CS5340 Uncertainty Modelling in AI

AY2022/23 Semester 2 · Prepared by Tian Xiao @snoidetx

CS5340 is about how to represent and reason with uncertainty in a computer.

Probability Basics 1

Probability Space: A probability space (Ω, E, P) models a process consisting of outcomes that occur randomly. It consists of three parts:

- Outcome or sample space, Ω (e.g. $\{1,2,3,4,5,6\});$
- Event space, $E \subseteq 2^{\Omega}$ (e.g. $\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}$);
 - ▶ Event space must contain \emptyset and Ω .
 - Event space is closed under union $(\alpha, \beta \in E \to \alpha \cup \beta \in E)$.
 - ► Event space is closed under complement $(\alpha \in E \rightarrow \Omega \alpha \in E)$.
- Probability function, $P: E \to [0, 1]$.

Probability Distribution: A probability distribution P over (Ω, E) is

a mapping from events in E to real values that satisfies the following: - Non-negativity: $\forall \alpha \in E [P(\alpha) > 0].$

- Probability of all outcomes sum to 1, i.e. $P(\Omega) = 1$.
- Mutually disjoint events: $\alpha \cap \beta = \emptyset \Rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$.

Random Variable: A random variable, $X : \Omega \to S$, is a function that maps a set of possible outcomes Ω to a space S.

- Indicator random variable maps every outcome to either 0 or 1.
- The set of values that X can take is denoted as Val(X).
- A lower-case letter x is a generic value/realisation of X.
- p(x) denotes P(X = x). x^i denotes a specific value of X.
- For any discrete probability distribution, $\sum_{i=1}^{K} p(x^i) = 1$.
- For any continuous probability distribution, $\int_{-\infty}^{\infty} p(x^i) = 1$.

Joint Probability: p(x, y) = P(X = x and Y = y).

- Sum rule: $p(x) = \begin{cases} \sum_{y} p(x, y), & \text{when } Y \text{ is discrete;} \\ \int p(x, y) \, dy, & \text{when } Y \text{ is continuous.} \end{cases}$
 - ▶ Sum rule is also known as *marginalization*
- Product rule: p(x, y) = p(x|y)p(y).
 - ▶ Product rule is also known as *chain rule*.

Likelihood: Propensity for observing X = x given Y = y

Conditional Probability: $p(x|y^*)$ denotes the probability of X = xgiven $Y = y^*$.

- $p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(x,y)}{\int p(x,y) dx}$

Bayes Rule:

$$p(y|x) = \frac{p(x|y)p(y)}{\int p(x|y)p(y) \, dy}$$
osterior: What we know Evidence

Independence: X and Y are *independent* if every conditional probabil- Baye ity distribution is the same (i.e. p(x|y) = p(x); p(y|x) = p(y)).

- If X and Y are independent, p(x, y) = p(x)p(y).

Expectation: Expectation is the expected or average value of some function f(x) taking into account the distribution of X.

$$-\mathbb{E}[f(x)] = \begin{cases} \sum_{x} f(x)p(x), & \text{when } X \text{ is discrete;} \\ \int f(x)p(x) \, dx, & \text{when } X \text{ is continuous.} \end{cases}$$

$$- \mathbb{E}(c) = c.$$

$$- \mathbb{E}(cf(x)) = c \mathbb{E}(f(x)).$$

- $\mathbb{E}(f(x) + g(x)) = \mathbb{E}(f(x)) + \mathbb{E}(g(x)).$
- $\mathbb{E}(f(x)q(y)) = \mathbb{E}(f(x))\mathbb{E}(q(y))$, if X and Y are independent.

