CS5340 Uncertainty Modelling in AI

AY2022/23 Semester 2 - Prepared by Tian Xiao @snoidetz

CS5340 is about how to represent and reason with uncertainty in a

computer.

1 Probability Basics

Probability Space: A probability space (2, E, P) models a process
consisting of outcomes that occur randomly. It consists of three parts:
- Outcome or sample space, Q (e.g. {1,2,3,4,5,6});
- Event space, E C 29 (e.g. {0,{1,3,5},{2,4,6},Q});
» Event space must contain () and Q.
» Event space is closed under union (o, € E - aUB € E).
» Event space is closed under complement (¢« € E — Q — o € E).

- Probability function, P : E — [0, 1].

Probability Distribution: A probability distribution P over (Q, E) is
a mapping from events in E to real values that satisfies the following:

- Non-negativity: Va € E [P(a) > 0].

- Probability of all outcomes sum to 1, i.e. P(Q2) = 1.

- Mutually disjoint events: aN B =0 = P(aUp) = P(a) + P(B).

Random Variable: A random wvariable, X : Q — S, is a function that
maps a set of possible outcomes 2 to a space S.

- Indicator random variable maps every outcome to either 0 or 1.

- The set of values that X can take is denoted as Val(X).

- A lower-case letter z is a generic value/realisation of X.

- p(x) denotes P(X = x). z! denotes a specific value of X.

- For any discrete probability distribution, f: p(x?) = 1.

- For any continuous probability distributi(jr:,lffooo p(z?) = 1.

Joint Probability: p(z,y) = P(X =z and Y = y).
2 p(@,y),
Yy

when Y is discrete;
- Sum rule: p(z) =

[ p(z,y)dy, whenY is continuous.

» Sum rule is also known as marginalization.

- Product rule: p(z,y) = p(z|y)p(y).

» Product rule is also known as chain rule.

Conditional Probability: p(z|y*) denotes the probability of X = =z

given Y = y*.
p(z,y) p(z,y)
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Bayes Rule: Likelihood: Propensity for Prior: What we know
observing X =« given Y =y.  about Y before seeing X.
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Posterior: What we know
about Y after seeing X.

Independence: X and Y are independent if every conditional probabil-
ity distribution is the same (i.e. p(z|y) = p(z); p(y|z) = p(y)).
- If X and Y are independent, p(z,y) = p(z)p(y).

Expectation: Ezpectation is the expected or average value of some func-

tion f(z) taking into account the distribution of X.

2 [(@)p(z),
[ f(@)p(z) dz,

when X is discrete;

when X is continuous.

Distribution Parameter(s) Domain Probability Density/Mass Function
Bernoulli Ae0,1] z € {0,1} (binary) p(z) = Berng [A] = A%(1 — A)1—=
Binomial n>0and A€[0,1]|z € {0, -+ ,n} (discrete) | p(z) = Bing[n, \] = (1)A7(1 — A)"~
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T = —e
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Conjugate Distribution: Conjugate distributions are used to model
the parameters of probability distributions.
- Product of a probability distribution and its conjugate has the same
form as the conjugate times a constant.

- Parameters of conjugate distributions are called hyperparameters.

e . Probability Density/Mass Function of
D )
n Conjug: Hyperparameter(s) Conjugate
Bernoulli p(A) = Betas[a, B] = gz A (1 - A)P7!
P— Beta %8>0 ; el 2 oy s
Binomial where B(a, ) = 135 = Jy 7 (1 -0t dt
P
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2 Simple Probabilistic Models

Goal: To learn the unknown parameter(s) 6 from a set of given data

D ={z[1],--- ,z[N]}, and use those parameter(s) to make predictions.

Maximum Likelihood Estimate (MLE): Gy = arg max[p(D]|6)].
0ce

N
- i.i.d. assumption: p(D|0) = [] p(z[:]|6)-
i=1

- Log likelihood: Oy g = arg max [g: log[p(:v[i]|9)]:| .
oce  |i=1
- Maximizer: Partial derivative equates to 0.
- Pros:
» MLE is easy and fast to compute.
» MLE is consistent, i.e. éMLE — 0* as N — oo.
» MLE is efficient, i.e. there is no consistent estimator that has
lower MSE than éMLE~
» MLE us functionally invariant, i.e. MLE for g(6*) is g(OymLE)-
- Cons:
» MLE is a point estimate which does not represent uncertainty.
» MLE may overfit.
» MLE does not incorporate prior information.
» Asymptotic results are for the limit and assume model is correct.
» MLE may not exist or may not be unique.

- Prediction for new data point z*: Evaluate p(x*\éMLE).

