{ll} \min & \sum_{i,j} x_{ij} d(p_i, p_j) \\ \text{s.t.} & \forall i \left[\sum_j x_{ij} = 1; \sum_j y_j \leq k \right] \\ & \forall i, j \left[x_{ij} \leq y_j \right] \\ & \forall i, j \left[x_{ij}, y_i \in \{0, 1\} \right]. \end{array}$$

Relaxation: $\forall i, j \ [0 \le x_{ij}, y_j \le 1].$

- $\triangleright x_{ij}$ represents whether p_i is assigned to center p_j .
- $\triangleright y_j$ represents whether p_j is a center.
- $\triangleright \ C_i := \sum_j x_{ij} d(p_i, p_j)$ is the *cost* of p_i .

$$\triangleright V(j) := \{p_i : \exists q \ [d(p_i,q) \le 2C_i; d(p_j,q) \le 2C_j]\} \text{ is the vicinity of } p_j.$$

- (1) $S \leftarrow \{\};$
 - 2 Repeat until all points are deleted:
 - \triangleright Let p_j be the remaining point with minimum C_j ;
 - \triangleright Add p_j to S;
 - \triangleright Delete all points in V(j);
 - (3) Return S.
 - Guarantee: A (2, 4)-approximation: At most 2k points with \mathcal{C} s.t. $D(P, \mathcal{C}) \leq 4D(P, \mathcal{C}^*)$.

k-Median Clustering in Streams

Points $S = s_1, \dots, s_n$ come in an insertion-only stream. Goal: (2, O(1))-approximation.

- Core-set algorithm:
 - (1) $S \leftarrow \{\};$
 - (2) Repeat $\sqrt{n/k}$ times:
 - \triangleright Let $P = \text{next } \sqrt{nk}$ points;
 - \triangleright Find (2, 4)-approximate clustering on P;
 - \triangleright Add 2k new cluster centers to S. Weight each cluster center with number of points attached to it;
 - \triangleright Empty P;
 - (3) Return (2, 4)-approximate (weighted) clustering on S. \triangleright Space: $O(\sqrt{nk})$.
 - \triangleright Guarantee: A (2,80)-approximation.
- Hierarchical core-set algorithm: Whenever we see $m = n^{\epsilon}$ points in a level, add the (2, 4)-approximation to the next level.

 - \triangleright Space: $O(kn^{\epsilon}/\epsilon)$.
 - ▷ Guarantee: A $(2, O(8^{1/\epsilon}))$ -approximation.

8 **Graph Stream**

Counting Triangles

Given undirected graph G = (V, E) with n nodes and m edges, count the number of triangles. **Goal**: (ϵ, δ) -approximation.

• Simple yet elegant idea: Consider $\binom{n}{3}$ -dimensional vector x where each element is indexed by a triplet $T = \{u, v, w\}$. Count the number of 3's: $N_3 = 0.5F_2 - 1.5F_1 + F_0$. \triangleright Guarantee: (α , 1/20)-approximation.

Connected Components

Given undirected graph G = (V, E) with n nodes and m edges, count the number of connected components.

• Must use $\Omega(n)$ space.

- \triangleright Reduce from self-disjointness: Alice holds set X and Bob holds set Y. For a graph with vertex set $\{s, t, v_1, \cdots, v_n\}$, Alice constructs edge set $A = \{(s, v_i) : i \neq X\}$ and Bob constructs edge set $B = \{(v_i, t) : i \neq Y\} \cup \{(s, t)\}$. Then the graph G with edge set $A \cup B$ is connected if and only if $X \cap Y = \emptyset$.
- Maintaining a spanning forest:
- (1) Forest $F \leftarrow \{\};$
 - (2) For each edge e in stream:
 - \triangleright If $F \cup \{e\}$ has no cycle then add e to F;
 - (3) Return number of components in F.
 - \triangleright Space: $O(n \log n)$.
 - \triangleright Update cost: $O(\alpha(n, n))$.

Graph Bipartiteness

Given undirected graph G = (V, E) with n nodes and m edges, check if the graph is bipartite.

• Maintaining a spanning forest:

- (1) Forest $F \leftarrow \{\};$
- (2) For each edge e in stream:
 - \triangleright If $F \cup \{e\}$ has no cycle then add e to F;
 - \triangleright If $F \cup \{e\}$ has odd cycle then return NO;
- Return YES.
- \triangleright Space: $O(n \log n)$;
- \triangleright Time: $O(\alpha(n, n))$.

Shortest Path

Given undirected graph G = (V, E) with n nodes and m edges, find a shortest path from u to v.

Goal: Find a spanner $H \subseteq G$ s.t. $d_G(u, v) \leq d_H(u, v) \leq \alpha d_G(u, v)$.

- Spanner construction (k):
 - (1) Subgraph $H \leftarrow \{\};$
 - (2) For each edge e = (u, v) in the stream:
 - \triangleright If $d_H(u, v) > 2k 1$ then add e to H;
 - ③ Return H.
 - Girth: girth(G) = size of smallest cycle in G. ⊳
 - * If girth(G) > 2k, then it has $O(n^{1+1/k})$ edges. \triangleright H has at most $O(n^{1+1/k})$ edges.

Matching

Given undirected graph G = (V, E) with n nodes and m edges, find a shortest path from u to v. **Goal**: Find a maximum sized matching M^* or an approximation

s.t. $|M| \ge |M^*|/c$.

• Greedy algorithm:

 $\textcircled{1} M \leftarrow \{\};$

(2) For each edge e = (u, v) in the stream:

 \triangleright If u and v are not matched then add e to M;

- 3 Return M.
- \triangleright Guarantee: 2-approximation.

Weighted Matching

Given undirected graph G = (V, E) with n nodes and m edges, find a shortest path from u to v. **Goal**: Find a maximum weight matching M^* or an approximation

s.t. $|M| \ge |M^*|/c$.

• Less greedy algorithm:

 $\textcircled{1} M \leftarrow \{\};$

(2) For each edge e = (u, v) in the stream:

- \triangleright Let C be edges adjacent to u and v in M;
 - $Figure 1 = V(e) > (1 + \gamma)w(C):$ * Remove C from M;
 - * Add e to M.

$$③$$
 Return M .

▷ Guarantee: 5.83-approximation.