Distribution	Parameter(s)	Domain	Probability Density/Mass Function
Bernoulli	$\lambda \in [0, 1]$	$x \in \{0, 1\}$ (binary)	$p(x) = \text{Bern}_x[\lambda] = \lambda^x (1-\lambda)^{1-x}$
Binomial	$n>0$ and $\lambda\in[0,1]$	$x \in \{0, \cdots, n\}$ (discrete)	$p(x) = \operatorname{Bin}_x[n, \lambda] = \binom{n}{x} \lambda^x (1 - \lambda)^{n-x}$
Categorial	$\boldsymbol{\lambda} = [\lambda_1, \cdots, \lambda_K]^\top$ $\lambda_k \ge 0, \sum_{k=1}^K \lambda_k = 1$	K-dimensional one-hot vector	$p(\mathbf{x}) = \operatorname{Cat}_x[\boldsymbol{\lambda}] = \lambda_k$
Univariate Normal (Gaussian)	$ \begin{array}{c} \mu \in \mathbb{R} \ (\text{mean}) \\ \sigma^2 > 0 \ (\text{variance}) \end{array} $	$x \in \mathbb{R}$ (continuous)	$p(x) = \operatorname{Norm}_{x}[\mu, \sigma^{2}] = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$
Multivariable Normal	$\boldsymbol{\mu} \in \mathbb{R}^{D} ext{ (mean)}$ $\boldsymbol{\Sigma} \in \mathbb{R}^{+}_{D \times D} ext{ (cov)}$	$\mathbf{x} \in \mathbb{R}^{D}$ (continuous)	$\begin{split} p(\mathbf{x}) &= \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu},\boldsymbol{\Sigma}] \\ &= \frac{1}{(2\pi)^{\frac{D}{2}} \boldsymbol{\Sigma} ^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})} \end{split}$

Conjugate Distribution: Conjugate distributions are used to model the parameters of probability distributions.

- Product of a probability distribution and its conjugate has the same form as the conjugate times a constant.
- Parameters of conjugate distributions are called hyperparameters.

Distribution	Conjugate	Hyperparameter(s)	Probability Density/Mass Function of Conjugate
Bernoulli Binomial	Beta	$\alpha,\beta>0$	$ \begin{array}{l} p(\lambda) = \mathrm{Beta}_{\lambda}[\alpha,\beta] = \frac{1}{B(\alpha,\beta)} \lambda^{\alpha-1} (1-\lambda)^{\beta-1} \\ \mathrm{where} \; B(\alpha,\beta) = \frac{\Gamma[\alpha]\Gamma[\beta]}{\Gamma[\alpha+\beta]} = \int_{0}^{1} t^{\alpha-1} (1-t)^{\beta-1} dt \end{array} $
Categorial	Dirichlet	$\alpha_1, \cdots, \alpha_k > 0$	$p(\boldsymbol{\lambda}) = \mathrm{Dir}_{\boldsymbol{\lambda}}[\boldsymbol{\alpha}] = \frac{\Gamma\left[\sum\limits_{k=1}^{K} \alpha_{k}\right]}{\prod\limits_{k=1}^{K} \Gamma[\alpha_{k}]} \prod\limits_{k=1}^{K} \lambda_{k}^{\alpha_{k}-1}$
Univariate Normal (Gaussian)	Normal Inverse Gamma	$egin{aligned} lpha,eta,\gamma>0\ \delta\in\mathbb{R} \end{aligned}$	$ \begin{array}{l} p(\mu,\sigma^2) = \text{NormInvGam}_{\mu,\sigma^2}[\alpha,\beta,\gamma,\delta] \\ \\ = \frac{\sqrt{\gamma}}{\sigma\sqrt{2\pi}}\frac{\beta^\alpha}{\Gamma[\alpha]} \left(\frac{1}{\sigma^2}\right)^{\alpha+1} e^{-\frac{2\beta+\gamma(\delta-\mu)^2}{2\sigma^2}} \end{array} $
Multivariable Normal	Normal Inverse Wishart	$\begin{array}{c} \alpha, \gamma > 0 \\ \pmb{\delta} \in \mathbb{R}^D \\ + \text{ve definite } \Psi \in \mathbb{R}^{D \times D}_+ \end{array}$	$ \begin{aligned} p(\boldsymbol{\mu},\boldsymbol{\Sigma}) &= \operatorname{NorIWis}_{\boldsymbol{\mu},\boldsymbol{\Sigma}}[\alpha,\boldsymbol{\Phi},\gamma,\boldsymbol{\delta}] \\ &= \frac{\gamma^{\frac{D}{2}} \boldsymbol{\Psi} ^{\frac{Q}{2}} e^{-\frac{1}{2}\left(\operatorname{Tr}(\boldsymbol{\Phi}\boldsymbol{\Sigma}^{-1}] + \gamma(\boldsymbol{\mu} - \boldsymbol{\delta})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu} - \boldsymbol{\delta})\right)}{2^{\frac{\alpha D}{2}}(2\pi)^{\frac{D}{2}} \boldsymbol{\Sigma} ^{\frac{\alpha+D+2}{2}} \Gamma_{D}\left[\frac{\alpha}{2}\right]} \end{aligned} $

