CS5340 Uncertainty Modelling in AI

AY2022/23 Semester 2 - Prepared by Tian Xiao @snoidetz

CS5340 is about how to represent and reason with uncertainty in a

computer.

5 Variable Elimination & Belief Propagation

X

Query nodes Evidence nodes

Needs marginalisation

Variable Elimination: Use factorization and distributive law to

reduce computational complexity:

p(z1,T6)

=353 S plan)paaler)p(@s|z)p(zale)p(es|es)p(@s vz, w5)

2 T3 T4 Ts

=p(z1) ;p(mm) ;p(mlwl) ;p(ﬂ»‘zllw) ;p(ﬂ»‘sll‘:’))p(%w% 5)
= p(z1) ;p(mm) ;p(xslxl) ;p(ulwz)ms(ffm 3)

=p(@1) Y p(e2lz1) Y plas|er)ms (@2, 23) Y plealz2)

=p(z1) ;p(lem) ;p(mlxl)ms(mm z3)ma(z2)

=p(x1) Y p(@a|z1)ma(z2) Y plwsler)ms (w2, 3)

T2 z3

=p(x1) > p(zalz1)ma(z2)ms(z1, 2)

= p(z1)ma(z1).

- In this way, p(z1|T6) = 721'(;;)13”%(;;)1)
o1

- For UGMs, we do the same thing except changing local conditional
probabilities into potentials of cliques.

zma(21)
Z S ma(z1)’
@1

tional probabilities, but not in marginal probabilities.

» p(z1|Te) = The normalization factor Z in condi-
- Computational complexities: Analyzed through reconstituted graphs.

» For UGMs, for each node X;, we connect all the remaining neigh-

bours of X; and remove X;.

» For DGMs, for each node X;, we connect all the parents of Xj.
In the end we drop the orientation of all edges (moralisation)

and analyze it like UGMs.

» Overall complexity: O(nk™), where M is the size of largest

elimination clique.

» Treewidth: One less than the smallest achievable cardinality
of the largest elimination clique over all possible elimination

orderings (NP-hard).
» Heuristics:

* Min-neighbors: Fewest number of dependent variables.

* Min-weight: Minimize product of cardinalities of variables.

* Min-fill: Minimize the size of the factor (elimination clique)

that will be added.

- Limitations:

» We have to re-run the variable elimination algorithm with every

new query node.

Variable Elimination Algorithm

ELIMINATE(G, E, F)
INITIALIZE(G, F)
EVIDENCE(E)
UPDATE(G)
NORMALIZE(F)

INITIALIZE(G, F)
choose an ordering I such that F' appears last
for each node X; in V
place p(z;|zx,) on the active list
end

EVIDENCE(E)
for each i in
place 6(z;, Z;) on the active list
end

UPDATE(G)
for each i in I
find all potentials from the active list that reference z; and remove them from the active list
let ¢;(x7,) denote the product of these potentials
let mi(zs,) = 32, ¢i(er,)
place m;(zs,;) on the active list

d ‘When interested in MAP of query node, we use
en

NORMALIZE(F) mP(zs,) = HEX P> (zr,)

plar|TE) < dr(er)) ., br(er)

Undirected tree:

+ Without any loop.

* Only one path between any
pair of nodes.

Directed tree:

¢+ Only one single parent for any
node.

* Moralisation leads to an
undirected tree.

Belief Propagation: To obtain all marginals in the tree, we reuse mes-

sages to perform efficient inference.
- Works similarly for undirected and directed trees.

- Messages:

mji(w) =Y | E @) (@) [mag(z))

zj kEN (§)\i

p(asTe) < vP(@s) [meslay).
eeN(f)

- Message-passing protocol: A node can send a message to a neigh-
bouring node when and only when it has received messages from all

of its other neighbours.

- MAP configurations: We record the maximising values in a table

Sji(xi) when a message mJ}**(x;) is sent from X; to X; (closer to
root). We then use this table to define a consistent maximising con-

figuration during an outward pass.

