
CS5234 Algorithms at Scale

Notes

AY2024/25 Semester 1 · Prepared by Tian Xiao @snoidetx

1 Sampling

Probability bounds:

• Markov bound: Let X be a non-negative r.v., then for any
t > 0,

Pr[X ≥ t] ≤
E[X]

t
.

• Chebychev bound: Let X be a r.v. For any t > 0,

Pr[|X − E[X]| ≥ t] ≤
Var(X)

t2
.

• Chernoff bound: Let X1, · · · , Xt be independent r.v. ∈ {0, 1},
X =

∑
i Xi and µ = E[X], then

Pr[X > (1 + ϵ)µ] ≤
(

eϵ

(1 + ϵ)(1+ϵ)

)µ

for any ϵ > 0;

Pr[X < (1− ϵ)µ] ≤
(

e−ϵ

(1− ϵ)(1−ϵ)

)µ

for any ϵ ∈ (0, 1).

▷ Simplified Chernoff bounds:

Pr[X ≥ (1 + ϵ)µ] ≤ e−
ϵ2µ
3 for any ϵ ∈ (0, 1);

Pr[X ≤ (1− ϵ)µ] ≤ e−
ϵ2µ
2 for any ϵ ∈ (0, 1);

Pr[|X − µ| ≥ ϵµ] ≤ 2e−
ϵ2µ
3 for any ϵ ∈ (0, 1).

• Hoeffding bound: Let X1, · · · , Xt be independent r.v., where Xi

takes values from [ai, bi]. Let X =
∑

i Xi and µ = E[X], then

Pr[|X − µ| ≥ t] ≤ 2e
− 2t2∑

i(bi−ai)
2
for any t > 0.

Median Approximation

Given a set of numbers S = {x1, x2, · · · , xm}, define rank(x) =
|{xi ∈ S | xi ≤ x}|. Find a number x ∈ S s.t. m

2
− ϵm ≤ rank(x) ≤

m
2

+ ϵm.

• Randomly pick one: W.p. 2ϵ+ 1
m
.

• Median trick: Sample t and use their median:
1 Fails when at least t

2
samples are from SL or SU ;

2 Xk denotes the Bernoulli of k-th sample from SL or SU ;
3

∑
k Xk can apply Chernoff bound;

4 Set t = Θ
(
ϵ−2 log

(
2
δ

))
.

Reservoir Sampling

Find a uniform sample s from a stream x1x2 · · ·xm and we do not
know m. Each xi ∈ [n].

1 Initialize s← x1;
2 On the arrival of each xi, s← xi w.p. 1

i
.

• Space: O(logn).
▷ t uniform samples without replacement: O(t logn).

2 Distinct Elements

Streaming model: A sequence of tokens σ1σ2 · · · where each σ ∈ [n].

• Represented by frequency vector (f1, f2, · · · , fn), whree fi is
number of occurences of i.

• Turnstile model: Each token ∈ [n]× {−L, · · · , L}.
▷ Each token (i, c) updates fi ← fi + c.
▷ |f1|+ |f2|+ · · ·+ |fn| = m.
▷ Strict turnstile: Each fi ≥ 0 at any point of time.
▷ Cash register: Each c > 0 (no deletion).

• General aim: Use sublinear space, best O(logn+ logm) space.

k-Universal hashing: For h ∈ H picked randomly, for any x ̸= x′,
the probability of them having the same hashing ≤ 1

|Y |k .

Distinct Elements

Find the value of d(σ) =
∑

i f
0
i .

Goal: Find an (ϵ, δ)-estimation:
Pr[|A(σ)− d(σ)| > ϵ · d(σ)] ≤ δ.

• Algorithm 1:
1 Take a perfectly random hash function h : [n]→ [n]; z ← 0;
2 For each token (i, ∗),

▷ Let zeros(h(i)) be the maximum j such that 2j divides
h(j).

▷ If zeros(h(i)) > z, z ← zeros(h(i)).

3 Output 2z+
1
2 .

• Algorithm 1 + median trick (improves probability)
• Algorithm 1 + median trick + 2-universal hashing (improves

space)

▷ Guarantee: d
3
≤ d̂ ≤ 3d w.p. at least 1 − δ when t =

Θ(log 1
δ
).

▷ Space: O(log 1
δ
logn).

3 Frequency Moment

Frequency Moment

Problem: Find the value of Fk(σ) =
∑

i f
k
i .

