MA1102R Calculus (Comprehensive)

Link: tinyurl.com/tx-ma1102r

For inquiries, please kindly contact the author via email tianxiaos1202@gmail.com.

Functions

- Set Operations: $A \cup B$, $A \cap B$, $A \times B$, $A \times B$
- Common Sets: Z, N, Q, R, \varnothing
- Algebra of Functions: Addition; Subtraction; Multiplication; Division; Composite
- **Type of Functions:** Absolute Value Functions; Polynomials; Rational Functions ($f(x) = \frac{P(x)}{Q(x)}$); Trigonometric Functions; Power Functions (x^n)
- Parity of Functions
 - If f(x) = -f(-x), then f is odd.
 - If f(x) = f(-x), then f is even.
- 1-to-1 Function: If f(a) = f(b), then a = b.

Limits

• Intuitive Definition of Limits

If by taking x to be sufficiently close to a, the value of f(x) is arbitrarily close to the number L, then the limit of f(x), as x approaches a, is L.

 $\circ \lim_{x \to a} f(x) = L \text{ or } x \to a \Rightarrow f(x) \to L$

• Methods of Finding Limits

- Direct Substitution
- If f(x) = g(x) for all values of x near a, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Squeeze Theorem

If $f(x) \le g(x) \le h(x)$ for all values of x near a, and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$,

then $\lim_{x \to a} g(x) = L$. (e.g. $-1 \le \sin x \le 1$)

- If $\lim_{x \to a} \frac{f(x)}{g(x)}$ exists and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} f(x) = 0$.
- **One-sided Limit:** $\lim_{x \to a^+} f(x)$ is the limit of f(x) as x approaches a from the right, vice versa.
- Infinite Limit

- Definition: As $x \to a$, f(x) is arbitrarily large/small.
- Infinite limit does not exist.

• Precise Definition of Limit

 $\lim_{x \to a} f(x) = L \quad \text{if for every} \quad \varepsilon > 0, \text{ there exists a number } \delta > 0 \quad \text{such that}$ $0 < |x - a| < \delta \Rightarrow |f(x) - L| > \varepsilon.$

Presentation

For $\varepsilon > 0$, choose $\delta = g(\varepsilon)$. Then whenever $0 < |x - a| < \delta$, $|f(x) - L| > \varepsilon$. (Always try to express |f(x) - L| in terms of |x - a|.)

• Precise Definition of Infinite Limit

 $\lim_{x \to a} f(x) = \infty \quad \text{if for every} \quad \varepsilon > 0, \text{ there exists a number } M > 0 \quad \text{such that}$ $0 < |x - a| < \delta \Rightarrow f(x) > M.$

• Precise Definition of Limit at Infinity

 $\lim_{x \to \infty} f(x) = L \quad \text{if for every} \quad \varepsilon > 0, \text{ there exists a number } N > 0 \quad \text{such that}$ $x > N \implies |f(x) - L| > \varepsilon.$

• Triangle Inequality: $|x| - |y| \le |x + y| \le |x| + |y|$

Continuity

- A function *f* is said to be continuous at *a* if:
 - f(a) is well-defined;
 - $\circ \quad \lim_{x \to a} f(x) \text{ exists;}$
 - $\circ \quad \lim_{x \to a} f(x) = f(a)$
- Type of Discontinuities: Infinite Discontinuity; Jump Discontinuity

• Intermediate Value Theorem

Let f be a function continuous on [a, b]. Suppose that $f(a) \neq f(b)$ and N is between f(a) and f(b), then there exists $c \in (a, b)$ such that f(c) = N.

Derivatives

- **Definition:** $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$
- **Existence:** The derivative of *f*(*x*) at *a* exists if the limit *exists*.
- Differentiation Formulas

$$(f+g)' = f' + g'$$

$$(fg)' = f'g + fg'$$

$$(fg)' = \frac{gf' - fg'}{g^2}$$

$$(f \circ g)' = f'(g) \times g' \text{ (Chain Rule)}$$

$$\frac{d}{dx}x^n = nx^{n-1}$$

$$\frac{d}{dx}\sin x = \cos x; \ \frac{d}{dx}\cos x = \sin x; \ \frac{d}{dx}\tan x = \sec^2 x; \ \frac{d}{dx}\cot x = -\csc^2 x;$$

$$\frac{d}{dx}\sec x = \sec x \tan x; \ \frac{d}{dx}\csc x = -\csc x \cot x$$

• Implicit Differentiation

- a. Differentiate f(x, y) = 0 with respect to x, regarding y as a differentiable function in x.
- b. Solve $\frac{dy}{dx}$ in terms of x and y.
- Higher Order Derivatives
 - Zeroth Derivative: $f^{(0)} = f$
 - *n*-th Derivative: $f^{(n)}(x) = (f^{(n-1)})'(x) = \frac{d^n y}{dx^n}$ (Suppose *f* is *n* times differentiable.)