Simple Probabilistic Models $\mathbf{2}$

Goal: To learn the unknown parameter(s) θ from a set of given data $\mathcal{D} = \{x[1], \cdots, x[N]\}, \text{ and use those parameter}(s) \text{ to make predictions.}$

Maximum Likelihood Estimate (MLE): $\hat{\theta}_{MLE} = \arg \max[p(\mathcal{D}|\theta)].$

- i.i.d. assumption: $p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x[i]|\theta).$
- Log likelihood: $\hat{\theta}_{\text{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \left[\sum_{i=1}^{N} \log[p(x[i]|\theta)] \right].$
- Maximizer: Partial derivative equates to
- Pros:
 - ▶ MLE is easy and fast to compute.
 - ▶ MLE is consistent, i.e. $\hat{\theta}_{MLE} \rightarrow \theta^*$ as $N \rightarrow \infty$.
 - ▶ MLE is efficient, i.e. there is no consistent estimator that has lower MSE than $\hat{\theta}_{MLE}$.
 - ▶ MLE us functionally invariant, i.e. MLE for $g(\theta^*)$ is $g(\hat{\theta}_{\text{MLE}})$.

- Cons:

- ▶ MLE is a point estimate which does not represent uncertainty.
- ▶ MLE may overfit.
- ▶ MLE does not incorporate prior information.
- ► Asymptotic results are for the limit and assume model is correct.
- ▶ MLE may not exist or may not be unique.
- Prediction for new data point x^* : Evaluate $p(x^*|\hat{\theta}_{\text{MLE}})$.

sian Inference:
$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta} = \frac{\prod_{i=1}^{N} p(x[i]|\theta)p(\theta)}{\int \prod_{i=1}^{N} p(x[i]|\theta)p(\theta)d\theta}.$$

- Bayesian inference computes posterior distribution over all possible parameter values, hence it models uncertainty over parameters.
- Pros:
 - ▶ Bayesian inference incorporates prior information.
 - ▶ We can derive quantities of interest from the result.
 - ▶ Bayesian inference allows us to perform model selection.
- Cons:
 - ▶ Prior belief may not be conjugate to likelihood, hence it is computationally intractable.
- Prediction for x^* : Calculate $p(x^*|\mathcal{D}) = \int p(x^*|\theta) p(\theta|\mathcal{D}) d\theta$.

Maximum a Posteriori Estimate (MAP): $\hat{\theta}_{MAP} = \arg \max[p(\theta|\mathcal{D})]$

- More data points \rightarrow MAP closer to MLE.
- Fewer data points \rightarrow MAP closer to prior.
- Pros:
 - ▶ MAP is easy and fast to compute.
 - ► MAP incorporates prior information.
 - ► MAP avoids overfitting.
 - ► As n → ∞, MAP approaches MLE but does not have similar asymptotic properties (consistency & efficiency).
- Cons:
 - ▶ MAP is also a point estimate like MLE.
 - ▶ We are still forced to choose prior.
 - ▶ MAP is not functionally invariant.
- Prediction for new data point x^* : Evaluate $p(x^*|\hat{\theta}_{MAP})$.

