MA1102R Calculus (Comprehensive)

Link: tinyurl.com/tx-ma1102r
For inquiries, please kindly contact the author via email tianxiaos1202@gmail.com.

Functions

- Set Operations: $A \cup B, A \cap B, A \backslash B, A \times B$
- Common Sets: Z, N, Q, R, \varnothing
- Algebra of Functions: Addition; Subtraction; Multiplication; Division; Composite
- Type of Functions: Absolute Value Functions; Polynomials; Rational Functions ($f(x)=\frac{P(x)}{Q(x)}$); Trigonometric Functions; Power Functions (x^{n})
- Parity of Functions
- If $f(x)=-f(-x)$, then f is odd.
- If $f(x)=f(-x)$, then f is even.
- 1-to-1 Function: If $f(a)=f(b)$, then $a=b$.

Limits

- Intuitive Definition of Limits

If by taking x to be sufficiently close to a, the value of $f(x)$ is arbitrarily close to the number L, then the limit of $f(x)$, as x approaches a, is L.

- $\lim _{x \rightarrow a} f(x)=L$ or $x \rightarrow a \Rightarrow f(x) \rightarrow L$
- Methods of Finding Limits
- Direct Substitution
- If $f(x)=g(x)$ for all values of x near $a, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
- Squeeze Theorem

If $f(x) \leq g(x) \leq h(x)$ for all values of x near a , and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$. (e.g. $\left.-1 \leq \sin x \leq 1\right)$

- If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} f(x)=0$.
- One-sided Limit: $\lim _{x \rightarrow a+} f(x)$ is the limit of $f(x)$ as x approaches a from the right, vice versa.
- Infinite Limit
- Definition: As $x \rightarrow a, f(x)$ is arbitrarily large/small.
- Infinite limit does not exist.

- Precise Definition of Limit

$\lim _{x \rightarrow a} f(x)=L$ if for every $\varepsilon>0$, there exists a number $\delta>0$ such that
$0<|x-a|<\delta \Rightarrow|f(x)-L|>\varepsilon$.

Presentation

For $\varepsilon>0$, choose $\delta=g(\varepsilon)$. Then whenever $0<|x-a|<\delta,|f(x)-L|>\varepsilon$.
(Always try to express $|f(x)-L|$ in terms of $|x-a|$.)

- Precise Definition of Infinite Limit
$\lim _{x \rightarrow a} f(x)=\infty$ if for every $\varepsilon>0$, there exists a number $M>0$ such that $0<|x-a|<\delta \Rightarrow f(x)>M$.
- Precise Definition of Limit at Infinity
$\lim _{x \rightarrow \infty} f(x)=L$ if for every $\varepsilon>0$, there exists a number $N>0$ such that $x>N \Rightarrow|f(x)-L|>\varepsilon$.
- Triangle Inequality: $|x|-|y| \leq|x+y| \leq|x|+|y|$

Continuity

- A function f is said to be continuous at a if:
- $f(a)$ is well-defined;
- $\lim _{x \rightarrow a} f(x)$ exists;
- $\lim _{x \rightarrow a} f(x)=f(a)$
- Type of Discontinuities: Infinite Discontinuity; Jump Discontinuity
- Intermediate Value Theorem

Let f be a function continuous on $[a, b]$. Suppose that $f(a) \neq f(b)$ and N is between $f(a)$ and $f(b)$, then there exists $c \in(a, b)$ such that $f(c)=N$.

Derivatives

- Definition: $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
- Existence: The derivative of $f(x)$ at a exists if the limit exists.
- Differentiation Formulas
- $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
- $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
- $(f \circ g)^{\prime}=f^{\prime}(g) \times g^{\prime}($ Chain Rule)
- $\frac{d}{d x} x^{n}=n x^{n-1}$
- $\frac{d}{d x} \sin x=\cos x ; \frac{d}{d x} \cos x=\sin x ; \frac{d}{d x} \tan x=\sec ^{2} x ; \frac{d}{d x} \cot x=-\csc ^{2} x$;
$\frac{d}{d x} \sec x=\sec x \tan x ; \frac{d}{d x} \csc x=-\csc x \cot x$

- Implicit Differentiation

a. Differentiate $f(x, y)=0$ with respect to x, regarding y as a differentiable function in x.
b. Solve $\frac{d y}{d x}$ in terms of x and y.

- Higher Order Derivatives

- Zeroth Derivative: $f^{(0)}=f$
- n-th Derivative: $f^{(n)}(x)=\left(f^{(n-1)}\right)^{\prime}(x)=\frac{d^{n} y}{d x^{n}}$ (Suppose f is n times differentiable.)

