MA2104 Multivariable Calculus

1. Euclidean Spaces and Vector

Triple Product Formula: $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}=\left|\begin{array}{ccc}u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$

Triangle Inequality: $|\boldsymbol{u}+\boldsymbol{v}| \leq|\boldsymbol{u}|+|\boldsymbol{v}|$
Cauchy-Schwarz Inequality: $|u \cdot v| \leq|u||v|$

2. Vector-Valued Single Variable Function

Parametrised Curve

- $\boldsymbol{r}: I \rightarrow \mathbb{R}^{n}$ parametrised by $t: \boldsymbol{r}(t)=\left(\begin{array}{l}r_{0}(t) \\ r_{1}(t) \\ r_{2}(t)\end{array}\right)$.

Limit

- \boldsymbol{r} has limit \boldsymbol{L} as $t \rightarrow t_{0}$ if and only if $\forall \epsilon \in \mathbb{R}_{\geq 0}, \exists \delta \in \mathbb{R}_{\geq 0}$, such that $\forall t \in I$ with $0<\left|t-t_{0}\right|<\delta,|\boldsymbol{r}(t)-\boldsymbol{L}|<\epsilon$.
- $\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\boldsymbol{L} \Leftrightarrow \forall j \in\{1,2, \ldots, n\}, \lim _{t \rightarrow t_{0}} r_{j}(t)=L_{t}$.

Continuity

- $\boldsymbol{r}(t)$ is continuous at a point $t=t_{0}$ if $\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\boldsymbol{r}\left(t_{0}\right)$.
- $\boldsymbol{r}(t)$ is continuous if it is continuous at every point in its domain.
- $\boldsymbol{r}(t)$ is continuous at $t=t_{0}$ if and only if every component function is continuous there.

Derivative

- \boldsymbol{r} is differentiable at a point t if and only if $\exists \boldsymbol{r}^{\prime}(t) \in \mathbb{R}^{n}$ such that $\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}(\boldsymbol{r}(t+\Delta t)-\boldsymbol{r}(t))=\boldsymbol{r}^{\prime}(t)$ in \mathbb{R}^{n}.
- \boldsymbol{r} is differentiable on I if \boldsymbol{r} is differentiable at every point in its domain.
- $\quad \boldsymbol{r}$ is differentiable at t if and only if every component function is differentiable there.

- \boldsymbol{r} is continuously differentiable if and only if \boldsymbol{r} is differentiable and \boldsymbol{r}^{\prime} is continuous.
- Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply.
- Dot Product Rule: $\frac{d}{d t}[\boldsymbol{u}(t) \cdot \boldsymbol{v}(t)]=\boldsymbol{u}^{\prime}(t) \cdot \boldsymbol{v}(t)+\boldsymbol{u}(t) \cdot \boldsymbol{v}^{\prime}(t)$.
- Cross Product Rule: $\frac{d}{d t}[\boldsymbol{u}(t) \times \boldsymbol{v}(t)]=\boldsymbol{u}^{\prime}(t) \times \boldsymbol{v}(t)+\boldsymbol{u}(t) \times \boldsymbol{v}^{\prime}(t)$

Integral

- \boldsymbol{r} is integrable over $I=[a, b]$ if and only if $\exists \boldsymbol{L} \in \mathbb{R}^{n}$ such that $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \boldsymbol{r}\left(c_{k}\right) \Delta t_{k}=\boldsymbol{L}$.
- $\quad r$ is integrable over I if and only if every component function is integrable there.
- Indefinite Integral $\boldsymbol{R}: \forall x \in[a, b], \boldsymbol{R}(x)=\int_{a}^{x} \boldsymbol{r}(t) d t$.

3. Curve, Surface and Region

Curve

- Smooth: \boldsymbol{r} is smooth if and only if \boldsymbol{r} is continuously differentiable and has non-vanishing derivative.
- Non-vanishing: $\forall t \in I, \boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$.
- Piecewise Smooth: Finite number of smooth curves pieced together in a continuous fashion.
- Arc Length: $\int_{a}^{b}\left|\boldsymbol{r}^{\prime}(t)\right| d t$.