Exponential Family (ExpFam): An *exponential family* is a set of probabilistic distributions $\{p_{\theta} : \theta \in \Theta\}$ with the form

$$p_{\theta}(x) = \frac{h(x)e^{\eta(\theta)^{\top}s(x)}}{Z(\theta)},$$

where

- $\theta \in \Theta \subseteq \mathbb{R}^k, x \in \mathbb{R}^d;$
- Natural parameters, $\eta(\theta): \Theta \to \mathbb{R}^m;$
- Sufficient statistics, $s(x) : \mathbb{R}^d \to \mathbb{R}^m$;
- Base measure, $h(x) : \mathbb{R}^d \to [0, \infty);$
- Partition function, $Z(\theta): \Theta \to [0,\infty)$.
- An exponential family is in its *natural/canonical* form if it is parametrized by its natural parameters:

$$p_{\eta}(x) = \frac{h(x)e^{\eta^{\top}s(x)}}{Z(\eta)}$$

- where $Z(\eta) = \int h(x) e^{\eta^{\top} s(x)} dx$ is called *normalizer*.
- Log partition function: $p_{\eta}(x) = h(x)e^{\left\lfloor \eta^{\top}s(x) A(\eta) \right\rfloor}$.
- Here $A(\eta)$ is the log of partition function, i.e. $A(\eta) = \log Z(\eta)$.
 - $\blacktriangleright \mathbb{E}(s(x)) = \nabla \log Z(\eta) = \nabla A(\eta).$
- ▶ If s(x) = x, we can find moments of x by differentiation.

- $\nabla A(\eta_{\text{MLE}}) = \frac{1}{N} \sum_{n=1}^{N} s(x_n)$. The MLE only depends on s(x).

3 Bayesian Networks

Conditional Independence: Two random variables X_A and X_C are conditionally independent given X_B (i.e. $X_A \perp X_C \mid X_B$) if and only if $p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$, or alternatively $p(x_A \mid x_B, x_C) = p(x_A \mid x_B)$.

- Consider $p(x|\theta) = p(x_1|\theta)p(x_2|x_1,\theta_2)p(x_3|x_1,\theta_3)p(x_4|x_2,x_3,\theta_4)$:

MLE:
$$\arg \max_{\theta_1} p(x|\theta) = \arg \max_{\theta_1} \log p(x|\theta)$$

$$= \arg \max_{\theta_1} \{\log p(x_1|\theta_1) + \underline{\log p(x_2|x_1, \theta_2)} + \underline{\log p(x_3|x_1, \theta_3)} + \underline{\log p(x_4|x_2, x_3, \theta_4)} \}$$

$$= \arg \max_{\theta_1} \log p(x_1|\theta_1)$$
MAP: $\arg \max_{\theta_1} p(\theta|x) = \arg \max_{\theta_1} \log p(\theta|x)$

$$= \arg \max_{\theta_1} \log p(x|\theta)p(\theta)$$

$$= \arg \max_{\theta_1} \log p(x|\theta)p(\theta)$$

 $= \underset{\theta_{\star}}{\arg \max} \log p(x|\theta_1) + \log p(\theta_1)$

Bayesian Networks: A Bayesian network is a tuple B = (G, P) where P factorizes according to G and where P is specified as a set of conditional probability distributions associated with G's nodes.

- A Bayesian network is a DAG.
 - Each node is associated with a random variable X_i .
 - ▶ Shaded node refers to an observed variable.
 - ▶ Topological ordering: $(X_i \to X_j) \Rightarrow (i < j)$ (not unique).
 - ▶ Path: A walk following the direction of \rightarrow .
 - ▶ Trail: A walk following the direction, or anti-direction, of \rightarrow .
- Local Markov assumption: Each random variable X_i is independent

of its non-descendants $X_{\text{nonDesc}(X_i)}$ given its parents X_{π_i} .