N
xz[i]|0)p(0
o(DIO)p(8) iI:TIP( [1110)p(0)

= Te(Dlo)p(0)de —

Bayesian Inference: p(0|D) ~ .
J 11 p(=[i116)p(6)do
- Bayesian inference computes posterior distribuztion over all possible
parameter values, hence it models uncertainty over parameters.
- Pros:
» Bayesian inference incorporates prior information.
» We can derive quantities of interest from the result.
» Bayesian inference allows us to perform model selection.
- Cons:
» Prior belief may not be conjugate to likelihood, hence it is
computationally intractable.

- Prediction for z*: Calculate p(z*|D) = [ p(z*|0)p(6|D) db.



Maximum a Posteriori Estimate (MAP): Oyap = arg max[p(6]D)]. Bayesian Networks: A Bayesian network is a tuple B = (G, P)
0ce

- More data points — MAP closer to MLE. where P factorizes according to G and where P is specified as a set of
- Fewer data points — MAP closer to prior. conditional probability distributions associated with G’s nodes.
- Pros: - A Bayesian network is a DAG.
» MAP is easy and fast to compute. » Each node is associated with a random variable X;.
» MAP incorporates prior information. » Shaded node refers to an observed variable.
» MAP avoids overfitting. » Topological ordering: (X; — X;) = (i < j) (not unique).
» As n — 0o, MAP approaches MLE but does not have similar » Path: A walk following the direction of —.
asymptotic properties (consistency & efficiency). » Trail: A walk following the direction, or anti-direction, of —.
- Cons: - Local Markov assumption: Each random variable X; is independent
» MAP is also a point estimate like MLE. of its non-descendants Xponpesc(x;) given its parents Xr,.
» We are still forced to choose prior. » Locality of the parent-child relationship is used to construct
» MAP is not functionally invariant. economical representations of the joint distribution.
- Prediction for new data point z*: Evaluate p(z*|0yap)- » The parent-child (Xr,, X;) represents the conditional

independence p(x;|zx, ).
Exponential Family (ExpFam): An ezponential family is a set of prob- P p(@ilen;)

N
abilistic distributions {pg : 0 € ©} with the form - Joint probability: p(x1,---,xn) = il;ll p(@ilzn;)-
T
h(z)en(®  s(x) Xy
poz) = ———, X
0 N
6
Xy
where
B CRF d.
9€®_R7$€R7 X3 X5
- Natural parameters, n(0) : © — R™; P(w1,22,23, 81,5, 76) = pl1)p(azler)plaslz)p(asla)p(askoa)p(eslaa, z5)

- Sufficient statistics, s(z) : R — R™; o
- Independence set (I-Set): Let P be a distribution over X. Define
- Base measure, h(z) : R4 — [0, 00); . .

J(P) as the set of independence assertions of the form (X LY | Z)

- Partition function, Z(0) : © — [0, 00). that hold in P
at hold in P.

- An exponential family is in its natural/canonical form if it is . o
- Independence map (I-Map): Let G be associated with independence

parametrized by its natural parameters: . . . .
assertions J(G). G is an independence map for P if J(G) C J(P).

h(:v)e"TS(z) - Pros:

pa(@) = Z(n) ’ » Reduces the number of parameters needed to model the joint

T X . distribution.
where Z(n) = [ h(z)e" *(®) dz is called normalizer.

 TLog partition function: pr(z) = h(x)e{nTs(x)_A(n)]. » Visualizes the structure of the probablistic model.

. . i . » Provides insights into the conditional independence properties.

Here A(n) is the log of partition function, i.e. A(n) = log Z(n).

> E(s(z)) = Vg Z(n) = VA(n).

» If s(x) = x, we can find moments of x by differentiation.

» Expresses complex calculations as graphical manipulations.
- Misconceptions:
. %8 The arrows always indicate dependence.
- VA(mMLe) = % 2 $(zn). The MLE only depends on s(z).
n=1 ® Every network represents a unique probability distribution.
® Observations always result in independence between random

variables.

3 Bayesian Networks
Graph Separation: A set of nodes A is said to be d-separated from B

Conditional Independence: Two random variables X4 and Xc by C if all trails from nodes in set A are "blocked” from nodes in set B

are conditionally independent given Xp (ie. Xa L Xc | XB) when all nodes from set C' are observed, such that A L B | C.

if and only if p(za,zclz) = p(zalzp)p(zc|rp), or alternatively
p(zalzs,zc) = p(zalzs). Head-Tail Tail-Tail Head-Head
. ALB|C AlLB|C AlB
- Consider p(z|0) = p(z1|0)p(x2|z1, 02)p(x3|z1,03)p(Ta|T2, T3, 04): | | ALB ||2'

A C A

MLE: argmax p(z|6) = arg max logp(z|0)
01 01

= arg max {log p(x1(61) + log plzatrT,02)+ C
01

log plastrr03) + log pleskes73, 0)}
= arg max log p(z1/61) B A B C

01

MAP: arg max p(0|z) = arg max log p(0|z)
01

01 Linear Regression: Y[i] = w ' x[i] + [i], where

= arg max log p(z|0)p(6) - x[4] is a D-dimensional observed input vector;
01

- w is a coefficient vector;

= arg max log p(z|01) + logp(61)

01 - €[i] ~ N(0,02) is iid zero-mean Gaussian noise.



