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CS5340 is about how to represent and reason with uncertainty in a

computer.

5 Variable Elimination & Belief Propagation

Variable Elimination: Use factorization and distributive law to

reduce computational complexity:
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- For UGMs, we do the same thing except changing local conditional

probabilities into potentials of cliques.

▶ p(x1|x6) =
1
Z

m2(x1)
1
Z

∑
x1

m2(x1)
. The normalization factor Z in condi-

tional probabilities, but not in marginal probabilities.

- Computational complexities: Analyzed through reconstituted graphs.

▶ For UGMs, for each nodeXi, we connect all the remaining neigh-

bours of Xi and remove Xi.

▶ For DGMs, for each node Xi, we connect all the parents of Xi.

In the end we drop the orientation of all edges (moralisation)

and analyze it like UGMs.

▶ Overall complexity: O(nkM ), where M is the size of largest

elimination clique.

▶ Treewidth: One less than the smallest achievable cardinality

of the largest elimination clique over all possible elimination

orderings (NP-hard).

▶ Heuristics:

∗ Min-neighbors: Fewest number of dependent variables.

∗ Min-weight: Minimize product of cardinalities of variables.

∗ Min-fill: Minimize the size of the factor (elimination clique)

that will be added.

- Limitations:

▶ We have to re-run the variable elimination algorithm with every

new query node.

Belief Propagation: To obtain all marginals in the tree, we reuse mes-

sages to perform efficient inference.

- Works similarly for undirected and directed trees.

- Messages:

mji(xi) =
∑
xj

ψE(xj)ψ(xi, xj)
∏

k∈N (j)\i
mkj(xj)


p(xf |xE) ∝ ψE(xf )

∏
e∈N (f)

mef (xf ).

- Message-passing protocol: A node can send a message to a neigh-

bouring node when and only when it has received messages from all

of its other neighbours.

- MAP configurations: We record the maximising values in a table

δji(xi) when a message mmax
ji (xi) is sent from Xj to Xi (closer to

root). We then use this table to define a consistent maximising con-

figuration during an outward pass.

- Products of probabilities tend to underflow. We overcome this by

using the monotone log scale:

max
x

pE(x) = max
x

log pE(x).
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6 Factor Graph & Junction Tree

Factor Graph: Introduce additional nodes for the factors.

- Works for polytrees.

- A factor graph is a bipartite graph G(V,F , E), where

▶ V is the set of random variables;

▶ F is the set of factors. In DGM, all the local conditional dis-

tributions p(xi|xπi ) are represented as factors; in UGM, all the

potential functions of cliques are represented as factors; nor-

malising coefficients 1
Z

is a factor defined over the empty set of

variables;

▶ E is the set of all undirected edges.

- Two types of messages:

▶ Messages ν flow from variable to factor nodes:

νis(xi) =
∏

t∈N (i)\s
µti(xi).

At leaf variable nodes, νis = 1.

▶ Messages µ flow from factor to variable nodes:

µsi(xi) =
∑

XN(s)\i

fs (xN (s)

) ∏
j∈N (s)\i

νjs(xj)


At leaf factor nodes, µis = fs(xi).

- Message-passing protocol: A node can send a message to a neigh-

bouring node when and only when it has received messages from all

of its other neighbours (for both variable and factor nodes).

- mji(xi) in UGM is equal to µsi(xi) in the factor graphs.

Junction Tree: Probability distributions corresponding to loopy undi-

rected graphs can be reparametrised as trees.

- Cluster graphs:

▶ Nodes are clusters Ci ⊆ {X1, · · · , Xn} where Xi are the random

variables.

▶ Edge between Ci and Cj associated with sepset Sij = Ci ∩ Cj .

- Family Preservation: Given a set of potentials Ψ ∈ {ψ1, · · · , ψk}

from an UGM, we assign each ψk to a cluster Cα(k) such that

Scope[ψk] ⊆ Cα(k).

- Cluster potential: ϕi(Ci) =
∏

k:α(k)=i

ψk.

- Running Intersection Property: For each pair of clusters Ci, Cj

and variables X ∈ Ci ∩ Cj , there exists an unique path between

Ci ∩ Cj for which all clusters and sepsets contain X.
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▶ Equivalently, for any X, the set of clusters and sepsets contain-

ing X from a tree.

- Cluster tree: A cluster graph without cycles is known as the a cluster

tree.

- Clique trees (junction trees): A cluster tree that satisfies the running

intersection property is called a clique tree or junction tree.

- Construction of junction trees:

1. Triangulation via graph elimination.

2. Obtain clusters and all possible sepsets: use elimination cliques

as clusters.

3. Assign cluster potentials.

4. Get clique tree: find the maximum spanning tree with cardinal-

ity of sepsets as weight of edges. A cluster tree is a clique

tree only if it is a maximal spanning tree.

7 Mixture Models & Expectation Maximisation

Gaussian Mixture Models (GMMs): GMMs can approximate almost

any continuous density with arbitrary accuracy. It is a linear combination

of Gaussian distributions:

p(x) =
K∑

k=1

πkN (x|µµµk,ΣΣΣk),

- Each Gaussian density N (x|µµµk,ΣΣΣk) is called a component of the mix-

ture, and has its own mean (µµµk) and covariance (ΣΣΣk).

- The parameters 0 ≤ πk ≤ 1 is the mixing coefficients, and must sum

to one:
K∑

k=1

πk = 1.