- ► Locality of the parent-child relationship is used to construct economical representations of the joint distribution.
- ► The parent-child (X_{π_i}, X_i) represents the conditional independence $p(x_i | x_{\pi_i})$.

- Joint probability:
$$p(x_1, \cdots, x_N) = \prod_{i=1}^N p(x_i | x_{\pi_i})$$
.

 $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_1)p(x_2|x_1)p(x_4|x_2)p(x_3|x_1)p(x_5|x_3)p(x_6|x_2, x_5)p(x_6|x_2, x_5)p(x_6|x_5$

- Independence set (I-Set): Let P be a distribution over \mathcal{X} . Define $\mathcal{J}(P)$ as the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P.
- Independence map (I-Map): Let G be associated with independence assertions J(G). G is an *independence map* for P if J(G) ⊆ J(P).
 Pros:
 - ▶ Reduces the number of parameters needed to model the joint distribution.
 - ▶ Visualizes the structure of the probablistic model.
 - ▶ Provides insights into the conditional independence properties.
 - ▶ Expresses complex calculations as graphical manipulations.

- Misconceptions:

- \bigstar The arrows always indicate dependence.
- ***** Every network represents a unique probability distribution.
- Observations always result in independence between random variables.

Graph Separation: A set of nodes A is said to be *d*-separated from B by C if all trails from nodes in set A are "blocked" from nodes in set B when all nodes from set C are observed, such that $A \perp B \mid C$.

Linear Regression: $Y[i] = \mathbf{w}^{\top} \mathbf{x}[i] + \epsilon[i]$, where

- $\mathbf{x}[i]$ is a *D*-dimensional observed input vector;
- ${\bf w}$ is a coefficient vector;
- $\epsilon[i] \sim N(0,\sigma^2)$ is iid zero-mean Gaussian noise.

- Circles are random variables.
- Shaded circles are observed random variables.
- $\bullet\,$ Unshaded circles are unobserved/latent/hidden.
- Filled circles are deterministic parameters.

The independence assertions here are $Y[i] \perp Y[i+1] | \mathbf{x}[i], \mathbf{w}, \sigma_n^2$, hence we have the factorization $p(y[1], \dots, y[N]) = \prod_{i=1}^N p(y[i]|\mathbf{w}^\top \mathbf{x}[i], \sigma_n^2)$. Assume we know σ_n^2 , we want to learn \mathbf{w} .

$$\mathbf{w}_{\text{MLE}} = \arg\max_{\mathbf{w}} \log p(\mathcal{D}|\theta)$$

$$= \arg\max_{\mathbf{w}} \log \prod_{i=1}^{N} p\left(y[i] \middle| \mathbf{w}^{\top} \mathbf{x}[i], \sigma_{n}^{2}\right)$$

$$= \arg\max_{\mathbf{w}} \sum_{i=1}^{N} \log \left[N\left(y[i] \middle| \mathbf{w}^{\top} \mathbf{x}[i], \sigma_{n}^{2}\right) \right]$$

$$= \arg\max_{\mathbf{w}} - \sum_{i=1}^{N} \frac{(y[i] - \mathbf{w}^{\top} \mathbf{x}[i])^{2}}{2\sigma_{n}^{2}}$$

$$= \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} \left(y[i] - \mathbf{w}^{\top} \mathbf{x}[i]\right)^{2}$$

$$\mathcal{L}(\mathbf{w})$$

By letting $\nabla \mathcal{L}(\mathbf{w}) = 0$, we get $\mathbf{w}_{MLE} = (\mathbf{X}^{\top} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{y})$.