Application of Derivatives

• Extreme Values

Let f be a function with domain D.

f is said to have an absolute maximum value at $c \in D$ if f(c) > f(x) for every $x \in D$. *f* is said to have an absolute minimum value at $c \in D$ if f(c) < f(x) for every $x \in D$.

- Fermat's Theorem: Let f be a function such that f has a local extreme value at c and f is differentiable at c, then f'(c) = 0.
 - If f'(c) = 0 or does not exist, c is called a critical point.
 - If f'(c) = 0, c is called a stationary point.

Presentation - Closed Interval Method

Let *f* be continuous on [*a*, *b*].

- 1. Evaluate f(a) and f(b).
- 2. Find the critical points on (*a*, *b*).
- 3. Evaluate the value of f at the critical points.
- 4. By comparing these values, find the absolute maximum and minimum values and the corresponding *x* value.

• Mean Value Theorem

Suppose *f* is continuous on [*a*, *b*] and differentiable on (*a*, *b*), then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$.

• Rolle's Theorem

Suppose f is continuous on [a, b] and

differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Increasing/Decreasing Test

Suppose f is continuous on [a, b] and differentiable on (a, b):

- If f'(x) > 0 for every x in (a, b), then f is increasing on [a, b].
- If f'(x) < 0 for every x in (a, b), then f is decreasing on [a, b].

• Local Extreme Value

• First Derivative Test: Find for each critical point the sign of f' before and after the point.

<u>Example</u>

The critical point of $f(x) = x^2 - 2x + 1$ is x = 1.

Intervals	(-∞, 1)	(1, ∞)
f'(x)	< 0	> 0
f(x)	7	7

Hence we conclude that x = 1 is a local minimum.

• Second Derivative Test: Find for each critical point the sign of f''.

f''(x) > 0	Local Minimum
f''(x) < 0	Local Maximum
f''(x) = 0	Inflection Point

• Second derivative test is inconclusive if f'(x) = f''(x) = 0.

Concavity

- $f''(x) > 0 \Rightarrow f$ is concave upwards.
- $f''(x) < 0 \Rightarrow f$ is concave downwards.

• l'Hôpital's Rule (0/0 or ∞/∞)

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

• l'Hôpital's Rule is inconclusive if $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ does not exist and is not $\pm \infty$.

Integrals

Riemann Sum •

Presentation - Riemann Sum

To find $\int f(x)$ using Riemann Sum:

1. Divide [a, b] into *n* equal subintervals: $[x_0, x_1], [x_1, x_2], ..., [x_{n-1}, x_n]$.

- 2. The length of each subinterval, $\Delta x = \frac{b-a}{n}$.
- 3. From each subinterval, choose a sample point x_i^* .
- 4. The Riemann Sum is given by $S_n = [f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)]\Delta x$.
- 5. Therefore, $\int_{a}^{a} f(x) = \lim_{n \to \infty} S_n$.

• Inverse Use of Riemann Sum

$$\lim_{n \to \infty} \sum_{i=1}^n f(\frac{i}{n})(\frac{1}{n}) = \int_0^1 f(x) dx$$

Properties of Definite Integral

- ∫_a^b f(x) = -∫_b^a f(x)
 Let f be a continuous function on [a, b], c ∈ (a, b), then $\int_{c}^{b} f(x) = \int_{c}^{c} f(x) + \int_{c}^{b} f(x)$
- **Fundamental Theorem of Calculus**
 - Let *f* be a continuous function on [a, b]. Let $g(x) = \int_{a}^{x} f(t)dt$. Then:
 - g is continuous on [a, b];
 - \blacksquare g is differentiable on [a, b];
 - g'(x) = f(x) for every $x \in (a, b)$;