- Products of probabilities tend to underflow. We overcome this by

using the monotone log scale:

max p¥ (x) = maxlog p® (z).
x x

Sum-Product Algorithm (Belief Propagation)

Sum-Propuct(T, E)

EVIDENCE(FE)

f = CHOOSEROOT(V)

for e € N(f)
COLLECT(f, e)

for e € N(f)
DISTRIBUTE(f, €)

forieV
COMPUTEMARGINAL(i)

EVIDENCE(FE)
forie
P (x;) = ()0 (xi, T;)
fori¢ E
P () = (i)
COLLECT(%, j)
for k € N(j)\i
COLLECT(j, k)
SENDMESSAGE(J,)
DISTRIBUTE(%, j)
SENDMESSAGE(, 7)
for k € N(j)\i
DISTRIBUTE(j, k)
SENDMESSAGE(], 7)
mji(wi) = Y (P (@) (i z) [mayle))
zj KEN()\i
COMPUTEMARGINAL(?)

p(z:) oc PP (z;) H mji(z;)

JEN (i)

Max-Product Algorithm

Max-Proouct(T, E)
EVIDENCE(E)
f = CHOOSEROOT(V)
for e € N(f)
COLLECT(f, e)
MAP = max,, (wE4(:1;f) Hee.\"(f) megf*(zr))
T} = arg IllaXTf(Q/)b(;lff) Hee,\"(f) mgf*(zy))
for e € N(f)
DISTRIBUTE(f, €)

COLLECT(i, j)
for k € N(j)\i
COLLECT(4, k)
SENDMESSAGE(7,17)

DISTRIBUTE(3, j)
SETVALUE(%, j)
for k € N(j)\i
DISTRIBUTE(j, k)
SENDMESSAGE(J, 7)
mi(z;) = max((a;) (@i ;) [
’] keN(G)\i
§ji(wi) € arg max(y” () (zi,z;) [
o kEN ()\i

my ()
mi(z;))

SETVALUE(%, j)
ib; = (5]‘1'(.’1);)

Polytree:
* Nodes with more than 1 parent.
* Moralisation leads to loops.

6 Factor Graph & Junction Tree

Factor Graph: Introduce additional nodes for the factors.
- Works for polytrees.
- A factor graph is a bipartite graph G(V, F,), where
» V is the set of random variables;

» F is the set of factors. In DGM, all the local conditional dis-
tributions p(z;|zx,) are represented as factors; in UGM, all the
potential functions of cliques are represented as factors; nor-

malising coefficients % is a factor defined over the empty set of

variables;
» £ is the set of all undirected edges.
- Two types of messages:

» Messages v flow from variable to factor nodes:

[1

teEN (i)\s

Vis (mz) = Iti ($1)

At leaf variable nodes, v;s = 1.

» Messages i flow from factor to variable nodes:

vjs(2;)

psi(zi) =

XN (s)\i

I1

JEN(s)\i

fs (an(s)

At leaf factor nodes, uis = fs(z;).

- Message-passing protocol: A node can send a message to a neigh-
bouring node when and only when it has received messages from all

of its other neighbours (for both variable and factor nodes).
- mji(x;) in UGM is equal to pg;(z;) in the factor graphs.

X; X, X3

fa fo fe fa
p(x) = fa(@r, @) fo (21, 20) fe(wa, 23) fa(xs)

Sum-Product Algorithm for Factor Graphs

SuM-Propuct(T, E) p-DISTRIBUTE(S, %)

EVIDENCE(E) /L-SENDNIE.SSAGE(.s.i)

f = CHOOSEROOT(V) for t € N(i)\s

for s € N(f) v-DISTRIBUTE(%,)
#-COLLECT(f, 5) v-DISTRIBUTE(i, 5)

for s € N(f) v-SENDMESSAGE(i, 5)
II/-DISTRIBUTE(f‘S) for j € N(s)\i

fors eV p-DISTRIBUTE(s, j)
COMPUTEMARGINAL(%)

J1-SENDMESSAGE(s, 7)

psi(z) = Y (folanvw) [visle))

TN (s)\i JEN(s)\i

p-COLLECT(i, 5)
for j € N(s)\i
v-COLLECT(s, j)

1i-SENDMESSAGE(s, 1) v-SENDMESSAGE(i, 8)

vis(wi) = H pti ()

v-COLLECT(Ss, 1) v
tEN (1)\s

for t € N(i)\s
41-COLLECT (i, t)
v-SENDMESSAGE(i, 8)

COMPUTEMARGINAL(%)
p(@i) o vis(zi)psi (i)

Junction Tree: Probability distributions corresponding to loopy undi-

rected graphs can be reparametrised as trees.
- Cluster graphs:

» Nodes are clusters C; C {X1,- -, X, } where X, are the random

variables.
» Edge between C; and C; associated with sepset S;; = C; N Cj.

