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CS5340 is about how to represent and reason with uncertainty in a

computer.

1 Probability Basics

Probability Space: A probability space (Ω, E, P ) models a process

consisting of outcomes that occur randomly. It consists of three parts:

- Outcome or sample space, Ω (e.g. {1, 2, 3, 4, 5, 6});

- Event space, E ⊆ 2Ω (e.g. {∅, {1, 3, 5}, {2, 4, 6},Ω});

▶ Event space must contain ∅ and Ω.

▶ Event space is closed under union (α, β ∈ E → α ∪ β ∈ E).

▶ Event space is closed under complement (α ∈ E → Ω− α ∈ E).

- Probability function, P : E → [0, 1].

Probability Distribution: A probability distribution P over (Ω, E) is

a mapping from events in E to real values that satisfies the following:

- Non-negativity: ∀α ∈ E [P (α) > 0].

- Probability of all outcomes sum to 1, i.e. P (Ω) = 1.

- Mutually disjoint events: α ∩ β = ∅ ⇒ P (α ∪ β) = P (α) + P (β).

Random Variable: A random variable, X : Ω → S, is a function that

maps a set of possible outcomes Ω to a space S.

- Indicator random variable maps every outcome to either 0 or 1.

- The set of values that X can take is denoted as Val(X).

- A lower-case letter x is a generic value/realisation of X.

- p(x) denotes P (X = x). xi denotes a specific value of X.

- For any discrete probability distribution,
K∑
i=1

p(xi) = 1.

- For any continuous probability distribution,
∫∞
−∞ p(xi) = 1.

Joint Probability: p(x, y) = P (X = x and Y = y).

- Sum rule: p(x) =


∑
y
p(x, y), when Y is discrete;∫
p(x, y) dy, when Y is continuous.

▶ Sum rule is also known as marginalization.

- Product rule: p(x, y) = p(x|y)p(y).

▶ Product rule is also known as chain rule.

Conditional Probability: p(x|y∗) denotes the probability of X = x

given Y = y∗.

- p(x|y) = p(x,y)
p(y)

=
p(x,y)∫
p(x,y) dx

.

Bayes Rule:

Independence: X and Y are independent if every conditional probabil-

ity distribution is the same (i.e. p(x|y) = p(x); p(y|x) = p(y)).

- If X and Y are independent, p(x, y) = p(x)p(y).

Expectation: Expectation is the expected or average value of some func-

tion f(x) taking into account the distribution of X.

- E [f(x)] =


∑
x
f(x)p(x), when X is discrete;∫
f(x)p(x) dx, when X is continuous.

- E(c) = c.

- E(cf(x)) = c E(f(x)).

- E(f(x) + g(x)) = E(f(x)) + E(g(x)).

- E(f(x)g(y)) = E(f(x))E(g(y)), if X and Y are independent.

Conjugate Distribution: Conjugate distributions are used to model

the parameters of probability distributions.

- Product of a probability distribution and its conjugate has the same

form as the conjugate times a constant.

- Parameters of conjugate distributions are called hyperparameters.

2 Simple Probabilistic Models

Goal: To learn the unknown parameter(s) θ from a set of given data

D = {x[1], · · · , x[N ]}, and use those parameter(s) to make predictions.

Maximum Likelihood Estimate (MLE): θ̂MLE = argmax
θ∈Θ

[p(D|θ)].

- i.i.d. assumption: p(D|θ) =
N∏
i=1

p(x[i]|θ).

- Log likelihood: θ̂MLE = argmax
θ∈Θ

[
N∑
i=1

log[p(x[i]|θ)]
]
.

- Maximizer: Partial derivative equates to 0.

- Pros:

▶ MLE is easy and fast to compute.

▶ MLE is consistent, i.e. θ̂MLE → θ∗ as N → ∞.

▶ MLE is efficient, i.e. there is no consistent estimator that has

lower MSE than θ̂MLE.

▶ MLE us functionally invariant, i.e. MLE for g(θ∗) is g(θ̂MLE).

- Cons:

▶ MLE is a point estimate which does not represent uncertainty.

▶ MLE may overfit.

▶ MLE does not incorporate prior information.

▶ Asymptotic results are for the limit and assume model is correct.

▶ MLE may not exist or may not be unique.

- Prediction for new data point x∗: Evaluate p(x∗|θ̂MLE).

Bayesian Inference: p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ =

N∏
i=1

p(x[i]|θ)p(θ)∫ N∏
i=1

p(x[i]|θ)p(θ)dθ
.

- Bayesian inference computes posterior distribution over all possible

parameter values, hence it models uncertainty over parameters.

- Pros:

▶ Bayesian inference incorporates prior information.

▶ We can derive quantities of interest from the result.

▶ Bayesian inference allows us to perform model selection.