@ ¢ Circles are random variables.
» Shaded circles are observed random variables.

* Unshaded circles are unobserved,/latent/hidden.

@ « Filled circles are deterministic parameters.

x[1] w x[N]

The independence assertions here are Y[i] L Y[i+1] | x[i], w, 02, hence we
N

have the factorization p(y[1],--- ,y[N]) = [] p(y[i]|w " x[i],c2). Assume
i=1

i=
we know o2, we want to learn w.

wMLE = arg max log p(D|0)
w

N
= arg max log H P (y[z]
w i=1

wxli, )

———e

i=1

wa[i],aﬁ)]

al i —wTx[i])?
= argvl",ﬂa.x —Z; 7@[ ] 202 [ ])
1 N
= argmin o Z (y[z] -w x[z])
L(w)

By letting VL(w) = 0, we get wyLe = (X X)~H(X Ty).

Bayesian Linear Regression: We want to model uncertainty over w.
- The coefficient vector w is now a random variable with a prior
p(wlv) = N(0,vI).

- Factorization: p(y[1],--- ,y[N],w) = p(w]|v) '11_:\711 p(y[i”wa[i], ‘712\7)'
09
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Naive Bayes: Naive Bayes is a model for class ¢ € {1,--- K} given input

features x: p(x,c) = p(x|c)p(c). It can be used to classify new data via

p(x[c)p(c)
Xk)p(X\k)p(k)

- Assumption: All features are independent given class C[i]:

Bayes rule: p(c|x) = and returns ¢ which maximizes p(c|x).

p(xc) = [Ip(zjlc).
J
- Given training examples, we can learn each 6. ; separately:

p(x,cl$,0) = p(cl®) [1p(zjle, bc ;).
J

Theorem 4.1: Given a graph G over a set of random variables X =
{X1,---,Xn} and P be a joint distribution over the same space. If G is

an I-Map for P, then P factorizes according to G.

Theorem 4.2: Let P be a joint distribution over X and G be a Bayesian
network structure over X. If P factorizes according to G, then the local
dependence assertions J;(G) C J(P).

- The local Markov dependencies J;(G) is the set of all basic

conditional independence assertions of the form:

{XZ 1 (XnonDesc(zi) \X‘f\'z)|X7T1}

Global Markov Independencies: The set of all independencies that

correspond to d-separation in graph G is the set of global Markov inde-
pendencies:

J(G)={(X LY|Z) :dsepa(X;Y|2)}.

Theorem 4.3 (Soundness): If a distribution P factorizes according to G,
then J(G) C J(P). If two nodes are found to be d-separated given Z,

they are in fact conditionally independent given Z in P.

Faithful: P is faithful to G if for any conditional independence (X L
Y|Z) € J(P) then dsepy(X;Y|Z). In other words, any independence in
P is reflected as d-separation in the graph G.

Perfect Map: A graph G is a perfect map for a probability distribution
Pit J(P)=J(G).
Theorem 4.4 (Weak Completeness): If (X L Y|Z) in all distributions

P that factorize over G, then dsepq(X;Y|Z).

Theorem 4.5 (Almost Completeness): For almost all distributions P
that factorize over G, we have J(P) = J(G).

Bayesian networks are sound and almost complete, but they cannot

exactly represent all conditional independencies for a given distribution.

4 Markov Random Fields

Generative Models: Approaches that explicitly or implicitly model
the distributions of input and outputs (e.g. hidden Markov model, chain

structure MRF).

Discriminative Models: Approaches that model the posterior proba-

blities directly (e.g. chain structure CRF).

Markov Random Fields: A Markov random field, or wundirected
graphical model, is a graph G(V, £), where
-V is a set of nodes that are in one-to-one correspondence with a set
of random variables;

- £ is a set of undirected edges.

- Factorization via Gibbs distribution: p(z1, -+ ,zn) = % _1]\_4[1 v (Cj).
» A factor ¢(C) is a function that maps a set of randorjn_variables
C={X,---,Z} to a non-negative real number.
- Pros:

» No edge orientations, hence more natural for problems such as
image analysis and spatial statistics.