 $\mathbf{Bayesian}\ \mathbf{Linear}\ \mathbf{Regression}:\ \mathrm{We}\ \mathrm{want}\ \mathrm{to}\ \mathrm{model}\ \mathrm{uncertainty}\ \mathrm{over}\ \mathbf{w}.$

- The coefficient vector \mathbf{w} is now a random variable with a prior $p(\mathbf{w}|v) = N(\mathbf{0}, v\mathbf{I}).$

- Factorization:
$$p(y[1], \dots, y[N], \mathbf{w}) = p(\mathbf{w}|v) \prod_{i=1}^{N} p(y[i]|\mathbf{w}^{\top}\mathbf{x}[i], \sigma_N^2).$$

Naïve Bayes: Naïve Bayes is a model for class $c \in \{1, \dots, K\}$ given input features **x**: $p(\mathbf{x}, c) = p(\mathbf{x}|c)p(c)$. It can be used to classify new data via Bayes rule: $p(c|\mathbf{x}) = \frac{p(\mathbf{x}|c)p(c)}{\sum_{c} p(\mathbf{x}|k)p(k)}$ and returns c which maximizes $p(c|\mathbf{x})$.

- Assumption: All features are independent given class ${\cal C}[i]$:

$$p(\mathbf{x}|c) = \prod p(x_j|c)$$

- Given training examples, we can learn each $\theta_{c,j}$ separately:

$$p(\mathbf{x}, c | \phi, \boldsymbol{\theta}) = p(c | \phi) \prod p(x_j | c, \theta_{c,j})$$

Theorem 4.1: Given a graph G over a set of random variables $\mathcal{X} = \{X_1, \dots, X_N\}$ and P be a joint distribution over the same space. If G is an I-Map for P, then P factorizes according to G.

Theorem 4.2: Let P be a joint distribution over \mathcal{X} and G be a Bayesian network structure over \mathcal{X} . If P factorizes according to G, then the local dependence assertions $\mathcal{J}_{l}(G) \subseteq \mathcal{J}(P)$.

- The local Markov dependencies $\mathcal{J}_l(G)$ is the set of all basic
 - conditional independence assertions of the form:

$$\{X_i \perp (X_{\text{nonDesc}(x_i)} \setminus X_{\pi_i}) | X_{\pi_i}\}$$

Global Markov Independencies: The set of all independencies that

correspond to d-separation in graph G is the set of global Markov independencies:

$$\mathcal{J}(G) = \{ (X \perp Y | Z) : dsep_G(X; Y | Z) \}$$

Theorem 4.3 (Soundness): If a distribution P factorizes according to G, then $\mathcal{J}(G) \subseteq \mathcal{J}(P)$. If two nodes are found to be d-separated given Z, they are in fact conditionally independent given Z in P.

Faithful: P is faithful to G if for any conditional independence $(X \perp Y|Z) \in \mathcal{J}(P)$ then $\operatorname{dsep}_G(X;Y|Z)$. In other words, any independence in P is reflected as d-separation in the graph G.

Perfect Map: A graph G is a perfect map for a probability distribution P if $\mathcal{J}(P) = \mathcal{J}(G)$.

Theorem 4.4 (Weak Completeness): If $(X \perp Y|Z)$ in all distributions P that factorize over G, then $\operatorname{dsep}_G(X;Y|Z)$.

Theorem 4.5 (Almost Completeness): For almost all distributions P that factorize over G, we have $\mathcal{J}(P) = \mathcal{J}(G)$.

Bayesian networks are sound and almost complete, but they cannot exactly represent all conditional independencies for a given distribution.

4 Markov Random Fields

Generative Models: Approaches that explicitly or implicitly model the distributions of input and outputs (e.g. hidden Markov model, chain structure MRF).

Discriminative Models: Approaches that model the posterior probabilities directly (e.g. chain structure CRF).