- Cons:

▶ Prior belief may not be conjugate to likelihood, hence it is

computationally intractable.

- Prediction for x∗: Calculate p(x∗|D) =
∫
p(x∗|θ)p(θ|D) dθ.
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Maximum a Posteriori Estimate (MAP): θ̂MAP = argmax
θ∈Θ

[p(θ|D)].

- More data points → MAP closer to MLE.

- Fewer data points → MAP closer to prior.

- Pros:

▶ MAP is easy and fast to compute.

▶ MAP incorporates prior information.

▶ MAP avoids overfitting.

▶ As n→ ∞, MAP approaches MLE but does not have similar

asymptotic properties (consistency & efficiency).

- Cons:

▶ MAP is also a point estimate like MLE.

▶ We are still forced to choose prior.

▶ MAP is not functionally invariant.

- Prediction for new data point x∗: Evaluate p(x∗|θ̂MAP).

Exponential Family (ExpFam): An exponential family is a set of prob-

abilistic distributions {pθ : θ ∈ Θ} with the form

pθ(x) =
h(x)eη(θ)

⊤s(x)

Z(θ)
,

where

- θ ∈ Θ ⊆ Rk, x ∈ Rd;

- Natural parameters, η(θ) : Θ → Rm;

- Sufficient statistics, s(x) : Rd → Rm;

- Base measure, h(x) : Rd → [0,∞);

- Partition function, Z(θ) : Θ → [0,∞).

- An exponential family is in its natural/canonical form if it is

parametrized by its natural parameters:

pη(x) =
h(x)eη

⊤s(x)

Z(η)
,

where Z(η) =
∫
h(x)eη

⊤s(x) dx is called normalizer.

- Log partition function: pη(x) = h(x)e

[
η⊤s(x)−A(η)

]
.

Here A(η) is the log of partition function, i.e. A(η) = logZ(η).

▶ E(s(x)) = ∇ logZ(η) = ∇A(η).

▶ If s(x) = x, we can find moments of x by differentiation.

- ∇A(ηMLE) =
1
N

N∑
n=1

s(xn). The MLE only depends on s(x).

3 Bayesian Networks

Conditional Independence: Two random variables XA and XC

are conditionally independent given XB (i.e. XA ⊥ XC | XB)

if and only if p(xA, xC |xB) = p(xA|xB)p(xC |xB), or alternatively

p(xA|xB , xC) = p(xA|xB).

- Consider p(x|θ) = p(x1|θ)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2, x3, θ4):

MLE: argmax
θ1

p(x|θ) = argmax
θ1

log p(x|θ)

= argmax
θ1

{log p(x1|θ1) +((((((log p(x2|x1, θ2)+

((((((log p(x3|x1, θ3) +((((((((
log p(x4|x2, x3, θ4)}

= argmax
θ1

log p(x1|θ1)

MAP: argmax
θ1

p(θ|x) = argmax
θ1

log p(θ|x)

= argmax
θ1

log p(x|θ)p(θ)

= argmax
θ1

log p(x|θ1) + log p(θ1)

Bayesian Networks: A Bayesian network is a tuple B = (G,P )

where P factorizes according to G and where P is specified as a set of

conditional probability distributions associated with G’s nodes.

- A Bayesian network is a DAG.

▶ Each node is associated with a random variable Xi.

▶ Shaded node refers to an observed variable.

▶ Topological ordering: (Xi → Xj) ⇒ (i < j) (not unique).

▶ Path: A walk following the direction of →.

▶ Trail: A walk following the direction, or anti-direction, of →.

- Local Markov assumption: Each random variable Xi is independent

of its non-descendants XnonDesc(Xi)
given its parents Xπi .

▶ Locality of the parent-child relationship is used to construct

economical representations of the joint distribution.

▶ The parent-child (Xπi , Xi) represents the conditional

independence p(xi|xπi ).

- Joint probability: p(x1, · · · , xN ) =
N∏
i=1

p(xi|xπi ).

- Independence set (I-Set): Let P be a distribution over X . Define

J (P ) as the set of independence assertions of the form (X ⊥ Y | Z)

that hold in P .

- Independence map (I-Map): Let G be associated with independence

assertions J (G). G is an independence map for P if J (G) ⊆ J (P ).

- Pros:

▶ Reduces the number of parameters needed to model the joint

distribution.

▶ Visualizes the structure of the probablistic model.

▶ Provides insights into the conditional independence properties.

▶ Expresses complex calculations as graphical manipulations.

- Misconceptions:

✖ The arrows always indicate dependence.

✖ Every network represents a unique probability distribution.

✖ Observations always result in independence between random

variables.

Graph Separation: A set of nodes A is said to be d-separated from B

by C if all trails from nodes in set A are ”blocked” from nodes in set B

when all nodes from set C are observed, such that A ⊥ B | C.