Surface

- Parametrised Surface: $\boldsymbol{r}: R \rightarrow \mathbb{R}^{n}$, where $R \in \mathbb{R}^{2}$ is an open rectangle, a closed rectangle or a region.
- Smooth: \boldsymbol{r} is smooth if and only if \boldsymbol{r} is continuously differentiable and has non-vanishing $\boldsymbol{r}_{\boldsymbol{u}} \times \boldsymbol{r}_{\boldsymbol{v}}$.
- Area: $\iint_{R}\left|\boldsymbol{r}_{\boldsymbol{u}} \times \boldsymbol{r}_{\boldsymbol{v}}\right| d A$.

Region

- A region in \mathbb{R}^{n} is a subset of \mathbb{R}^{n}, which is usually assumed to be "nice" connected, open/compact, etc.
- A region R is open if and only if $\forall \boldsymbol{p} \in R, \exists r \in \mathbb{R}_{\geq 0}$ such that $B(\boldsymbol{p}, r) \subseteq R$.
- A region R is bounded if it lies inside a disk of finite radius.
- A region R is compact if it is closed and bounded.

- A compact rectangle is a subset of \mathbb{R}^{n} in the form $X=X_{1} \times X_{2} \times \ldots \times X_{n}$, where each X_{i} is a closed and bounded interval in \mathbb{R}^{1} (i.e. $[a, b]$).

4. Multivariable Function

Multivariable Function

- $f: R \rightarrow \mathbb{R}^{n}$ where $R \in \mathbb{R}^{m}$ is an open region.
- Vector of Scalar-Valued Component Functions: $f(\boldsymbol{p})=\left(\begin{array}{c}f_{1}(\boldsymbol{p}) \\ \ldots \\ f_{n}(\boldsymbol{p})\end{array}\right)$.

Limit

- \boldsymbol{f} has limit \boldsymbol{L} as $\boldsymbol{p} \rightarrow \boldsymbol{p}_{\mathbf{0}}$ if and only if $\forall \epsilon \in \mathbb{R}_{\geq 0}, \exists \delta \in \mathbb{R}_{\geq 0}$, such that $\forall t \in I$ with $0<\left|\boldsymbol{p}-\boldsymbol{p}_{\mathbf{0}}\right|<\delta,|f(\boldsymbol{p})-\boldsymbol{L}|<$ ϵ.
- Calculation Rules (for all functions): Let $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} f(\boldsymbol{p})=\boldsymbol{L}, \lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} g(\boldsymbol{p})=\boldsymbol{M}$, then:
- $\lim _{p \rightarrow p_{0}}(f(\boldsymbol{p}) \pm g(\boldsymbol{p}))=\boldsymbol{L} \pm \boldsymbol{M} ;$
- $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} c f(\boldsymbol{p})=c \boldsymbol{L}$.
- Calculation Rules (for all scalar-valued functions): Let $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} f(\boldsymbol{p})=L, \lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} g(\boldsymbol{p})=M$, then:
- $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}}(f(\boldsymbol{p}) \cdot g(\boldsymbol{p}))=L \cdot M$;
- $\quad \lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}}\left(\frac{f(\boldsymbol{p})}{g(\boldsymbol{p})}\right)=\frac{L}{M}$, where $M \neq 0$;
- $\lim _{\boldsymbol{p} \rightarrow p_{0}}(f(\boldsymbol{p}))^{n}=L^{n}$, where n is a positive integer;

○ $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}}(\sqrt[n]{f(\boldsymbol{p})})=\sqrt[n]{L}$, where n is a positive integer.

Continuity

- $\quad f(\boldsymbol{p})$ is continuous at a point $\boldsymbol{p}=\boldsymbol{p}_{\mathbf{0}}$ if $\lim _{\boldsymbol{p} \rightarrow \boldsymbol{p}_{0}} f(\boldsymbol{p})=f\left(\boldsymbol{p}_{\mathbf{0}}\right)$.
- $\quad f(\boldsymbol{p})$ is continuous on R if it is continuous at every point on R.
- If f is continuous at $\boldsymbol{p}_{\mathbf{0}}, g$ is continuous at $f\left(\boldsymbol{p}_{\mathbf{0}}\right)$, then $g \circ f$ is continuous at $\boldsymbol{p}_{\mathbf{0}}$.