Estimation: Find an (ϵ, δ)-estimation:
Pr[|A(σ)− Fk(σ)| > ϵ · Fk(σ)] ≤ δ.

• AMS estimator:
1 Pick a token J uniformly at random using reservoir sam-

pling from a stream of length m;
2 Maintain a counter to count m;
3 Computer r := |{p ≥ J | σp = σJ}|;
4 Output X = m

(
rk − rk−1

)
.

▷ Analyzed using Chebyshev bound (depending on variance).
• AMS estimator + median of mean trick.

Sketching: Let σ1, σ2 be streams and σ1 ◦σ2 be their concatenation.
A data structure sk() is called a stretch if

COMB(sk(σ1), sk(σ2)) = sk(σ1 ◦ σ2).

• Linear sketch: sk() is a linear function of the frequency vector.

F2 Estimation

Problem: Find the value of F2(σ) =
∑

i f
2
i .

Estimation: Find an (ϵ, δ)-estimation:
Pr[|A(σ)− F2(σ)| > ϵ · F2(σ)] ≤ δ.

• Another AMS sketch for turnstile models:
1 Pick a hash function h → {−1,+1} uniformly at random

from a 4-universal family; z ← 0;
2 For each token (i, c), z ← z + c · h(i);
3 Output z2.

• Another AMS sketch + median of mean trick

4 Heavy Hitter and Sparse Recovery

Heavy Hitters

For an insertion only model, find and output every item with fre-
quency > ϵm.

Goal: Count: fi − ϵm ≤ count(i) ≤ fi + ϵm. Heavy hitter: return
every item with frequency > 2ϵm and no item with frequency < ϵm.

• Misra-Gries algorithm (deterministic):
1 Item-count pairs L← {};
2 For each token i:

▷ If i ∈ L then increment its count; else add ⟨i, 1⟩ to L;
▷ If |L| > k, decrement count of each stored item;
▷ Remove all items with count = 0;

3 For query j, if j ∈ L then report the corresponding count;
else return 0.

▷ Space: O(ϵ−1(logn+ logm)).
▷ Guarantee:

∗ Count: fi − ϵm ≤ count(i) ≤ fi.
∗ Heavy hitters: Return every item with frequence ≥

2ϵm; no item with frequency < ϵm.
• Count sketch algorithm:

1 Initialize an empty array C[1 · · · t][1 · · · k]. Set k = 3/ϵ2,
t = Θ(log(1/δ));

2 Choose t independent h1, · · · , ht : [n] → [k] from a 2-
universal family;

3 Choose t independent g1, · · · , gt : [n] → [−1,+1] from a
2-universal family;

4 For each token (i, c):
▷ For r = 1, · · · , t, C[r][hr(i)]← C[r][hr(i)] + cgr(i);

5 For query j, return f̂j = median1≤r≤t gr(j)C[r][hr(j)].
▷ Space: O(ϵ−2 log(1/δ)(logn+ logm)).

▷ Guarantee: (ϵ, δ)-approximation.

1-Sparse Recovery

For a turnstile model, define the support of frequency vector f as
supp(f) := {i ∈ [n] : fi ̸= 0}. We say f is s-sparse if |supp(f)| ≤ s.
Maintain a sketch sk of the stream s.t. if f is 1-sparse, recover f
from sk; else detect non-sparsity.

• Algorithm:
1 ℓ, z, p← 0 and pick a random r ∈ F where n3 < |F| ≤ 2n3;
2 For each token (j, c):

▷ ℓ← ℓ+ c;
▷ z ← z + cj;
▷ p← p+ crj ;

3 If ℓ = z = p = 0, output f is a 0-vector; else if z/ℓ /∈ [n],
output f is not 1-sparse; else if p ̸= ℓrz/ℓ, output f is not
1-sparse; else output f̃ by setting f̃i = ℓ if i = z/ℓ and 0
otherwise.

▷ Space: O(logn).
▷ s-sparse recovery can be reduced to 1-sparse recovery by

using hash functions to split the stream.

5 Lower Bound

Lower bound using reduction: Let Q be some streaming problem,
P be some communication problem that uses at least L bits of space.
In P , Alice has x, Bob has y and they want to compute P (x, y).
Suppose there is a reduction x → σx and y → σy such that knowing
Q(σx ◦ σy) solves P (x, y), then we get that Q also requires at least L
bits of space.