- Responsibility: Measures the responsibility that component k takes

for explaining the observation x:

γ(zk) ≡ p(zk = 1|x) =
p(x|zk = 1)p(zk = 1)

K∑
j=1

p(x|zk = 1)p(zk = 1)

=
πkN (x|µµµk,ΣΣΣk)

K∑
k=1

πkN (x|µµµk,ΣΣΣk)

.

Expectation Maximisation for GMMs: MLE for GMMs does not

have a closed form solution, hence we derive an iterative solution.

1. Initialize the means µµµk, covariances ΣΣΣk and mixing coefficients πk,

and evaluate the initial value of the log likelihood.

2. Expectation Step: Evaluate the responsibilities γ(Z) using the cur-

rent parameter values.

3. Maximization Step: Re-estimate the parameters using the current

responsibilities.

4. Evaluate the log-likelihood and check for convergence.

General EM Algorithm: To find maximum likelihood solutions for

models having latent variables:

ln p(X|θθθ) = ln

∫
Z
p(X,Z|θθθ).

1. Choose an initial setting for the parameters θold.

2. Expectation Step: Evaluate p(Z|X, θθθ).

3. Maximisation Step: Evaluate θθθnew given by θθθnew =

argmax
θθθ

Q(θθθ,θθθold), where Q(θθθ,θθθold) =
∑
Z
p(Z|X, θθθold) ln p(X,Z|θθθ).

4. Check for convergence of either the log likelihood or the parameter

values, if not converged: θθθnew → θθθold.

- Theory behind EM: ln p(X|θθθ) = L(q,θθθ) + KL(q∥p), where

▶ L(q,θθθ) =
∑
Z
q(Z) ln

{
p(X,Z|θθθ)

q(Z)

}
;

▶ KL(q∥p) = −
∑
Z
q(Z) ln

{
p(Z|X,θθθ)

q(Z)

}
≥ 0.

8 Hidden Markov Models

Hidden Markov Models: The Markov chain of latent variables gives

rise to the graphical structure known as a state space model, where the

joint distribution is given by

p(x1, · · · ,xn, z1, · · · , zn) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn).

- Latent variables are discrete; observed variables can be either discrete

or continuous.

- Transition probabilities: 1-of-K coding scheme for the discrete latent

variables Zn, which describes which mixture component is responsible

for generating the observation Xn.

▶ p(zn|zn−1) corresponds to a K×K matrix A with the following

properties:

1. Ajk = p(znk = 1|zn−1,j = 1).
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2. 0 ≤ Ajk ≤ 1, with
∑
k
Ajk = 1.

3. K(K − 1) independent parameters.

▶ p(zn|zn−1,A) =
∏K

k=1

∏K
j=1 A

zn−1,jznk

jk .

▶ Initial latent variable Z1 does not have a parent node. It is

represented as a categorical distribution p(z1|πππ) =
∏K

k=1 π
z1k
k ,

where
∑
k

πk = 1.

- Emission probabilities: p(xn|zn, ϕ), where ϕ is a set of parameters

governing the distribution.

▶ p(xn|zn, ϕ) =
∏K

k=1 p(xn|ϕk)znk .

- Homogenous model: Only 1 A and ϕ.

Expectation Maximisation for HMMs:

- Marginal posterior distribution: γ(zn) = p(zn|X, θθθold).

- Joint posterior distribution: ξ(zn−1, zn) = p(zn−1, zn|X, θθθold).

1. E Step: We use forward-backward algorithm:

2. M Step: Find θθθ that maximises

Q(θθθ,θθθold) =
∑
Z

p(Z|X, θθθold) ln p(X,Z|θθθ)

=
K∑

k=1

γ(z1k) lnπk +
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) lnAjk+

=

N∑
n=1

K∑
k=1

γ(znk) ln p(xn|ϕk).

- Viterbi algorithm: Max-sum algorithm in factor trees.

9 Monte-Carlo Inference

Monte-Carlo Sampling: Approximate a hard combinatorial problem

by a much simpler problem using randomness.

- Monte-Carlo sampling is unbiased, consistent and converges at rate

1√
N
.

- Rejection sampling

- Importance sampling

Markov Chain Monte Carlo: Features adaptive proposals.

- Metropolis Hasting algorithm:

- Ergodic Theorem for Markov chains: If X0, · · · , XN is irreducible,

homogenous, apeiodic discrete Markov chain with stationary distri-

bution π, then

1

N

N∑
i=1

f(Xi) → E[f(X)] as N → ∞

almost for sure where X ∼ π, and

p(xN = x|x0) → π(x) ∀x, x0 ∈ X as N → ∞.

▶ Stationary distribution: πT = π.

▶ Limiting distribution: Markov chain always converges to π.

▶ Irreducibility: For any state of the Markov chain, there is a

positive probability of visiting all other states.

▶ Aperiodicity: The Markov chain should not get trapped in cir-

cles.

▶ Ergodicity: A Markov chain is ergodic if it is irreducible and

aperiodic.

▶ Detailed balance: A probability vector π = p(x) satisfies de-

tailed balance w.r.t. T if

πaTab = πbTba, ∀a, b ∈ X .

Note that detailed balance implies stationary distribution.

Gibbs Sampling: A special case of the Metropolis Hasting algorithm

where the acceptance probability is always one.
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