Differentiability

- $\quad f$ is differentiable at a point $\boldsymbol{p}_{\mathbf{0}}$ if and only if $\exists A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that $\forall \in \in \mathbb{R}_{\geq 0}, \exists \delta \in \mathbb{R}_{\geq 0}$, such that $\forall \boldsymbol{p} \in R$ with $\left|\boldsymbol{p}-\boldsymbol{p}_{\mathbf{0}}\right|<\boldsymbol{\delta}$, one has $\left|f(\boldsymbol{p})-\left(f\left(\boldsymbol{p}_{\mathbf{0}}\right)+A\left(\boldsymbol{p}-\boldsymbol{p}_{\mathbf{0}}\right)\right)\right| \leq \epsilon\left|\boldsymbol{p}-\boldsymbol{p}_{\mathbf{0}}\right|$. Here
- $\quad f$ is differentiable on R if it is differentiable at every point on R.
- Differentiability implies continuity.
- Directional Derivative w.r.t. $\boldsymbol{u}:\left(D_{\boldsymbol{u}} f\right)\left(\boldsymbol{p}_{\mathbf{0}}\right)=\lim _{s \rightarrow 0} \frac{f\left(\boldsymbol{p}_{0}+s \boldsymbol{u}\right)-f\left(\boldsymbol{p}_{\mathbf{0}}\right)}{s}=A \boldsymbol{u}$.
- $\quad\left(D_{\boldsymbol{u}} f\right)\left(\boldsymbol{p}_{\mathbf{0}}\right)=\left(\begin{array}{c}\left(D_{\boldsymbol{u}} f_{1}\right)\left(\boldsymbol{p}_{\mathbf{0}}\right) \\ \ldots \\ \left(D_{\boldsymbol{u}} f_{n}\right)\left(\boldsymbol{p}_{\mathbf{0}}\right)\end{array}\right)$.
- Partial Derivative: Directional derivative w.r.t. standard unit vectors, $\frac{\partial f}{\partial x_{j}}\left(\boldsymbol{p}_{\mathbf{0}}\right)=f_{x_{j}}\left(\boldsymbol{p}_{\mathbf{0}}\right)=\lim _{s \rightarrow 0} \frac{f\left(\boldsymbol{p}_{\mathbf{0}}+s \boldsymbol{e}_{\boldsymbol{j}}\right)-f\left(\boldsymbol{p}_{\mathbf{0}}\right)}{s}$.
- (Df) $\left(\boldsymbol{p}_{0}\right)=\left[\begin{array}{ccc}\frac{\partial f_{1}}{\partial x_{1}}\left(\boldsymbol{p}_{\mathbf{0}}\right) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\left(\boldsymbol{p}_{\mathbf{0}}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}\left(\boldsymbol{p}_{0}\right) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}\left(\boldsymbol{p}_{0}\right)\end{array}\right]=J_{f}\left(\boldsymbol{p}_{\mathbf{0}}\right)$.
- Gradient of Scalar-Valued Function: $(\Delta f)(\boldsymbol{p})=\binom{\frac{\partial f}{\partial x_{1}}(\boldsymbol{p})}{\frac{\partial f}{\partial x_{n}}(\boldsymbol{p})}$. This is obviously same as first row of total derivative map. Hence, $(\Delta f)(\boldsymbol{p}) \cdot \boldsymbol{u}=\left(D_{\boldsymbol{u}} f\right)(\boldsymbol{p})$.
- Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply.
- $\quad f$ is continuously differentiable on R if and only if f is differentiable on R and f^{\prime} is continuous.
- $\quad f$ is continuously differentiable on R if and only if all partial derivatives of every component function exist and is continuous.
- f is of class C^{r} if and only if all partial derivatives of every component function exist and is of class C^{r-1}.
- Taylor's Theorem: Let R be an open subset of $\mathbb{R}^{m}, f: R \rightarrow \mathbb{R}$ be a scalar-valued function of class C^{r+1}. Let $\boldsymbol{p}_{\mathbf{0}} \in \boldsymbol{R}$ and suppose $\delta \in \mathbb{R}_{\geq 0}$ such that $B\left(\boldsymbol{p}_{0}, \delta\right) \subseteq R$ (in domain). Then, $\forall \xi \in \mathbb{R}^{m}$ with $|\xi|<\delta$, one has $f\left(\boldsymbol{p}_{\mathbf{0}}+\boldsymbol{\xi}\right)=\left[\sum_{\substack{r=0 \\ \sum_{\begin{subarray}{c}{\alpha} \mathbb{Z}_{\geq 0}^{m} }}^{|\boldsymbol{\alpha}|=d} ⿺}\end{subarray}} \frac{1}{\alpha!} \frac{\partial^{d} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{m}^{\alpha_{m}}}\left(\boldsymbol{p}_{0}\right) \cdot\left(\xi_{1}^{\alpha_{1}} \ldots \xi_{m}^{\alpha_{m}}\right)\right]+R(\xi)$, where $\boldsymbol{\alpha}=\left(\begin{array}{c}\alpha_{1} \\ \ldots \\ \alpha_{m}\end{array}\right),|\boldsymbol{\alpha}|=\alpha_{1}+\cdots+\alpha_{m}, \boldsymbol{\alpha}!=$ $\alpha_{1}!\ldots \alpha_{m}!$. Here, $\exists c \in(0,1)$ (so that it is inside the open ball) such that $R(\xi)=\sum_{\substack{\alpha \in \mathbb{Z}_{\geq 0}^{m} \\|\alpha|=r+1}} \frac{1}{\alpha!} \frac{\partial^{d} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{m}^{\alpha_{m}}}\left(\boldsymbol{p}_{0}+\right.$ $c \xi) \cdot\left(\xi_{1}^{\alpha_{1}} \ldots \xi_{m}^{\alpha_{m}}\right)$.
- Case $m=1: \exists c \in(a, b)$ such that $f(b)=\left[f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\right.$