Markov Random Fields: A Markov random field, or undirected graphical model, is a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$, where

- V is a set of nodes that are in one-to-one correspondence with a set of random variables;
- ${\mathcal E}$ is a set of undirected edges.
- Factorization via Gibbs distribution: $p(x_1, \cdots, x_n) = \frac{1}{Z} \prod_{j=1}^M \varphi_j(\mathcal{C}_j).$
 - ► A factor φ(C) is a function that maps a set of random variables $C = \{X, \cdots, Z\} \text{ to a non-negative real number.}$

- Pros:

- ► No edge orientations, hence more natural for problems such as image analysis and spatial statistics.
- ▶ Discriminative UGMs work better than discriminative DGMs.
 Cons:
 - ▶ The parameters are less interpretable and less modular.
 - ▶ Parameter estimation is more computationally expensive.
- Misconceptions:
 - \bigstar Factors always represent marginal/conditional distributions.
 - \bigstar UGMs represent more conditional independencies than DGMs.
 - \bigstar UGMs specify a unique factorization.

Global Markov Property: Given the sets of nodes A, B and C, $X_A \perp X_B \mid X_C$ if and only if C separates A from B in the graph \mathcal{G} . In other words, there are no trails connecting any node in A to any node in B when we remove all nodes in C.

Local Markov Property: The *Markov blanket* of X_s denoted $mb(X_s)$ is the set of nodes that renders a node X_s conditionally independent of all the other nodes in \mathcal{G} : $X_s \perp \mathcal{V} \setminus \{mb(X_s), X_s\} \mid mb(X_s)$.

- The Markov blanket in a UGM is the set of immediate neighbours.
- The Markov blanket in a DGM is the set of the node's parents, children and co-parents (other parents of children).

Pairwise Markov Property: Two nodes X_s and X_t are conditionally independent given the rest if there is no direct edge between them: $X_s \perp X_t \mid \mathcal{V} \setminus \{X_s, X_t\}$ where $\mathcal{E}_s t = \emptyset$.

Note that the three properties are interrelated: $G \Rightarrow L \Rightarrow P$, and $P \Rightarrow G$ if we assume positive distributions $(p(\mathbf{x}) > 0)$.

Theorem 5.1 (Hammersley-Clifford): A positive distribution $p(\mathbf{y}) > 0$ satisfies the conditional independence properties of an undirected graph \mathcal{H} if and only if p can be represented as a product of factors, one per maximal clique: $p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{c,c} \psi_c(\mathbf{y}_c|\boldsymbol{\theta}_c)$, where

- \mathcal{C} is the set of all maximal cliques of \mathcal{G} ;
- $\psi_c(\cdot)$ is the factor or potential function of clique c;
- θ is the parameter of the factor $\psi_c(\cdot)$ for $c \in \mathcal{C}$;
- $Z(\theta)$ is the partition function $Z(\theta) \triangleq \sum_{v} \prod_{c \in C} \psi_c(\mathbf{y}_c | \boldsymbol{\theta}_c).$

Log-Linear Form: $p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(\sum_{c \in \mathcal{C}} \boldsymbol{\theta}_c^{\top} \boldsymbol{\phi}_c(\mathbf{y})\right)$. In this way,

$$\log(\psi_c | \mathbf{y}_c) = \boldsymbol{\phi}_c(\mathbf{y}_c)^{\top} \boldsymbol{\theta}_c$$
$$\log p(\mathbf{y} | \boldsymbol{\theta}) = \sum_{c \in \mathcal{C}} \boldsymbol{\phi}_c(\mathbf{y}_c)^{\top} \boldsymbol{\theta}_c - \log Z(\boldsymbol{\theta})$$

- Every finite MRF is an exponential family.
- We can also specify $p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(-\sum_{c \in \mathcal{C}} E\left(\mathbf{y}_{c}|\boldsymbol{\theta}_{c}\right)\right)$, where Eis the *energy* associated with the variables in cl

Parameter Learning via MLE: Consider an MRF in log-linear form, where c indexes the cliques.