Application of Derivatives

- Extreme Values

Let f be a function with domain D.
f is said to have an absolute maximum value at $c \in D$ if $f(c)>f(x)$ for every $x \in D$. f is said to have an absolute minimum value at $c \in D$ if $f(c)<f(x)$ for every $x \in D$.

- Fermat's Theorem: Let f be a function such that f has a local extreme value at c and f is differentiable at c, then $f^{\prime}(c)=0$.
- If $f^{\prime}(c)=0$ or does not exist, c is called a critical point.
- If $f^{\prime}(c)=0, c$ is called a stationary point.

Presentation - Closed Interval Method

Let f be continuous on $[a, b]$.

1. Evaluate $f(a)$ and $f(b)$.
2. Find the critical points on (a, b).
3. Evaluate the value of f at the critical points.
4. By comparing these values, find the absolute maximum and minimum values and the corresponding x value.

- Mean Value Theorem

Suppose f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

- Rolle's Theorem

Suppose f is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b), and $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

- Increasing/Decreasing Test

Suppose f is continuous on $[a, b]$ and differentiable on (a, b) :

- If $f^{\prime}(x)>0$ for every x in (a, b), then f is increasing on $[a, b]$.
- If $f^{\prime}(x)<0$ for every x in (a, b), then f is decreasing on $[a, b]$.

- Local Extreme Value

- First Derivative Test: Find for each critical point the sign of f^{\prime} before and after the point.

Example

The critical point of $f(x)=x^{2}-2 x+1$ is $x=1$.

Intervals	$(-\infty, 1)$	$(1, \infty)$
$f^{\prime}(x)$	<0	>0
$f(x)$	\searrow	\nearrow

Hence we conclude that $x=1$ is a local minimum.

- Second Derivative Test: Find for each critical point the sign of $f^{\prime \prime}$.

$f^{\prime \prime}(x)>0$	Local Minimum
$f^{\prime \prime}(x)<0$	Local Maximum
$f^{\prime \prime}(x)=0$	Inflection Point

- Second derivative test is inconclusive if $f^{\prime}(x)=f^{\prime \prime}(x)=0$.

- Concavity

- $f^{\prime \prime}(x)>0 \Rightarrow f$ is concave upwards.
- $f^{\prime \prime}(x)<0 \Rightarrow f$ is concave downwards.
- I'Hôpital's Rule ($0 / 0$ or ∞ / ∞)
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
- l'Hôpital's Rule is inconclusive if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist and is not $\pm \infty$.

Integrals

- Riemann Sum

Presentation - Riemann Sum

To find $\int_{a}^{b} f(x)$ using Riemann Sum:

1. Divide $[a, b]$ into n equal subintervals: $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$.
2. The length of each subinterval, $\Delta x=\frac{b-a}{n}$.
3. From each subinterval, choose a sample point x_{i}^{*}.
4. The Riemann Sum is given by $S_{n}=\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\ldots+f\left(x_{n}^{*}\right)\right] \Delta x$.
5. Therefore, $\int_{a}^{b} f(x)=\lim _{n \rightarrow \infty} S_{n}$.

- Inverse Use of Riemann Sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right)\left(\frac{1}{n}\right)=\int_{0}^{1} f(x) d x
$$

- Properties of Definite Integral
- $\int_{a}^{b} f(x)=-\int_{b}^{a} f(x)$
- Let f be a continuous function on $[a, b], c \in(a, b)$, then
$\int_{a}^{b} f(x)=\int_{a}^{8} f(x)+\int_{c}^{b} f(x)$
- Fundamental Theorem of Calculus
- Let f be a continuous function on $[a, b]$. Let $g(x)=\int_{a}^{x} f(t) d t$. Then:
- g is continuous on $[a, b]$;
- g is differentiable on $[a, b]$;
- $g^{\prime}(x)=f(x)$ for every $x \in(a, b)$;
- $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
- Mean Value Theorem

Let f be a continuous function on $[a, b]$. There exists $c \in(a, b)$ such that
$\int_{a}^{b} f(x) d x=(b-a) f(c)$.

- Let f be a continuous function on $[a, b]$. Let $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$. Then $\int_{a}^{b} f(x) d x=F(b)-F(a) . F$ is also called an indefinite integral of f.