$$
\left.\frac{f^{(n)}(a)}{n!}(b-a)^{n}\right]+\left[\frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}\right]
$$

- Case $m=2$: $\exists c \in(0,1)$ such that $f(a+h, b+k)=\left[f(a, b)+\left.\left(h f_{x}+k f_{y}\right)\right|_{a, b}+\right.$

$$
\left.\left.\frac{1}{2!}\left(h^{2} f_{x x}+2 h k f_{x y}+k^{2} f_{y y}\right)\right|_{a, b}+\cdots+\left.\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f\right|_{a, b}\right]+\left[\left.\frac{1}{(n+1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n+1} f\right|_{a+c h, b+c k}\right] .
$$

- Proof is simple by induction.
- Linear Approximation: $f(\boldsymbol{p}) \approx L(\boldsymbol{p})=f\left(\boldsymbol{p}_{\mathbf{0}}\right)+\sum_{k=1}^{m} f_{x_{k}}\left(\boldsymbol{p}_{\mathbf{0}}\right)\left(p_{k}-p_{0_{k}}\right)$.
- Error: Let $\xi=\boldsymbol{p}-\boldsymbol{p}_{\mathbf{0}}$, then $E(\boldsymbol{p}) \leq \frac{1}{2} M\left(\sum_{i=1}^{m}\left|\xi_{i}\right|^{2}\right)$, where $\forall i, j \in\{1, \ldots, m\}, \forall \boldsymbol{p} \in R, f_{x_{i} x_{j}}(\boldsymbol{p}) \leq M$.
- Proof is via Taylor's Theorem (Case $n=1$).

Integral

- $\quad f$ is Riemann integrable over X if and only if $\exists \boldsymbol{L} \in \mathbb{R}^{n}$ such that $\lim _{||P|| \rightarrow 0} \sum_{R \in P} f(t(R))|R|=\boldsymbol{L}$.
- Sum Rule, Difference Rule, Scalar Multiplication Rule apply.
- Domination Rule: \int is order-preserving.