0 Mean Value Theorem

Let f be a continuous function on [a, b]. There exists $c \in (a, b)$ such that

$$\int_{a}^{b} f(x)dx = (b-a)f(c).$$

- Let f be a continuous function on [a, b]. Let F'(x) = f(x) for all $x \in (a, b)$. Then $\int_{a}^{a} f(x)dx = F(b) - F(a)$. *F* is also called an indefinite integral of *f*.
- **Improper Integral**
 - Suppose *f* is continuous at [*a*, *b*) but not *b*, $\int_{a}^{b} f(x)dx = \lim_{x \to b^{-}} \int_{a}^{x} f(x)dx$. Suppose *f* is continuous at (*a*, *b*] but not *a*, $\int_{a}^{b} f(x)dx = \lim_{x \to a^{+}} \int_{x}^{b} f(x)dx$. Suppose *f* is continuous at (*a*, *b*) but not $c \in (a, b)$,

 - $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$. It is convergent only if both limits exist. The same applies to infinity.

Inverse Functions and Transcendental Functions

Inverse Functions

- Let f be a one-to-one function. Then $f(x) = y \Leftrightarrow f^{-1}(y) = x$.
- Graphs of f and f^{-1} is symmetric about the line y = x.

• Given
$$f(a) = b$$
, $f^{-1'}(b) = \frac{1}{f'(a)}$

Inverse trigonometric function: 0

Function	Derivative	Domain
$sin^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$\cos^{-1}(x)$	$-\frac{1}{\sqrt{1-x^2}}$	(-1, 1)
$tan^{-1}(x)$	$\frac{1}{1+x^2}$	$(-\infty, +\infty)$
$cot^{-1}(x)$	$-\frac{1}{1+x^2}$	$(-\infty, +\infty)$
$sec^{-1}(x)$	$\frac{1}{x\sqrt{x^2-1}}$	$(-\infty, -1) \cup (1, +\infty)$
$csc^{-1}(x)$	$-\frac{1}{x\sqrt{x^2-1}}$	$(-\infty, -1) \cup (1, +\infty)$

•
$$tan^{-1}(x) + cot^{-1}(x) = \frac{\pi}{2}$$

•
$$sec^{-1}(x) + csc^{-1}(x) = \frac{\pi}{2}$$
 if $x \ge 1$ else $\frac{5\pi}{2}$ if $x \le -1$

- Logarithmic and Exponential Functions
 - Definition of *ln*: $ln(x) = \int_{t}^{x} \frac{1}{t} dt$ 0
 - $\circ \quad \frac{d}{dx}ln(x) = \frac{1}{x}; \ \frac{d}{dx}exp(x) = exp(x)$
 - ln(x) and exp(x) are inverse functions to each other. 0
 - lim exp(f(x)) = exp(lim(f(x)))
- Hyperbolic Trigonometric Functions
 - Exponential form and derivative of hyperbolic trigonometric functions:

Function	Exponential Form	Derivative
sinh(x)	$\frac{e^{x}-e^{-x}}{2}$	cosh(x)
$sinh^{-1}(x)$	N.A.	$\frac{1}{\sqrt{1+x^2}}$
cosh(x)	$\frac{e^{x}+e^{-x}}{2}$	sinh(x) for $x > 0$
$\cosh^{-1}(x)$	N.A.	$\frac{1}{\sqrt{x^2-1}} \text{for } x > 1$

Integration Techniques (See Appendix)

• Substitution Rule

Let u = g(x), then $\int f(g(x))dx = \int f(u)\frac{dx}{du}du$.

• Inverse Substitution Rule

Let x = g(u), then $\int f(x)dx = \int f(g(u))\frac{dx}{du}du$.

Origonometric substitution

 √a² - x², substitute x = asin t.
 √a² + x², substitute x = atan t.
 √x² - a², substitute x = asec t.

 Original trigonometric substitution

• Universal trigonometric substitution Let $t = tan(\frac{x}{2})$, then $\frac{dx}{dt} = \frac{2}{1+t^2}$. Then $(sin x, cos x) = (\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2})$.