- Family Preservation: Given a set of potentials ¥ € {¢1, -, ¥}

from an UGM, we assign each 1 to a cluster C,(x) such that
Scope[tx] C Co k-

- Cluster potential: ¢;(C;) =

[T

k:a(k)=t
- Running Intersection Property: For each pair of clusters C;, C;
and variables X € C; N Cj, there exists an unique path between

C; N Cj for which all clusters and sepsets contain X.

» Equivalently, for any X, the set of clusters and sepsets contain-

ing X from a tree.

- Cluster tree: A cluster graph without cycles is known as the a cluster

tree.

- Clique trees (junction trees): A cluster tree that satisfies the running

intersection property is called a clique tree or junction tree.
- Construction of junction trees:
1. Triangulation via graph elimination.

2. Obtain clusters and all possible sepsets: use elimination cliques

as clusters.
3. Assign cluster potentials.

4. Get clique tree: find the maximum spanning tree with cardinal-
ity of sepsets as weight of edges. A cluster tree is a clique

tree only if it is a maximal spanning tree.

7 Mixture Models & Expectation Maximisation

Gaussian Mixture Models (GMMs): GMMs can approximate almost
any continuous density with arbitrary accuracy. It is a linear combination

of Gaussian distributions:

K
p(x) = > N (x[pr,),

k=1

- Each Gaussian density N (x|, X}) is called a component of the mix-

ture, and has its own mean (p) and covariance (Xg).

- The parameters 0 < 7, < 1 is the mixing coefficients, and must sum

K
toone: Y mp =1.
k=1
p(z) = Caty,[n]
—
Zn
Mixing coefficient 7T @=——
Xn
H 3
N

K
plolz) = T[N o Bi)™

- Responsibility: Measures the responsibility that component k£ takes

for explaining the observation x:

p(x|zr =)p(zp = 1)

I
> p(x|zr = Dp(zr = 1)
j=1

Y(zk) =2k = 1]x) =

_ N (xlpg, Ei)

= .
121 TN (x|pk, B)

Expectation Maximisation for GMMs: MLE for GMMs does not
have a closed form solution, hence we derive an iterative solution.

1. Initialize the means py, covariances ¥; and mixing coefficients 7,

and evaluate the initial value of the log likelihood.

2. Expectation Step: Evaluate the responsibilities v(Z) using the cur-

rent parameter values.

3. Maximization Step: Re-estimate the parameters using the current

responsibilities.
4. Evaluate the log-likelihood and check for convergence.

General EM Algorithm: To find maximum likelihood solutions for

models having latent variables:
Inp(X[8) = In / p(X, Z)0).
z

1. Choose an initial setting for the parameters 6°'4.

2. Expectation Step: Evaluate p(Z|X,8).

grew

3. Maximisation Step: Evaluate by 6"V =

arg max Q(6,0°'9), where 9(9,6°'1) = 3" p(Z|X,0°'9) Inp(X, Z|9).
[Z

given

4. Check for convergence of either the log likelihood or the parameter

values, if not converged: gmeW — gold,

- Theory behind EM: Inp(X|0) = L(q,8) + KL(q||p), where
_ p(X,Z]9) | .
> L(0,0) = Za@) i {"TH |

_ p(Z|X,0)
> Ki(alp) = = S a(Z)n { #5552 } > 0.

8 Hidden Markov Models

Latent variables form a Markov chain.

Zn—1 L Zp+1 | Zn

Zn—l Zn

Zn+1

Hidden Markov Models: The Markov chain of latent variables gives
rise to the graphical structure known as a state space model, where the

joint distribution is given by
N N
P(X1,+ ,Xn, 21, ,Zn) = p(Z1) |:H p(zn|zn—1):| H P(Xn|zZn).
n=2 n=1

Transition diagram Lattice representation

- Latent variables are discrete; observed variables can be either discrete

or continuous.

- Transition probabilities: 1-of-K coding scheme for the discrete latent
variables Z,,, which describes which mixture component is responsible

for generating the observation X, .