- Additivity Rule: $\int_{R} f d A=\int_{R_{1}} f d A+\int_{R_{2}} f d A$ if $R=R_{1} \cup R_{2}$ and $\left|R_{1} \cap R_{2}\right|=0$.
- $\quad f$ is Riemann integrable if and only if every component function is Riemann integrable.
- A function f is Riemann integrable if and only if f is bounded and $\operatorname{Dis}(f)$ is of measure 0 in \mathbb{R}^{m}.
- Measure 0: $\forall \epsilon \geq 0$, ヨrectangles R_{1}, \ldots, R_{n} such that $\operatorname{Dis}(f) \subseteq R_{1} \cup \ldots \cup R_{n}$ and $\left|R_{1}\right|+\cdots+\left|R_{n}\right|<\epsilon$.
- Every continuous function on \boldsymbol{X} is Riemann integrable.
- $\quad R \subseteq \mathbb{R}^{m}$ is a "nice" region if R us closed, bounded and the set of boundary points is of measure 0 .
- Fubini's Theorem: Given R is a nice region and f is continuous on R, then $\int_{X \times Y} f(x, y) d(x, y)=$ $\int_{X} \int_{Y} f(x, y) d y d x=\int_{Y} \int_{X} f(x, y) d x d y$.
- Volume: $\operatorname{vol}(R)=\int_{R} 1 d x$.
- Average Value: $\frac{\int_{R} f d x}{\int_{R} 1 d x}$.
- Change of Variable Formula: $\int_{R} f(\boldsymbol{x}) d \boldsymbol{x}=\int_{G} f(g(\boldsymbol{u}))\left|J_{g}(\boldsymbol{u})\right| d \boldsymbol{u}$.
- Polar Integral: $\int_{R} f(x, y) d x d y=\int_{G} f(r \cos \theta, r \sin \theta) r d r d \theta$.
- Cylindrical Integral: $\int_{R} f(x, y, z) d x d y d z=$ $\int_{G} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z$.

- Spherical Integral: $\int_{R} f(x, y, z) d x d y d z=\int_{G} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta$.

5. Line Integral

Line Integral Of Scalar-Valued Function

- Let C be a smooth curve in \mathbb{R}^{n}, and $\boldsymbol{r}(t)$ is a bijective smooth parametrisation of C. Let $f: C \rightarrow \mathbb{R}$ be a scalar-valued function on C. Then $\int_{C} f d s=\int_{I} f(\boldsymbol{r}(t))\left|\boldsymbol{r}^{\prime}(t)\right| d t$.
- Additivity Rule: If a piecewise smooth curve C is made up of finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{n}$, then $\int_{C} f d s=\int_{C_{1}} f d s+\int_{C_{2}} f d s+\cdots+\int_{C_{n}} f d s$.

Vector Field and Gradient

- A vector field on $X \subseteq \mathbb{R}^{n}$ is a vector-valued function $\boldsymbol{F}: X \rightarrow \mathbb{R}^{n}$.
- A vector field is continuous/smooth if and only if \boldsymbol{F} is continuous/smooth.
- Gradient: $\nabla f(\boldsymbol{p})=\left(\frac{\partial f}{\partial x_{1}}(\boldsymbol{p}), \frac{\partial f}{\partial x_{2}}(\boldsymbol{p}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{p})\right) . f$ is a potential function of ∇f.
- Δf is a continuous vector field if and only if f is continuously differentiable.
- Sum Rule, Difference Rule, Constant Multiple Rule, Product Rule and Quotient Rule apply.
- Conservative fields are gradient fields, $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}$ is path independent on conservative fields.
- If \boldsymbol{F} is conservative on D, then $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=0$ around every loop in D.
- Component Test for Conservative Fields: If \boldsymbol{F} id s gradient vector field, then $\forall i, j \in\{1,2, \ldots, n\}, \frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}$ on D. If D is connected and simply connected, then the converse holds.
- In \mathbb{R}^{3}, let $\boldsymbol{F}=M(x, y, z) \boldsymbol{i}+N(x, y, z) \boldsymbol{j}+P(x, y, z) \boldsymbol{k}$ be a field on an open simply connected domain, then \boldsymbol{F} is conservative if and only if $\left\{\begin{array}{l}\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z} \\ \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \\ \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}\end{array}\right.$.

Line Integral Of Vector Field

- Let C be a smooth curve in \mathbb{R}^{n}, and $\boldsymbol{r}(t)$ is a bijective smooth parametrisation of C. Let $\boldsymbol{F}: C \rightarrow \mathbb{R}^{n}$ be a continuous vector field on C. Then $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{I} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{r}^{\prime}(t) d t$.
- This depends on the chosen r up to orientation.
- Fundamental Theorem of Line Integrals: When C is smooth/piecewise smooth, $\int_{C} \nabla f \cdot d \boldsymbol{r}=f(\boldsymbol{B})-f(\boldsymbol{A})$.