- Improper Integral

- Suppose f is continuous at $[a, b)$ but not $b, \int_{a}^{b} f(x) d x=\lim _{x \rightarrow b-} \int_{a}^{x} f(x) d x$.
- Suppose f is continuous at $(a, b]$ but not $a, \int_{a}^{b} f(x) d x=\lim _{x \rightarrow a^{+}} \int_{x}^{a} f(x) d x$.
- Suppose f is continuous at (a, b) but not $c \in(a, b)$,
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$. It is convergent only if both limits exist.
- The same applies to infinity.

Inverse Functions and Transcendental Functions

- Inverse Functions
- Let f be a one-to-one function. Then $f(x)=y \Leftrightarrow f^{-1}(y)=x$.
- Graphs of f and f^{-1} is symmetric about the line $y=x$.
- Given $f(a)=b, f^{-1^{\prime}}(b)=\frac{1}{f^{\prime}(a)}$.
- Inverse trigonometric function:

Function	Derivative	Domain
$\sin ^{-1}(x)$	$\frac{1}{\sqrt{1-x^{2}}}$	$(-1,1)$
$\cos ^{-1}(x)$	$-\frac{1}{\sqrt{1-x^{2}}}$	$(-1,1)$
$\tan ^{-1}(x)$	$\frac{1}{1+x^{2}}$	$(-\infty,+\infty)$
$\cot ^{-1}(x)$	$-\frac{1}{1+x^{2}}$	$(-\infty,-1) \cup(1,+\infty)$
$\sec ^{-1}(x)$	$\frac{1}{x \sqrt{x^{2}-1}}$	$(-\infty,-1) \cup(1,+\infty)$
$\csc ^{-1}(x)$	$-\frac{1}{x \sqrt{x^{2}-1}}$	

- $\tan ^{-1}(x)+\cot ^{-1}(x)=\frac{\pi}{2}$
- $\sec ^{-1}(x)+\csc ^{-1}(x)=\frac{\pi}{2}$ if $x \geq 1$ else $\frac{5 \pi}{2}$ if $x \leq-1$
- Logarithmic and Exponential Functions
- Definition of $\ln : \ln (x)=\int_{1}^{x} \frac{1}{t} d t$
- $\frac{d}{d x} \ln (x)=\frac{1}{x} ; \frac{d}{d x} \exp (x)=\exp (x)$
- $\ln (x)$ and $\exp (x)$ are inverse functions to each other.
- $\lim \exp (f(x))=\exp (\lim (f(x))$

- Hyperbolic Trigonometric Functions

- Exponential form and derivative of hyperbolic trigonometric functions:

Function	Exponential Form	Derivative
$\sinh (x)$	$\frac{e^{x}-e^{-x}}{2}$	$\cosh (x)$
$\sinh ^{-1}(x)$	N.A.	$\frac{1}{\sqrt{1+x^{2}}}$
$\cosh (x)$	$\frac{e^{x}+e^{-x}}{2}$	$\sinh (x)$ for $x>0$
$\cosh ^{-1}(x)$	N.A.	$\frac{1}{\sqrt{x^{2}-1}}$ for $x>1$

Integration Techniques (See Appendix)

- Substitution Rule

Let $u=g(x)$, then $\int f(g(x)) d x=\int f(u) \frac{d x}{d u} d u$.

- Inverse Substitution Rule

Let $x=g(u)$, then $\int f(x) d x=\int f(g(u)) \frac{d x}{d u} d u$.

- Trigonometric substitution

1. $\sqrt{a^{2}-x^{2}}$, substitute $x=a \sin t$.
2. $\sqrt{a^{2}+x^{2}}$, substitute $x=$ atan t.
3. $\sqrt{x^{2}-a^{2}}$, substitute $x=\operatorname{asec} t$.

- Universal trigonometric substitution

Let $t=\tan \left(\frac{x}{2}\right)$, then $\frac{d x}{d t}=\frac{2}{1+t^{2}}$. Then $(\sin x, \cos x)=\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right)$.

