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MA2104 Multivariable Calculus

AY2020/21 Semester 2

1. Euclidean Spaces and Vector

Addition

\r[ Euclidean Spaces ]

Line ]

{ Basic Operators

/ Negation

Cross Product ] Scalar Multiplication

N W S—

Vector Equation: r(t) = ry + tv

X =xp+ 1ty
Parametric Equation: {¥ = ¥o + tv,

i j k Dot Product ]

uXxXv=|u Uz U3z 7 Z:ZO+tU3
vy Vp V3
Angle:u v = |u||v|cos @
uxv=—(vxu) Plane ]
Length: |u] = vu - u
uxu=20 .
. . Vector Equation: (r —rp) 'm =10
Direction of u; |11:_\ q ( o)
Angle: [u X v| = |u||v|sin 6. Cartesian Equation: Ax + By + Cz =D

Sphere ]

Uy Uz Uz
vy Vr V3
Wy W W3

Triple Product Formula: (ux v) -w = Vector Equation: | — 7| = a

Cartesian Equation:

=%+ -y ) +(2—2) =ad°

Triangle Inequality: |u + v| < |u| + |v|

Cauchy-Schwarz Inequality: |u - v| < |u||v|

2. Vector-Valued Single Variable Function

Parametrised Curve

1o (t)
e 1:] - R" parametrised by t: r(t) = | r,(t) |

7,(t)

e rhaslimit L ast - t,if and only if Ve € R.,, 3§ € R, such that vt € I with 0 < |t — t,| < &, |r(t) — L| <.

o limrt)=LeVvje{l2,..,n} glr{l 7 (t) = L¢-
~to

t-ty

Continuity
e r(t) is continuous at a point t = ¢, if tlnp r(t) = 1r(ty)-
—lo

e r(t) is continuous if it is continuous at every point in its domain.

e r(t) is continuous at t = t, if and only if every component function is continuous there.
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Derivative
e ris differentiable at a point ¢ if and only if 3r'(t) € R™ such that "
lim = (r(t + 80 —7(©)) = '(©) in R™.
e ris differentiable on I if r is differentiable at every point in its domain. v : \
e ris differentiable at t if and only if every component function is differentiable \\ i \'\\
there. E) I At ¢

e ris continuously differentiable if and only if r is differentiable and ' is continuous.

e Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply.
e Dot Product Rule: %[u(t) ()] =u'(t) - v(t) + u(t) - v'(¢).

e Cross Product Rule: % [u(®) xv)] = u'(t) x v(t) + u(t) x v'(t)

Integral
e risintegrable over I = [a, b] if and only if 3L € R™ such that Ililrln Yr=11r(c)At, = L.
P[[-0

e risintegrable over I if and only if every component function is integrable there.

¢ Indefinite Integral R: Vx € [a, b],R(x) = f;r(t)dt.

3. Curve, Surface and Region

Curve
e Smooth: r is smooth if and only if r is continuously differentiable and has non-vanishing derivative.
o Non-vanishing: vt € I,7'(t) # 0.
e Piecewise Smooth: Finite number of smooth curves pieced together in a continuous fashion.

e Arc Length: f:|r’(t)|dt.

Surface
e Parametrised Surface: r: R - R", where R € R? is an open rectangle, a closed rectangle or a region.
e Smooth: r is smooth if and only if r is continuously differentiable and has non-vanishing r,, X r,.

o Area: [[ |r, x1,|dA.

Region
e Aregion in R" is a subset of R"™, which is usually assumed to be “nice” —
connected, open/compact, etc. resen®
o Aregion R is open if and only if Vp € R, 3r € R, such that e, Opon Ball A1)
B(p,r) S R. /P
o Aregion R is bounded if it lies inside a disk of finite radius.
o Aregion R is compact if it is closed and bounded. @ 7
o A compact rectangle is a subset of R" in the form X = X; X X, X ... X X,;, where each X; is a

closed and bounded interval in R? (i.e. [a, b]).
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4. Multivariable Function

Multivariable Function

f:R = R™ where R € R™ is an open region.

fi()

Vector of Scalar-Valued Component Functions: f(p) = ( ... ).

fa(P)

f has limit L as p - p, if and only if Ve € R,,, 35 € R,(, such that vt € I with 0 < [p —po| <6, |[f(p) — L| <

€.
Calculation Rules (for all functions): Let lim f(p) = L, lim g(p) = M, then:
pP—Po pP—Po
o lim(f(p) £ g() =L+ M;
P-Po
o lim ¢f(p) =cL.
pP=Po
Calculation Rules (for all scalar-valued functions): Let lim f(p) = L, lim g(p) = M, then:
pP—Po pP—Po
o lim (f(p) - g(p)) =L M;
pP=Po
o lim(E=) = L where M # 0;
p-po 9(P) M

o lim (f(p))" = ", where n is a positive integer;
P-Po

o lim (/f(@)) = VL, where n is a positive integer.
pP~Po

Continuity

f(p) is continuous at a point p = p, if lim f(p) = f(py)-
pP—Po

f(p) is continuous on R if it is continuous at every point on R.