6. Surface Integral

Surface Integral of Scalar-Valued Function

- Let S be a smooth surface in \mathbb{R}^{n}, and $\boldsymbol{r}(u, v)$ is a bijective smooth parametrisation of S. Let $G: S \rightarrow \mathbb{R}$ be a scalar-valued function on S. Then $\int_{S} G d \sigma=\int_{R} G(\boldsymbol{r}(u, v))\left|\boldsymbol{r}_{u}(u, v) \times \boldsymbol{r}_{v}(u, v)\right| d(u, v)$.
- Area of Smooth Surface: $\int_{S} 1 d \sigma=\int_{R}\left|\boldsymbol{r}_{u}(u, v) \times \boldsymbol{r}_{v}(u, v)\right| d(u, v)$.
- Additivity Rule: If a piecewise smooth surface S is made up of finite number of smooth curves $S_{1}, S_{2}, \ldots, S_{n}$, then $\int_{S} f d s=\int_{S_{1}} f d s+\int_{S_{2}} f d s+\cdots+\int_{S_{n}} f d s$.

Surface Integral of Vector Field

- Let S be a smooth surface in \mathbb{R}^{n}, and $\boldsymbol{r}(u, v)$ is a bijective smooth parametrisation of S. Let $\boldsymbol{F}: S \rightarrow \mathbb{R}^{3}$ be a continuous vector field on S. Then $\int_{S} \boldsymbol{F} d \boldsymbol{S}=\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d \sigma=\int_{R} \boldsymbol{F}(\boldsymbol{r}(u, v)) \cdot \boldsymbol{r}_{u}(u, v) \times \boldsymbol{r}_{v}(u, v) d(u, v)$.
- This depends on the chosen r up to orientation.

Curl and Divergence

- Let U be an open set in $\mathbb{R}^{3}, \boldsymbol{F}: U \rightarrow \mathbb{R}^{3}$ be a differentiable vector field. Then the curl of \boldsymbol{F} is the vector field $\nabla \times \boldsymbol{F}: U \rightarrow \mathbb{R}^{3}$ given by $(\nabla \times \boldsymbol{F})(\boldsymbol{p})=\left(\begin{array}{l}\frac{\partial P}{\partial y}(\boldsymbol{p})-\frac{\partial N}{\partial z}(\boldsymbol{p}) \\ \frac{\partial M}{\partial z}(\boldsymbol{p})-\frac{\partial P}{\partial x}(\boldsymbol{p}) \\ \frac{\partial N}{\partial x}(\boldsymbol{p})-\frac{\partial M}{\partial y}(\boldsymbol{p})\end{array}\right)$.
- $\nabla \times \boldsymbol{F}=\left(\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right) \times\left(\begin{array}{l}M \\ N \\ P\end{array}\right)$.
- $\nabla \times \boldsymbol{F}$ is continuous vector field if and only if \boldsymbol{F} is continuously differentiable.
- Let $\boldsymbol{G}=\nabla \times \boldsymbol{F}$, then \boldsymbol{G} is a curl vector field and \boldsymbol{F} is a vector potential of \boldsymbol{G}.
- Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply.
- Product Rule: $\nabla \times(f \boldsymbol{F})=f(\nabla \times \boldsymbol{F})+(\nabla f) \times \boldsymbol{F}$.
- Given f is twice continuously differentiable, $\nabla \times(\nabla f)=\mathbf{0}$.
- Stokes' Theorem: Let S be a smooth surface in \mathbb{R}^{3}, and $\boldsymbol{r}(u, v)$ is a bijective smooth parametrisation of S. Let ∂S be the counter-clockwise boundary of S. Let \boldsymbol{F} be a continuously differentiable vector field defined on S, then $\int_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} d \sigma=\oint_{\partial S} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{\partial S} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \boldsymbol{r}^{\prime}(t) d t$.
- Green's Theorem: $\oint_{C} \boldsymbol{F} \cdot \boldsymbol{T} d s=\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$.
- Let U be an open set in $\mathbb{R}^{3}, \boldsymbol{F}: U \rightarrow \mathbb{R}^{3}$ be a differentiable vector field. Then the divergence of \boldsymbol{F} is the scalar valued function $\nabla \cdot \boldsymbol{F}: U \rightarrow \mathbb{R}$ given by $(\nabla \cdot \boldsymbol{F})(\boldsymbol{p})=\frac{\partial F_{1}}{\partial x_{1}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}$.
$\nabla \cdot \boldsymbol{F}=\left(\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right) \cdot\left(\begin{array}{c}M \\ N \\ P\end{array}\right)$
- $\boldsymbol{\nabla} \cdot \boldsymbol{F}$ is continuous if \boldsymbol{F} is continuously differentiable.
- Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply.
- Product Rule: $\nabla \cdot(f \boldsymbol{F})=f(\nabla \cdot \boldsymbol{F})+(\nabla f) \cdot \boldsymbol{F}$.
- Given \boldsymbol{F} is twice continuously differentiable, $\nabla \cdot(\nabla \times \boldsymbol{F})=0$.
- Divergence Theorem: Let D be a nice region in \mathbb{R}^{3}, whose boundary ∂D is a piecewise smooth surface.