Linear Regression: Y [i] = w⊤x[i] + ϵ[i], where

- x[i] is a D-dimensional observed input vector;

- w is a coefficient vector;

- ϵ[i] ∼ N(0, σ2) is iid zero-mean Gaussian noise.
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The independence assertions here are Y [i] ⊥ Y [i+1] | x[i],w, σ2
n, hence we

have the factorization p(y[1], · · · , y[N ]) =
N∏
i=1

p(y[i]|w⊤x[i], σ2
n). Assume

we know σ2
n, we want to learn w.

wMLE = argmax
w

log p(D|θ)

= argmax
w

log

N∏
i=1

p

(
y[i]

∣∣∣∣w⊤x[i], σ2
n

)

= argmax
w

N∑
i=1

log

[
N

(
y[i]

∣∣∣∣w⊤x[i], σ2
n

)]

= argmax
w

−
N∑
i=1

(
y[i]−w⊤x[i]

)2
2σ2

n

= argmin
w

1

2

N∑
i=1

(
y[i]−w⊤x[i]

)2
::::::::::::::::

L(w)

By letting ∇L(w) = 0, we get wMLE = (X⊤X)−1(X⊤y).

Bayesian Linear Regression: We want to model uncertainty over w.

- The coefficient vector w is now a random variable with a prior

p(w|v) = N(0, vI).

- Factorization: p(y[1], · · · , y[N ],w) = p(w|v)
N∏
i=1

p(y[i]|w⊤x[i], σ2
N ).

Näıve Bayes: Näıve Bayes is a model for class c ∈ {1, · · ·K} given input

features x: p(x, c) = p(x|c)p(c). It can be used to classify new data via

Bayes rule: p(c|x) = p(x|c)p(c)∑
k

p(x|k)p(k) and returns c which maximizes p(c|x).

- Assumption: All features are independent given class C[i]:

p(x|c) =
∏
j
p(xj |c).

- Given training examples, we can learn each θc,j separately:

p(x, c|ϕ,θθθ) = p(c|ϕ)
∏
j
p(xj |c, θc,j).

Theorem 4.1: Given a graph G over a set of random variables X =

{X1, · · · , XN} and P be a joint distribution over the same space. If G is

an I-Map for P, then P factorizes according to G.

Theorem 4.2: Let P be a joint distribution over X and G be a Bayesian

network structure over X . If P factorizes according to G, then the local

dependence assertions Jl(G) ⊆ J (P ).

- The local Markov dependencies Jl(G) is the set of all basic

conditional independence assertions of the form:

{Xi ⊥ (XnonDesc(xi)
\Xπi )|Xπi}.

Global Markov Independencies: The set of all independencies that

correspond to d-separation in graph G is the set of global Markov inde-

pendencies:

J (G) = {(X ⊥ Y |Z) : dsepG(X;Y |Z)}.

Theorem 4.3 (Soundness): If a distribution P factorizes according to G,

then J (G) ⊆ J (P ). If two nodes are found to be d-separated given Z,

they are in fact conditionally independent given Z in P .

Faithful: P is faithful to G if for any conditional independence (X ⊥

Y |Z) ∈ J (P ) then dsepG(X;Y |Z). In other words, any independence in

P is reflected as d-separation in the graph G.

Perfect Map: A graph G is a perfect map for a probability distribution

P if J (P ) = J (G).

Theorem 4.4 (Weak Completeness): If (X ⊥ Y |Z) in all distributions

P that factorize over G, then dsepG(X;Y |Z).

Theorem 4.5 (Almost Completeness): For almost all distributions P

that factorize over G, we have J (P ) = J (G).

Bayesian networks are sound and almost complete, but they cannot

exactly represent all conditional independencies for a given distribution.

4 Markov Random Fields

Generative Models: Approaches that explicitly or implicitly model

the distributions of input and outputs (e.g. hidden Markov model, chain

structure MRF).

Discriminative Models: Approaches that model the posterior proba-

blities directly (e.g. chain structure CRF).

Markov Random Fields: A Markov random field, or undirected

graphical model, is a graph G(V, E), where

- V is a set of nodes that are in one-to-one correspondence with a set

of random variables;

- E is a set of undirected edges.

- Factorization via Gibbs distribution: p(x1, · · · , xn) = 1
Z

M∏
j=1

φj(Cj).

▶ A factor φ(C) is a function that maps a set of random variables

C = {X, · · · , Z} to a non-negative real number.

- Pros:

▶ No edge orientations, hence more natural for problems such as

image analysis and spatial statistics.

▶ Discriminative UGMs work better than discriminative DGMs.

- Cons:

▶ The parameters are less interpretable and less modular.

▶ Parameter estimation is more computationally expensive.

- Misconceptions:

✖ Factors always represent marginal/conditional distributions.

✖ UGMs represent more conditional independencies than DGMs.