If f is continuous at py, g is continuous at f(p,), then g o f is continuous at p,.

Differentiability

f is differentiable at a point p, if and only if 34: R™ — R" such that Ve € R.,, 36 € R,,, such that Vp € R
with [p — pol < &, one has |f(p) — (f(Po) + A® — Po))| < €lp — pol. Here
f is differentiable on R if it is differentiable at every point on R.

Differentiability implies continuity.

Directional Derivative w.r.t. u: (D, f)(p,) = Li_r}aw = Au.
(Dufi) o)

(Duf)(Po) = ( )
(Dufn)(po)

Partial Derivative: Directional derivative w.r.t. standard unit vectors, ;Tf(l’o) = ij (po) = 1irr& w.
j 5=

Lwo - @0
OH@=| : =J;(po).
o) (o)
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Gradient of Scalar-Valued Function: (Af)(p) = . This is obviously same as first row of total

()
derivative map. Hence, (Af)(p) - u = (D,.f)(p).

Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply.

f is continuously differentiable on R if and only if f is differentiable on R and f' is continuous.

f is continuously differentiable on R if and only if all partial derivatives of every component function exist
and is continuous.

f is of class C™ if and only if all partial derivatives of every component function exist and is of class 1.
Taylor’s Theorem: Let R be an open subset of R™, f: R — R be a scalar-valued function of class C"*1. Let

Po € R and suppose § € R, such that B(py, §) S R (in domain). Then, V& € R™ with || < §, one has

a
ad
fPo+$§) = ZQ:oZaEZ;ﬂ i,ﬁ(l’o) : (ffl )|+ RE), wherea = | - |, |lal =a; + -+ ap, al =
20 al dx, +..0x.
lal=d . m A
d
ay!...a,!. Here, 3c € (0,1) (so that it is inside the open ball) such that R(§) = ), acz™, iaxaf"W(po +
lal=r+1 B m

c®) - (&7 &
o Casem = 1:3c € (a,b) such that f(b) = [f(a) +f'(a)(b—a) +%(b —a)?+-+

M@ IR0
@ - a)”] +[E2O p — gy,

o Casem=2:3c€ (01)suchthat f(a +hb+k) = [f(ab) + (hfy + kfy)lap +

F] F] n F] 9 n+1
5 (B 20k foy + k2 fy )l + -+ 2 (R oz 4 k) Flap] + [ (hax + K 55) Flavenprckl:

(n+1)!
o Proof is simple by induction.
Linear Approximation: £ (p) ~ L(p) = f(Po) + Zi-1 fu, P0) (Px — Poy)-
o Error: Let & = p — py, then E(p) < iM(Z{’;llfilz), where Vi,j € {1,...,m},Vp € R,fxl.x].(p) <M.

o Proof is via Taylor's Theorem (Case n = 1).

Integral

f is Riemann integrable over X if and only if f:X-R
Compact Rectangle X
3L € R" such that ||lilrln Yrer f(t(R))IR| = L.
P|[—0

) Point Chosen "‘";-_-:-:_-_.-_:_ hhhhhhhhh
Sum Rule, Difference Rule, Scalar t(R) o

Multiplication Rule apply. Rectangle R € P(X)
Area |R|

Curve in R™

Domination Rule: [ is order-preserving.
Additivity Rule: [ fdA = le fdA + fRz fdAifR=R,UR,and |R; NR,| = 0.
f is Riemann integrable if and only if every component function is Riemann integrable.
A function f is Riemann integrable if and only if f is bounded and Dis(f) is of measure 0 in R™.
o Measure 0: Ve = 0, Irectangles Ry, ..., R,, such that Dis(f) € R, U..UR, and |R;| + -+ |R,| < €.
o Every continuous function on X is Riemann integrable.

R € R™ is a “nice” region if R us closed, bounded and the set of boundary points is of measure 0.



Compiled by Tian Xiao
e Fubini’s Theorem: Given R is a nice region and f is continuous on R, then fXXYf(x, y)d(x,y) =

o f, fCuy)dy dx = [, [, f(x,y)dx dy.
e Volume: vol(R) = [, 1dx.

Jpfdx
Jp1ax

 Change of Variable Formula: [, f(x)dx = [, f(g(w))|],(w)|du.

e Average Value:

 PolarIntegral: [, f(x,y)dxdy = [_f(rcosf,rsin6) r drdf.

e Cylindrical Integral: [, f (x,y, z)dxdydz =

fo(r cos6,rsinf,z) r drdfdz.
e Spherical Integral: fR f(x,y,2)dxdydz = fG f(psing cos@,psingsinb,pcos p) p?sinp dpdpdo.