Let $\boldsymbol{F}: D \rightarrow \mathbb{R}^{3}$ be a continuously differentiable vector field on D. Then $\int_{D}(\nabla \cdot \boldsymbol{F}) d V=\oint_{\partial D} \boldsymbol{F} \cdot \boldsymbol{n} d \sigma$.

7. Application of Multivariable Calculus

Extreme Value

- Let $f: R \rightarrow \mathbb{R}$ be a scalar-valued function. If R is compact and f is continuous, then there exists a global maximum value $f(\boldsymbol{p})$ such that $\forall \boldsymbol{q} \in R, f(\boldsymbol{q}) \leq f(\boldsymbol{p})$.
- $\boldsymbol{p} \in R$ is a local maximum point for f if and only if $\exists \epsilon \in \mathbb{R}_{\geq 0}$ such that $\forall \boldsymbol{q} \in R$ with $|q-p|<\epsilon$, one has $f(\boldsymbol{q}) \leq f(\boldsymbol{p})$.
- First Derivative Test: If \boldsymbol{p} is a local maximum/minimum point of f, then $(\nabla f)(\boldsymbol{p})=\binom{\frac{\partial f}{\partial x_{1}}(\boldsymbol{p})}{\frac{\partial f}{\partial x_{n}}(\boldsymbol{p})}=\mathbf{0}$.
- $\quad \boldsymbol{p} \in R$ is a critical point of f when all partial derivatives of f is 0 (or some does not exist).
- $\boldsymbol{p} \in R$ is a saddle point if and only if it is a critical point but not a local maximum/minimum point.
- Second Derivative Test: Assume f os twice continuously differentiable. The Hessian of f is the matrixvalued function given by $H_{f}(\boldsymbol{p})=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{p})\right]$. Suppose \boldsymbol{p} is a critical point of f, then:
- If $H_{f}(\boldsymbol{p})$ is negative definite (all eigenvalues are negative), then \boldsymbol{p} is a local maximum point.
- If $H_{f}(\boldsymbol{p})$ is positive definite (all eigenvalues are positive), then \boldsymbol{p} is a local minimum point.
- If $H_{f}(\boldsymbol{p})$ is indefinite (some eigenvalues are opposite signed), then \boldsymbol{p} is a saddle point.
- Otherwise, the test is inconclusive.
- What does this imply in \mathbb{R}^{2} ?

Maxwell's Equations

Gauss's Law for Electric Fields

$$
\Phi_{E}=\oint_{S} \boldsymbol{E} \cdot \boldsymbol{n} d A=\frac{q_{e n c}}{\varepsilon_{0}}
$$

- Interpretation: The flux of an electric field passing through any closed surface is proportional to the total charge contained within that surface.
- Φ_{E} : Electric flux through surface S.
- S : Closed surface.
- \boldsymbol{E} : Electric field (electrical force per unit charge).
- $q_{e n c}$: Total amount of charge contained within surface S.
- ε_{0} : Electric constant.

Apply Divergence Theorem to L.H.S.:

$$
L H S=\int_{V} \nabla \cdot \boldsymbol{E} d V
$$

Rewrite $q_{\text {enc }}$ in terms of electric charge density:

$$
R H S=\int_{V} \frac{\rho}{\varepsilon_{0}} d V
$$

Gauss's Law for Electric Fields

$$
\nabla \cdot \boldsymbol{E}=\frac{\rho}{\varepsilon_{0}}
$$

- \boldsymbol{E} : Electric field (electrical force per unit charge).
- ρ : Electric charge density.
- ε_{0} : Electric constant.