• Indexing: Alice gets an n-length binary string x and Bob gets an
index j ∈ [n]. Bob needs to determine x[j] w.p. ≥ 9/10. Then
Alice must send at least Ω(n) bits.

• Equality: Both Alice and Bob has an n-length binary string x, y
and Bob needs to decide whether x = y deterministically. Then
Alice must send at least Ω(n) bits.

• Gap-Hamming distance: Both Alice and Bob has an n-length
binary string x, y and Bob needs to estimate H(x, y) up to an

additive
√

(n) factor, i.e.,
H(x, y)−

√
n ≤ ∆(x, y) ≤ H(x, y) +

√
n.

Then Alice must send at least Ω(n) bits.
• Self-disjointness: Alice and Bob have two subsets X,Y ⊆ [n]

and Bob needs to decide whether X ∩ Y = ∅. Then Alice must
send at least Ω(n) bits.

6 Dimensionality Reduction

Johnson-Lindenstrauss lemma: For any ϵ ∈ (0, 1) and anyX ⊆ Rd

where |X| = n, there exists f : X → Rm for m = O(ϵ−2 logn) s.t.

∀x, y ∈ X
[
(1− ϵ)∥x− y∥22 ≤ ∥f(x)− f(y)∥22 ≤ (1 + ϵ)∥x− y∥22

]
.

• f is a linear map.
• m is independent of the original dimension d.

Metric space: An ordered pair (X, dist) is a metric space if

1 dist(x, x) = 0;
2 For any two x ̸= y, dist(x, y) > 0;
3 Symmetry: dist(x, y) = dist(y, x);
4 Triangle inequality: dist(x, y) ≤ dist(x, z) + dist(z, y).

Local sensitive hashing (LSH): Consider a metric space (X, dist).
Let S ⊆ X be the input set of points. We say that a family of functions
H = {h : X → Z} (r, cr, p1, p2)-LSH if for all x, y ∈ S,

1 dist(x, y) ≤ r ⇒ Pr
h∈RH

[h(x) = h(y)] ≥ p1;

2 dist(x, y) > cr ⇒ Pr
h∈RH

[h(x) = h(y)] ≤ p2.

• Example: Consider the family H = {h1, · · · , hd}, where hi(x) =
xi. Then H is a (r, cr, e−r/d, e−cr/d)-LSH.

Approximate Nearest Neighbor (ANN)

Given a subset S ⊆ {0, 1}d of size n, build a data structure s.t.
upon receiving a query q ∈ {0, 1}d, we can return p∗ ∈ S that
minimizes dist(p, q) over p ∈ S.

• ANN search using LSH:
▷ Preprocessing:

1 Draw kℓ hash functions h11, · · · , hℓk from LSH family
H;

2 Construct ℓ hash tables: for all i ∈ [ℓ], store in the i-
th table fi(p) = (hi1(p), · · · , hik(p)) (along with p) for

each p ∈ S.
▷ Query(q): For each i = 1, · · · , ℓ,

1 Compute fi(q);
2 For all points p with fi(p) = fi(q), check if dist(p, q) ≤

cr and if so output p.

▷ Space: Õ(n1+ρ), where ρ =
log(1/p1)
log(1/p2)

.

▷ Time: Õ(nρ).

7 Clustering

k-Median Clustering
Given points P = {p1, · · · , pn}, find points C = {c1, · · · , ck} in P
that minimizes

D(P, C) =
n∑

i=1

min
cj∈C

d(pi, cj).

Goal: Find a C s.t. D(P, C) ≤ γD(P, C∗).

• Linear programming formulation:

min
∑
i,j

xijd(pi, pj)

s.t. ∀i

∑
j

xij = 1;
∑
j

yj ≤ k


∀i, j [xij ≤ yj]

∀i, j [xij , yj ∈ {0, 1}].
Relaxation: ∀i, j [0 ≤ xij , yj ≤ 1].

▷ xij represents whether pi is assigned to center pj .
▷ yj represents whether pj is a center.
▷ Ci :=

∑
j xijd(pi, pj) is the cost of pi.

▷ V (j) := {pi : ∃q [d(pi, q) ≤ 2Ci; d(pj , q) ≤ 2Cj]} is the
vicinity of pj .