5. Line Integral

Line Integral Of Scalar-Valued Function

e Let C be a smooth curve in R", and r(t) is a bijective smooth parametrisation of C. Let f: C —» R be a

scalar-valued function on C. Then [, f ds = [, f(r(®)) |7 (t)|dt.

e Additivity Rule: If a piecewise smooth curve C is made up of finite number of smooth curves C;, C,, ..., C,,
then . f ds = fclf ds + fczfds + et fcnf ds.

Vector Field and Gradient

e A vector field on X € R" is a vector-valued function F: X -» R"™.

e Avector field is continuous/smooth if and only if F is continuous/smooth.

Gradient: Vf(p) = (% (p),%(p), ...,g(p)). f is a potential function of Vf.
1 2 n

Af is a continuous vector field if and only if f is continuously differentiable.

Sum Rule, Difference Rule, Constant Multiple Rule, Product Rule and Quotient Rule apply.

Conservative fields are gradient fields, fCF - dr is path independent on conservative fields.

If F is conservative on D, then gﬁcF -dr = 0 around every loop in D.

aFi _ aFj
6x]' - 6xi

Component Test for Conservative Fields: If F id s gradient vector field, then Vi, j € {1,2, ..., n},

on D. If D is connected and simply connected, then the converse holds.

o InR3 letF=M(x,y, 2z)i+ N(x,7v,2)j+ P(x,y,z)k be a field on an open simply connected domain,

op _ow
dy oz
; Lo . Jom _ ap
then F is conservative if and only if o
N _ om
ax ay

Line Integral Of Vector Field

e Let C be a smooth curve in R, and r(t) is a bijective smooth parametrisation of C. Let F:C —» R" be a

continuous vector field on C. Then [ F - dr = [ F(r®) - r')dt.
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o This depends on the chosen r up to orientation.

e Fundamental Theorem of Line Integrals: When C is smooth/piecewise smooth, fC Vf -dr = f(B) — f(4).

6. Surface Integral

Surface Integral of Scalar-Valued Function

e Let S be a smooth surface in R™, and r(u, v) is a bijective smooth parametrisation of S. Let G: S - R be a
scalar-valued function on S. Then [.G do = [, G(rw,v))lr,(w,v) x r,w,v)|d(u,v).
o Area of Smooth Surface: [ 1do = [ |r,(u,v) x 1,(u,v)|d(u,v).
e Additivity Rule: If a piecewise smooth surface S is made up of finite number of smooth curves S,,S,, ..., S,,
then [, f ds = fslf ds + fszfds + e+ fsnf ds.

Surface Integral of Vector Field

e Let S be a smooth surface in R", and r(u, v) is a bijective smooth parametrisation of S. Let F:S — R3 be a
continuous vector field on S. Then [(FdS = [.F-ndo = [, F(r(u,v)) - r,(u,v) X ,(w,v) d(u, v).
o This depends on the chosen r up to orientation.

Curl and Divergence

e Let U be an open setin R3, F:U - R3 be a differentiable vector field. Then the curl of F is the vector field
P N
( 5 @)~ ;(p)\l
VX F:U - R givenby (Vx F)(p) = | 22 (p) -2 (p) |-
N oM
ox () - oy ()

d

dox M

o VUXF= :—y x(N).
5 P
2z

o VX Fis continuous vector field if and only if F is continuously differentiable.
o LetG =V XxF,then G is a curl vector field and F is a vector potential of G.
e Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply.
o ProductRule: Vx (fF) = f(VX F)+ (Vf) X F.
e Given f is twice continuously differentiable, V x (Vf) = 0.
e Stokes’ Theorem: Let S be a smooth surface in R2, and r(u, v) is a bijective smooth parametrisation of S.
Let dS be the counter-clockwise boundary of S. Let F be a continuously differentiable vector field defined on
S, then [(VXF)-ndo =§,_F-dr = [,_F(r(t)) r'(t)dt.
o Green’s Theorem: §. F-Tds =¢ Mdx +Ndy = [[, (Z—I;’ — 2—1‘9 dxdy.

e Let U be an open setin R3, F:U - R3 be a differentiable vector field. Then the divergence of F is the

F
axl

scalar valued function V- F: U —» R given by (V- F)(p) = + -+ Z%.
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dx M
o V-F=|= (N)
y

P

o V- Fiscontinuous if F is continuously differentiable.
e Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply.
o ProductRule: V- (fF) = f(V-F)+ (Vf) - F.

e Given F is twice continuously differentiable, V- (V x F) = 0.

e Divergence Theorem: Let D be a nice region in R3, whose boundary aD is a piecewise smooth surface.