✖ UGMs specify a unique factorization.

Global Markov Property: Given the sets of nodes A, B and C,

XA ⊥ XB | XC if and only if C separates A from B in the graph G. In

other words, there are no trails connecting any node in A to any node in

B when we remove all nodes in C.

Local Markov Property: The Markov blanket of Xs denoted mb(Xs)

is the set of nodes that renders a node Xs conditionally independent of

all the other nodes in G: Xs ⊥ V \ {mb(Xs), Xs} | mb(Xs).
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- The Markov blanket in a UGM is the set of immediate neighbours.

- The Markov blanket in a DGM is the set of the node’s parents,

children and co-parents (other parents of children).

Pairwise Markov Property: Two nodes Xs and Xt are conditionally

independent given the rest if there is no direct edge between them:

Xs ⊥ Xt | V \ {Xs, Xt} where Est = ∅.

Note that the three properties are interrelated: G⇒ L⇒ P , and P ⇒ G

if we assume positive distributions (p(x) > 0).

Theorem 5.1 (Hammersley-Clifford): A positive distribution p(y) > 0

satisfies the conditional independence properties of an undirected graph

H if and only if p can be represented as a product of factors, one per

maximal clique: p(y|θθθ) = 1
Z(θθθ)

∏
c∈C

ψc(yc|θθθc), where

- C is the set of all maximal cliques of G;

- ψc(·) is the factor or potential function of clique c;

- θ is the parameter of the factor ψc(·) for c ∈ C;

- Z(θ) is the partition function Z(θ) ≜
∑
y

∏
c∈C

ψc(yc|θθθc).

Log-Linear Form: p(y|θθθ) = 1
Z(θθθ)

exp

(∑
c∈C

θθθ⊤c ϕϕϕc(y)

)
. In this way,

log(ψc|yc) = ϕϕϕc(yc)
⊤θθθc

log p(y|θθθ) =
∑
c∈C

ϕϕϕc(yc)
⊤θθθc − logZ(θθθ).

- Every finite MRF is an exponential family.

- We can also specify p(y|θθθ) = 1
Z(θθθ)

exp

(
−
∑
c∈C

E (yc|θθθc)
)
, where E

is the energy associated with the variables in clique c.

Parameter Learning via MLE: Consider an MRF in log-linear form,

where c indexes the cliques.

MLE: argmax
θθθ

p(y|θθθ) =
1

Z(θθθ)
exp

∑
c∈C

θθθ⊤c ϕϕϕc(y)

 .

Its scaled log-likelihood is given by

l(θθθ) ≜
1

N

N∑
i=1

log p(yi|θθθ) =
1

N

N∑
i=1

∑
c∈C

θθθ⊤c ϕϕϕc(yi)− logZ(θθθ)


∂l

∂θθθc
=

1

N

N∑
i=1

[
ϕϕϕc(yi)−

∂

∂θθθc
logZ(θθθ)

]

=
1

N

N∑
i=1

[ϕϕϕc(yi)− E[ϕc(y)|θθθ]] (derivative of log partition)

=
1

N

N∑
i=1

ϕϕϕc(yi)

:::::::::

− E

[
ϕc(y)

∣∣∣∣θθθ
]

::::::::

clamped term unclamped/contrastive term

- l is convex in θθθ, hence p has unique global maximum.

- Unclamped term requires inference, which makes UGM much slower

than DGM.

Parameter Learning via MAP:

MAP: argmax
θθθ

{
N∑
i=1

log p(yi|θθθ) + log p(θθθ)

}
.

- We use a Gaussian prior where (µ,Σ) are hyperparameters.

p(θθθ) = Normθθθ[µµµ,ΣΣΣ]

=
1

(2π)
D
2 |ΣΣΣ|

1
2

e−
1
2
(θθθ−µµµ)⊤ΣΣΣ−1(θθθ−µµµ)

Conditional Random Fields: A conditional random field, or discrim-

inative random field, is an MRF where all the clique potentials are con-

ditioned on input feature X:

p(y|x,w) =
1

Z(x,w)

∏
c

ψc(yc|x,w).

- Log-linear of potentials: ψc(yc|x,w) = exp
(
w⊤

c ϕϕϕ(x,yc)
)
.

▶ ϕϕϕ(x, yc) is a feature vector derived from the global inputs X

and the local set of labels Yc.

Theorem 5.2 (Soundness): If P is a Gibbs distribution over H, then H

is an I-Map for P .

- Hammersley-Clifford states that for positive distributions P is a

Gibbs distribution over H if and only if H is an I-Map for P .

Theorem 5.3 (Weak Completeness): If X and Y are not separated in

H, then there is some distribution P that factorizes over H where X and

Y are dependent.

Markov random fields are sound and almost complete, but they cannot

ex actly represent all conditional independencies for a given

distribution.
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