» Discriminative UGMs work better than discriminative DGMs.
- Cons:

» The parameters are less interpretable and less modular.

» Parameter estimation is more computationally expensive.
- Misconceptions:

8 Factors always represent marginal/conditional distributions.

® UGMs represent more conditional independencies than DGMs.

® UGMs specify a unique factorization.

Global Markov Property: Given the sets of nodes A, B and C,
Xa 1L Xp | X¢ if and only if C separates A from B in the graph G. In
other words, there are no trails connecting any node in A to any node in

B when we remove all nodes in C.

Local Markov Property: The Markov blanket of Xs denoted mb(Xs)
is the set of nodes that renders a node X, conditionally independent of

all the other nodes in G: X5 L V\ {mb(Xs), Xs} | mb(X5).



- The Markov blanket in a UGM is the set of immediate neighbours.
- The Markov blanket in a DGM is the set of the node’s parents,

children and co-parents (other parents of children).

Pairwise Markov Property: Two nodes X and X; are conditionally
independent given the rest if there is no direct edge between them:
Xs L Xi | V\ {Xs, X¢} where Est = 0.

Note that the three properties are interrelated: G = L = P, and P = G

if we assume positive distributions (p(x) > 0).

Theorem 5.1 (Hammersley-Clifford): A positive distribution p(y) > 0
satisfies the conditional independence properties of an undirected graph
H if and only if p can be represented as a product of factors, one per
ﬁ C];[C Ye(yelde), where

- C is the set of all maximal cliques of G;

maximal clique: p(y|0) =

- ¥¢(+) is the factor or potential function of clique c;
- 0 is the parameter of the factor 1.(-) for ¢ € C;

- Z(0) is the partition function Z(0) £ 3" ] vc(yel6e).
Yy ceC

Log-Linear Form: p(yl|d) = Z(0) exp (Z 90T¢c(y)>. In this way,
ceC

log(velye) = ¢C(yC)T06
10gp()’|0) = Z¢C(YC)T9C - IOgZ(o)'
ceC

- Every finite MRF is an exponential family.
- We can also specify p(y|0) = ﬁ exp <— S E (yc|96)>7 where E
ceC

is the energy associated with the variables in clique c.

Parameter Learning via MLE: Consider an MRF in log-linear form,

where ¢ indexes the cliques.

1
MLE: arg max 0) = ——ex 0! ¢
gmax p(y[6) = v oxp LGZC be(y)
Its scaled log-likelihood is given by
1 1
10) 2 = logp(yil) = = D> | D 0. de(yi) —log Z(9)
N N &
a1y o
= c\Y 0
- N;[qs () = o108 2(0)]
N
=N Z [bc(yi) — Eloc(y)|0]] (derivative of log partition)
=1

N
L quc(yz [qsc(y)'o]

clamped term

unclamped/contrastive term
- 1 is convex in 0, hence p has unique global maximum.
- Unclamped term requires inference, which makes UGM much slower

than DGM.

Parameter Learning via MAP:

N
MAP: arg max {Zlogp(}’ia) + logp(e)} .
0 i=1

- We use a Gaussian prior where (i, X) are hyperparameters.

p(6) = Normg|u, 5
-1 tewTsew
(2m)2 |22

Conditional Random Fields: A conditional random field, or discrim-
inative random field, is an MRF where all the clique potentials are con-

ditioned on input feature X:

p(ylx, w) = Hd’c yelx, w).

Z( w)
- Log-linear of potentials: ¥ (yc|x, w) = exp (WCT¢(X, yc)).
» ¢(x,yc) is a feature vector derived from the global inputs X
and the local set of labels Y.

Theorem 5.2 (Soundness): If P is a Gibbs distribution over H, then H
is an I-Map for P.
- Hammersley-Clifford states that for positive distributions P is a

Gibbs distribution over H if and only if H is an I-Map for P.

Theorem 5.3 (Weak Completeness): If X and Y are not separated in
H, then there is some distribution P that factorizes over H where X and

Y are dependent.

Markov random fields are sound and almost complete, but they cannot
ex actly represent all conditional independencies for a given

distribution.

Algorithm 19.1: Stochastic maximum likelihood for fitting an MRF

1 Initialize weights @ randomly;

2k=0,n=1;

3 for each epoch do

4 for each minibatch of size B do

5 for each sample s =1:S do
6 | Sample y** ~ p(y|0%) ;

7 E(o(y)) = £ 35, o(y*h);

8 for each tmining case i in minibatch do
o | Bk o(yi) — E(@(y)) ;

10 gL — § ZieB Siks

1 Ok41 = 0 — ng1;

12 k=k+1;

13 Decrease step size 7;