• Rounding algorithm:
1 S ← {};
2 Repeat until all points are deleted:

▷ Let pj be the remaining point with minimum Cj ;
▷ Add pj to S;
▷ Delete all points in V (j);

3 Return S.
▷ Guarantee: A (2, 4)-approximation: At most 2k points with
C s.t. D(P, C) ≤ 4D(P, C∗).

k-Median Clustering in Streams
Points S = s1, · · · , sn come in an insertion-only stream.
Goal: (2, O(1))-approximation.

• Core-set algorithm:
1 S ← {};
2 Repeat

√
n/k times:

▷ Let P = next
√
nk points;

▷ Find (2, 4)-approximate clustering on P ;
▷ Add 2k new cluster centers to S. Weight each cluster

center with number of points attached to it;
▷ Empty P ;

3 Return (2, 4)-approximate (weighted) clustering on S.

▷ Space: O(
√
nk).

▷ Guarantee: A (2, 80)-approximation.
• Hierarchical core-set algorithm: Whenever we see m = nϵ points

in a level, add the (2, 4)-approximation to the next level.
▷ Space: O(knϵ/ϵ).
▷ Guarantee: A (2, O(81/ϵ))-approximation.

8 Graph Stream

Counting Triangles
Given undirected graph G = (V,E) with n nodes and m edges,
count the number of triangles.
Goal: (ϵ, δ)-approximation.

• Simple yet elegant idea: Consider
(n
3

)
-dimensional vector x where

each element is indexed by a triplet T = {u, v, w}. Count the
number of 3’s: N3 = 0.5F2 − 1.5F1 + F0.

▷ Guarantee: (α, 1/20)-approximation.

Connected Components
Given undirected graph G = (V,E) with n nodes and m edges,
count the number of connected components.

• Must use Ω(n) space.
▷ Reduce from self-disjointness: Alice holds set X and Bob

holds set Y . For a graph with vertex set {s, t, v1, · · · , vn},
Alice constructs edge set A = {(s, vi) : i ̸= X} and Bob
constructs edge set B = {(vi, t) : i ̸= Y } ∪ {(s, t)}. Then
the graph G with edge set A ∪ B is connected if and only
if X ∩ Y = ∅.

• Maintaining a spanning forest:
1 Forest F ← {};
2 For each edge e in stream:

▷ If F ∪ {e} has no cycle then add e to F ;
3 Return number of components in F .
▷ Space: O(n logn).
▷ Update cost: O(α(n, n)).

Graph Bipartiteness
Given undirected graph G = (V,E) with n nodes and m edges,
check if the graph is bipartite.

• Maintaining a spanning forest:
1 Forest F ← {};
2 For each edge e in stream:

▷ If F ∪ {e} has no cycle then add e to F ;
▷ If F ∪ {e} has odd cycle then return NO;

3 Return YES.
▷ Space: O(n logn);
▷ Time: O(α(n, n)).

Shortest Path
Given undirected graph G = (V,E) with n nodes and m edges, find
a shortest path from u to v.
Goal: Find a spanner H ⊆ G s.t. dG(u, v) ≤ dH(u, v) ≤ αdG(u, v).

• Spanner construction (k):
1 Subgraph H ← {};
2 For each edge e = (u, v) in the stream:

▷ If dH(u, v) > 2k − 1 then add e to H;
3 Return H.
▷ Girth: girth(G) = size of smallest cycle in G.

∗ If girth(G) > 2k, then it has O(n1+1/k) edges.
▷ H has at most O(n1+1/k) edges.

Matching
Given undirected graph G = (V,E) with n nodes and m edges, find
a shortest path from u to v.
Goal: Find a maximum sized matching M∗ or an approximation
s.t. |M | ≥ |M∗|/c.

• Greedy algorithm:
1 M ← {};
2 For each edge e = (u, v) in the stream:

▷ If u and v are not matched then add e to M ;
3 Return M .
▷ Guarantee: 2-approximation.

Weighted Matching
Given undirected graph G = (V,E) with n nodes and m edges, find
a shortest path from u to v.
Goal: Find a maximum weight matching M∗ or an approximation
s.t. |M | ≥ |M∗|/c.

• Less greedy algorithm:
1 M ← {};
2 For each edge e = (u, v) in the stream:

▷ Let C be edges adjacent to u and v in M ;
▷ If w(e) > (1 + γ)w(C):

∗ Remove C from M ;
∗ Add e to M .

3 Return M .
▷ Guarantee: 5.83-approximation.