Let F: D - R® be a continuously differentiable vector field on D. Then fD(V -F)dv = 5630 F-ndo.

gradient divergence

Fundamental Theorem Stokes’ Theorem Divergence Theorem

LVf-drzf(B)—f(A) L(VxF)-ndo=£5F~dr f(V-F)deng-ndcr
D

D

7. Application of Multivariable Calculus

Extreme Value
e Let f:R — R be a scalar-valued function. If R is compact and f is continuous, then there exists a global
maximum value f(p) such that vq € R, f(q) < f(p).

e p € R is alocal maximum point for f if and only if 3¢ € R, such that vq € R with |qg — p| < €, one has

f@ < f(p).
a
L@
o First Derivative Test: If p is a local maximum/minimum point of f, then (Vf)(p) = o =0.
7 (D)
Oxp

e p € R is a critical point of f when all partial derivatives of f is 0 (or some does not exist).
e p € R is asaddle point if and only if it is a critical point but not a local maximum/minimum point.

e Second Derivative Test: Assume f os twice continuously differentiable. The Hessian of f is the matrix-

9%f
axiaxj

valued function given by He(p) = [ (p)]- Suppose p is a critical point of f, then:

o If He(p) is negative definite (all eigenvalues are negative), then p is a local maximum point.
o If He(p) is positive definite (all eigenvalues are positive), then p is a local minimum point.

o If He(p) is indefinite (some eigenvalues are opposite signed), then p is a saddle point.

o Otherwise, the test is inconclusive.

o What does this imply in R??



Maxwell’s Equations

Gauss’s Law for Electric Fields

d)E:?gE-ndAzqem
s €0

Y

RHS = jvgi;dv

Gauss’s Law for Electric Fields

]

(o]

(o]
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Interpretation: The flux of an electric field passing through any closed surface
is proportional to the total charge contained within that surface.

@ Electric flux through surface S.

§: Closed surface.

E: Electric field (electrical force per unit charge).

Genc: Total amount of charge contained within surface S.

&, Electric constant.

Apply Divergence Theorem to L.H.S.:
LHS = [ V-EdV

Rewrite q.,. in terms of electric charge density:

E: Electric field (electrical force per unit charge).
p: Electric charge density.

&£,: Electric constant.

Gauss’s Law for Magnetic Fields

ch:#;B-ndA:o
S

RHS =0

LHS = [,V-BdV

Gauss’s Law for Magnetic Fields
V-B=0

(o}

o

Interpretation: The total magnetic flux passing through any closed surface is zero.
@, : Magnetic flux through surface S.

S: Closed surface.

B: Magnetic field.

Apply Divergence Theorem to L.H.S.:

B: Magnetic field.



Faraday’s Law

d
jEE-dl=—— B -ndA
c dt Jg

LHS = [(VXE) -ndA

RHS = [(—22-n

Faraday's Law

JB
VXE——E

o

o
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Interpretation: Changing magnetic flux through a surface induces an e.m.f.in

any boundary path of that surface and a changing magnetic field induces a
circulating electric field.

e.m.f.= éc E - dl: Electromotive force around path C.

C: Boundary of surface S.

E: Induced electric fields along path C.

by = J’s B - n dA: Magnetic flux through surface S.

S: Any surface (not necessarily closed).

B: Magnetic field.

Apply Stokes’ Theorem to L.H.S.:

Put differentiation in R.H.S. under integral sign:

E: Electric field (electrical force per unit charge).

B: Magnetic field.

Ampére-Maxwell Law

d
%B‘dl=‘u0(13nc+50—fﬂ"ndj4)
C dt s

k.

LHS = [(VX B) -ndV

Ampére-Maxwell Law

JE
VXB:#OU"'EOE)

o

Apply Stokes’ Theorem to

g‘SC B - dl: Magnetic flux circulation around path C.

C: Boundary of surface S.

B: Induced magnetic field.

1ot Permeability of free space.

Ienc: “Enclosed current”, the net current that penetrates surface S.
£, Permittivity of free space.

S: Any surface (usually not closed).

E: Electric field.

Oy = _,fSE - ndA: Electric flux through surface S.

L.H.S.:

Write I, in terms of current density and put differentiation inside integral sign:

JE
RHS = [( o] + €0 50) - m

B: Induced magnetic field.

1ot Permeability of free space.
J: Electric current density.

£, Permittivity of free space.
E: Electric field.

e Laplacian of Scalar-Valued Function: Divergence of gradient, V2f = V - (Vf).

e Laplacian of Vector Field: Gradient of divergence minus curl of curl, V24 = V(V - A) — V X (V x A).
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