MLE:
$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(\sum_{c \in \mathcal{C}} \boldsymbol{\theta}_c^{\top} \boldsymbol{\phi}_c(\mathbf{y})\right)$$

Its scaled log-likelihood is given by

$$\begin{split} l(\boldsymbol{\theta}) &\triangleq \frac{1}{N} \sum_{i=1}^{N} \log p(\mathbf{y}_i | \boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{c \in \mathcal{C}} \boldsymbol{\theta}_c^\top \boldsymbol{\phi}_c(\mathbf{y}_i) - \log Z(\boldsymbol{\theta}) \right] \\ \frac{\partial l}{\partial \boldsymbol{\theta}_c} &= \frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{\phi}_c(\mathbf{y}_i) - \frac{\partial}{\partial \boldsymbol{\theta}_c} \log Z(\boldsymbol{\theta}) \right] \\ &= \frac{1}{N} \sum_{i=1}^{N} \left[\boldsymbol{\phi}_c(\mathbf{y}_i) - \mathbb{E}[\boldsymbol{\phi}_c(\mathbf{y}) | \boldsymbol{\theta}] \right] (derivative of log partition) \\ &= \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\phi}_c(\mathbf{y}_i) - \mathbb{E}\left[\boldsymbol{\phi}_c(\mathbf{y}) \right] \boldsymbol{\theta} \right] \end{split}$$

clamped term unclamped/contrastive term

- l is convex in $\boldsymbol{\theta}$, hence p has unique global maximum.
- Unclamped term requires inference, which makes UGM much slower than DGM.

Parameter Learning via MAP:

$$\text{MAP:} \ \arg \max_{\boldsymbol{\theta}} \left\{ \sum_{i=1}^N \log p(\mathbf{y}_i | \boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) \right\}.$$

- We use a Gaussian prior where (μ, Σ) are hyperparameters.

$$p(\boldsymbol{\theta}) = \operatorname{Norm}_{\boldsymbol{\theta}}[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$$
$$= \frac{1}{(2\pi)^{\frac{D}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta} - \boldsymbol{\mu})}$$

Conditional Random Fields: A conditional random field, or discriminative random field, is an MRF where all the clique potentials are conditioned on input feature X:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \prod_{c} \psi_{c}(\mathbf{y}_{c}|\mathbf{x}, \mathbf{w})$$

- Log-linear of potentials: $\psi_c(\mathbf{y}_c|\mathbf{x}, \mathbf{w}) = \exp\left(\mathbf{w}_c^{\top} \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}_c)\right).$

 $\blacktriangleright \phi(x, y_c)$ is a feature vector derived from the global inputs X and the local set of labels Y_c .

Theorem 5.2 (Soundness): If P is a Gibbs distribution over H, then His an I-Map for P.

- Hammersley-Clifford states that for positive distributions P is a Gibbs distribution over H if and only if H is an I-Map for P.

Theorem 5.3 (Weak Completeness): If X and Y are not separated in H, then there is some distribution P that factorizes over H where X and Y are dependent.

Markov random fields are sound and almost complete, but they cannot ex actly represent all conditional independencies for a given distribution.

Algorithm 19.1: Stochastic maximum likelihood for fitting an MRF

1 Initialize weights θ randomly; 2 $k = 0, \eta = 1$; 3 for each epoch do for each minibatch of size B do for each sample s = 1 : S do Sample $\mathbf{y}^{s,k} \sim p(\mathbf{y}|\boldsymbol{\theta}_k)$; $\hat{E}(\phi(\mathbf{y})) = \frac{1}{S} \sum_{s=1}^{S} \phi(\mathbf{y}^{s,k});$ for each training case *i* in minibatch do $\mathbf{g}_{ik} = \boldsymbol{\phi}(\mathbf{y}_i) - \hat{E}(\boldsymbol{\phi}(\mathbf{y}));$ $\begin{aligned} \mathbf{g}_k &= \frac{1}{B} \sum_{i \in B} \mathbf{g}_{ik}; \\ \boldsymbol{\theta}_{k+1} &= \boldsymbol{\theta}_k - \eta \mathbf{g}_k; \end{aligned}$ k = k + 1;Decrease step size η ;

4

5

6

7 8

9

10 11

12

13