- Integration by Parts
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
- Recursive formula of trigonometric integration

1. $\int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x$
2. $\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$
3. $\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x$
4. $\int \cot ^{n} x d x=-\frac{1}{n-1} \cot ^{n-1} x-\int \cot ^{n-2} x d x$
5. $\int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x$
6. $\int \csc ^{n} x d x=-\frac{1}{n-1} \csc ^{n-2} x \cot x+\frac{n-2}{n-1} \int_{\csc ^{n-2}} x d x$

- Partial Fractions

Application of Definite Integrals

- Area	$A=\int_{a}^{b} y d x$
- Volume	$V=\int_{b}^{q} \pi x^{2} d y$
- Arc Length	
- Surface Area	

First Order Ordinary Differential Equations

- Common Techniques
- $\frac{d y}{d x}=f(x) \Rightarrow y=\int f(x) d x$
- $\frac{d y}{d x}=g(y) \Rightarrow x=\int \frac{1}{g(y)} d y$
- $\frac{d y}{d x}=f(x) g(y) \Rightarrow \int f(x) d x=\int \frac{1}{g(y)} d y$
- $\frac{d y}{d x}+P(x) y=Q(x) \Rightarrow$ Integrating factor $v(x)=e^{P(x)} \Rightarrow y=\frac{1}{v(x)} \int v(x) Q(x) d x$
- $\frac{d y}{d x}+P(x) y=Q(x) y^{n} \Rightarrow z=y^{1-n}, \frac{d z}{d x}=(1-n) y^{-n} \frac{d y}{d x} \Rightarrow \frac{d z}{d x}+(1-n) P(x) z=(1-n) Q(x)$

Good luck!

Appendix

Common Differentiation and Integration Results

Differentiation	Integration (w/o + C)
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}$
$\frac{d}{d x}(\ln x)=\frac{1}{x}$	$\int \frac{1}{x} d x=\ln x$
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	$\int e^{x} d x=e^{x}$
$\frac{d}{d x}\left(a^{x}\right)=\ln a \times a^{x}$	$\int a^{x} d x=\frac{1}{\ln a} a^{x}$
$\frac{d}{d x}((\sin x, \cos x))=(\cos x,-\sin x)$	$\int(\sin x, \cos x) d x=(-\cos x, \sin x)$
$\frac{d}{d x}((\tan x, \cot x))=\left(\sec ^{2} x,-\csc ^{2} x\right)$	$\int\left(\sec ^{2} x, \csc ^{2} x\right) d x=(\tan x,-\cot x)$
$\frac{d}{d x}((\sec x, \csc x))=(\sec x \tan x,-\csc x \cot x)$	$\int(\sec x \tan x, \csc x \cot x) d x=(\sec x,-\csc x)$
$\frac{d}{d x}((\ln \sin x, \ln \cos x))=(\cot x,-\tan x)$	$\int(\tan x, \cot x) d x=(-\ln \|\cos x\|, \ln \|\sin x\|)$
$\begin{aligned} & \frac{d}{d x}(\ln (\sec x+\tan x))=\sec x \\ & \frac{d}{d x}(\ln (\csc x-\cot x))=\csc x \end{aligned}$	$\left\lvert\, \begin{aligned} & \int \sec x d x=\ln \|\sec x+\tan x\| \\ & \int \csc x d x=\ln \|\csc x-\cot x\| \end{aligned}\right.$
$\frac{d}{d x}\left(\left(\sin ^{-1} \frac{x}{a}, \cos ^{-1} \frac{x}{a}\right)\right)=\left(\frac{1}{\sqrt{a^{2}-x^{2}}},-\frac{1}{\sqrt{a^{2}-x^{2}}}\right)$	$\int\left(\frac{1}{\sqrt{a^{2}-x^{2}}}, \frac{1}{\sqrt{a^{2}-x^{2}}}\right) d x=\left(\sin ^{-1} \frac{x}{a},-\cos ^{-1} \frac{x}{a}\right)$
$\frac{d}{d x}\left(\left(\tan ^{-1} \frac{x}{a}, \cot ^{-1} \frac{x}{a}\right)\right)=\left(\frac{a}{a^{2}+x^{2}},-\frac{a}{a^{2}+x^{2}}\right)$	$\int\left(\frac{a}{a^{2}+x^{2}}, \frac{a}{a^{2}+x^{2}}\right) d x=\left(\tan ^{-1} \frac{x}{a},-\cot ^{-1} \frac{x}{a}\right)$
$\frac{d}{d x}\left(\left(\sec ^{-1} \frac{x}{a}, \csc ^{-1} \frac{x}{a}\right)\right)=\left(\frac{a}{x \sqrt{x^{2}-a^{2}}},-\frac{a}{x \sqrt{x^{2}-a^{2}}}\right)$	$\int\left(\frac{a}{x \sqrt{x^{2}-a^{2}}}, \frac{a}{x \sqrt{x^{2}-a^{2}}}\right) d x=\left(\sec ^{-1} \frac{x}{a},-\csc ^{-1} \frac{x}{a}\right)$