» p(zn|zn—1) corresponds to a K X K matrix A with the following

properties:

1. Ajk :p(znk == I‘anl,j == 1)

2. 0< Ay, <1, with 3 Ay = 1.
k
3. K(K — 1) independent parameters.
> p(Zn‘Zn,h A)= Hk 1HK AZH*IJZ"X“

» Initial latent variable Z; does not have a parent node. It is

represented as a categorical distribution p(z1|7) = Hk LT

where > m, = 1.
k

- Emission probabilities: p(xn|zn,®), where ¢ is a set of parameters

governing the distribution.
> p(Xnlzn, @) = [Tiz, P(xnlor)*nk.
- Homogenous model: Only 1 A and ¢.

Expectation Maximisation for HMMs:
- Marginal posterior distribution: v(zn) = p(z,|X,8°'9).

- Joint posterior distribution: &(zn—1,2n) = p(zZn_1, Zn|X,0°19).

1. E Step: We use forward-backward algorithm:

Forward-Backward Algorithm

() = a(z,)(zn)

p(X)
{(Z”,1 Z”) o G(Zn—l)p(xn ‘Zn)])(Zn ’Zn—l)'g(zn)
p(X)
O/(Zn) - p(xn|zn> Z O‘(anl)p(zn‘zn,fl)
,B(Z'n) = Z 6(Z71+1)p(xn+1‘Z’)z,-{—l)p(zn—{-l|zn,)

Zn+1

Forward-Backward Algorithm (Rescaled)
a(zn)B(zn)
n0l(Zn—1)p(Xn|2n)P(2n|2—1)B(2n)

(%n[Z0) D @(2Zn—1)p(Zn|2n 1)

Zn—1

Cn-i—lB(Zn) = Z B(Zn-l-l)p(xn-l-l|Zn+1)p(zn+1|zn)

Zn+1

¥(2n)
£(Zn,1, Zn) =

cna(zn) =p

2. M Step: Find 6 that maximises

Q(6,6°'") = > " p(Z|X,0°) Inp(X, Z|6)
VA

K
> &(zn—1,j, Znk) In At
k=1

Mw

K
= y(zp) Inmi +

k=1

Il
—

N
2
n=2j
N K

ZZ ¥(2nk) Inp(xn|py).

- Viterbi algorithm: Max-sum algorithm in factor trees.

9 Monte-Carlo Inference

Monte-Carlo Sampling: Approximate a hard combinatorial problem

by a much simpler problem using randomness.

- Monte-Carlo sampling is unbiased, consistent and converges at rate
1

VN’
- Rejection sampling
- Importance sampling

Markov Chain Monte Carlo: Features adaptive proposals.

- Metropolis Hasting algorithm:

Algorithm : Metropolis-Hasting

1. Initialize x(©
2. Fori=0toN -1

3. Sample u~Ujg] // draw acceptance threshold
4, Sample x'~q(x'] x®) // draw from proposal

[. #(x)ax®lx") .
5. Ifu< o‘l(x’,x(‘)) = mln{l W // acceptance probability
6. XD — o // new sample is accepted
7. else
8. XD = x@® // new sample is rejected

// we create a duplicate of the previous sample

- Ergodic Theorem for Markov chains: If Xo, .-, X is irreducible,

homogenous, apeiodic discrete Markov chain with stationary distri-

bution 7, then
N

ST F(X:) = E[f(X)] as N — oo

1
N=

almost for sure where X ~ 7, and
p(zn = z|z0) = 7(x) VI,20 € X A8 N — 00.

» Stationary distribution: nT" = .
» Limiting distribution: Markov chain always converges to 7.

» Irreducibility: For any state of the Markov chain, there is a

positive probability of visiting all other states.

» Aperiodicity: The Markov chain should not get trapped in cir-

cles.

» Ergodicity: A Markov chain is ergodic if it is irreducible and

aperiodic.

» Detailed balance: A probability vector m = p(z) satisfies de-
tailed balance w.r.t. T if

7T(LTab = TI'bTba,Va,b e X.

Note that detailed balance implies stationary distribution.

Gibbs Sampling: A special case of the Metropolis Hasting algorithm

where the acceptance probability is always one.

Algorithm : Gibbs Sampling

1. Initialize{x; : i = 1,...
2. Fort =1,...,T:

» M}

3. sample x7*1 ~ p(xy x5, %7, x).

4. sample x3*1 ~ p(x, Ix(”l) xgr), X ,(;)).

5. Samplexf ~ p(x |x(r+1) ,xj(f:l),](:)1,...,35(1)).
6. Sample x5t ~ p(xy Ix(Hl) (Hl),.. (Hl))