Integration by Parts

 $\int u \, \frac{dv}{dx} dx = uv - \int v \, \frac{du}{dx} dx$

- Recursive formula of trigonometric integration
 - 1. $\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$
 - 2. $\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$
 - 3. $\int \tan^n x \, dx = \frac{1}{n-1} \tan^{n-1} x \int \tan^{n-2} x \, dx$
 - 4. $\int \cot^n x \, dx = -\frac{1}{n-1} \cot^{n-1} x \int \cot^{n-2} x \, dx$
 - 5. $\int \sec^n x \, dx = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$
 - 6. $\int \csc^n x \, dx = -\frac{1}{n-1} \csc^{n-2} x \cot x + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx$
- Partial Fractions

Application of Definite Integrals

First Order Ordinary Differential Equations

• Common Techniques

$$\circ \quad \frac{dy}{dx} = f(x) \Rightarrow y = \int f(x) \, dx$$

 $\circ \quad \frac{dy}{dx} = g(y) \Rightarrow x = \int \frac{1}{g(y)} \, dy$

$$\circ \quad \frac{dy}{dx} = f(x) \ g(y) \Rightarrow \int f(x) \ dx = \int \frac{1}{g(y)} \ dy$$

$$\circ \quad \frac{dy}{dx} + P(x)y = Q(x) \Rightarrow Integrating \ factor \ v(x) = e^{P(x)} \Rightarrow y = \frac{1}{v(x)} \int v(x)Q(x) \ dx$$

$$\circ \quad \frac{dy}{dx} + P(x)y = Q(x)y^n \Rightarrow z = y^{1-n}, \ \frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx} \Rightarrow \frac{dz}{dx} + (1-n)P(x)z = (1-n)Q(x)$$

Appendix

Differentiation	Integration (w/o + C)
$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1}$
$\frac{d}{dx}(\ln x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x$
$\frac{d}{dx}(e^x) = e^x$	$\int e^x dx = e^x$
$\frac{d}{dx}(a^x) = \ln a \times a^x$	$\int a^x dx = \frac{1}{\ln a} a^x$
$\frac{d}{dx}((\sin x, \cos x)) = (\cos x, -\sin x)$	$\int (\sin x, \cos x) dx = (-\cos x, \sin x)$
$\frac{d}{dx}((\tan x, \cot x)) = (\sec^2 x, -\csc^2 x)$	$\int (\sec^2 x, \ \csc^2 x) \ dx = (\tan x, \ -\cot x)$
$\frac{d}{dx}((\sec x, \ \csc x)) = (\sec x \tan x, \ -\csc x \cot x)$	$\int (\sec x \tan x, \ \csc x \cot x) \ dx = (\sec x, \ -\csc x)$
$\frac{d}{dx}((\ln \sin x, \ln \cos x)) = (\cot x, -\tan x)$	$\int (\tan x, \cot x) dx = (-\ln \cos x , \ln \sin x)$
$\frac{d}{dx}(ln (sec x + tan x)) = sec x$ $\frac{d}{dx}(ln (csc x - cot x)) = csc x$	$\int \sec x dx = \ln \sec x + \tan x $ $\int \csc x dx = \ln \csc x - \cot x $
$\frac{d}{dx}((\sin^{-1}\frac{x}{a}, \cos^{-1}\frac{x}{a})) = (\frac{1}{\sqrt{a^2 - x^2}}, -\frac{1}{\sqrt{a^2 - x^2}})$	$\int (\frac{1}{\sqrt{a^2 - x^2}}, \frac{1}{\sqrt{a^2 - x^2}}) dx = (\sin^{-1} \frac{x}{a}, -\cos^{-1} \frac{x}{a})$
$\frac{d}{dx}((tan^{-1}\frac{x}{a}, cot^{-1}\frac{x}{a})) = (\frac{a}{a^{2}+x^{2}}, -\frac{a}{a^{2}+x^{2}})$	$\int (\frac{a}{a^2 + x^2}, \frac{a}{a^2 + x^2}) dx = (\tan^{-1} \frac{x}{a}, -\cot^{-1} \frac{x}{a})$
$\frac{d}{dx}\left(\left(sec^{-1}\frac{x}{a}, \ csc^{-1}\frac{x}{a}\right)\right) = \left(\frac{a}{x\sqrt{x^2-a^2}}, \ -\frac{a}{x\sqrt{x^2-a^2}}\right)$	$\int (\frac{a}{x\sqrt{x^2-a^2}}, \frac{a}{x\sqrt{x^2-a^2}}) dx = (sec^{-1}\frac{x}{a}, -csc^{-1}\frac{x}{a})$

Common Differentiation and Integration Results