Gauss's Law for Magnetic Fields

$$
\Phi_{B}=\oint_{S} \boldsymbol{B} \cdot \boldsymbol{n} d A=0
$$

- Φ_{B} : Magnetic flux through surface S.
- S : Closed surface.
- \boldsymbol{B} : Magnetic field.

Gauss's Law for Magnetic Fields

$$
\nabla \cdot \boldsymbol{B}=0
$$

Faraday's Law

$$
\oint_{C} \boldsymbol{E} \cdot d \boldsymbol{l}=-\frac{d}{d t} \int_{S} \boldsymbol{B} \cdot \boldsymbol{n} d A
$$

- Interpretation: Changing magnetic flux through a surface induces an e.m.f. in any boundary path of that surface and a changing magnetic field induces a circulating electric field.
- e.m.f. $=\oint_{C} \boldsymbol{E} \cdot d \boldsymbol{l}$: Electromotive force around path C.
- C : Boundary of surface S.
- \boldsymbol{E} : Induced electric fields along path C.
$\Phi_{B}=\int_{S} \boldsymbol{B} \cdot \boldsymbol{n} d A$: Magnetic flux through surface S.
S : Any surface (not necessarily closed).
- B: Magnetic field.

Apply Stokes' Theorem to L.H.S.:
$L H S=\int_{S}(\nabla \times \boldsymbol{E}) \cdot \boldsymbol{n} d A$
Put differentiation in R.H.S. under integral sign:
$R H S=\int_{S}-\frac{\partial \boldsymbol{B}}{\partial t} \cdot \boldsymbol{n} d A$

Faraday's Law

$$
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

- \boldsymbol{E} : Electric field (electrical force per unit charge).
- B: Magnetic field.

Ampère-Maxwell Law
 $\oint_{C} \boldsymbol{B} \cdot d \boldsymbol{l}=\mu_{0}\left(I_{e n c}+\varepsilon_{0} \frac{d}{d t} \int_{S} \boldsymbol{E} \cdot \boldsymbol{n} d A\right)$

```
- }\mp@subsup{\oint}{C}{}\boldsymbol{B}\cdotd\boldsymbol{l}\mathrm{ : Magnetic flux circulation around path C.
- C}\mathrm{ : Boundary of surface S.
- B}\mathrm{ : Induced magnetic field.
- }\mp@subsup{\mu}{0}{}\mathrm{ :Permeability of free space.
- I Inc: "Enclosed current", the net current that penetrates surface S.
\mp@subsup{\varepsilon}{0}{}}\mathrm{ : Permittivity of free space
S: Any surface (usually not closed).
E}\mathrm{ : Electric field.
- }\mp@subsup{\Phi}{E}{}=\mp@subsup{\int}{S}{}\boldsymbol{E}\cdot\boldsymbol{n}dA\mathrm{ : Electric flux through surface S.
```

Apply Stokes' Theorem to L.H.S.:
$L H S=\int_{S}(\nabla \times \boldsymbol{B}) \cdot \boldsymbol{n} d V$
Write $I_{\text {enc }}$ in terms of current density and put differentiation inside integral sign:

$$
R H S=\int_{S} \mu_{0}\left(\boldsymbol{J}+\varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}\right) \cdot \boldsymbol{n} d A
$$

Ampère-Maxwell Law

$\nabla \times \boldsymbol{B}=\mu_{0}\left(\boldsymbol{J}+\varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}\right)$

- \boldsymbol{B} : Induced magnetic field.
- μ_{0} : Permeability of free space.
- J: Electric current density.
- ε_{0} : Permittivity of free space.
- \boldsymbol{E} : Electric field.
- Laplacian of Scalar-Valued Function: Divergence of gradient, $\nabla^{2} f=\nabla \cdot(\nabla f)$.
- Laplacian of Vector Field: Gradient of divergence minus curl of curl, $\nabla^{2} \boldsymbol{A}=\nabla(\nabla \cdot \boldsymbol{A})-\nabla \times(\nabla \times \boldsymbol{A})$.

References

AY2020/21 Semester 2 MA2104 Lecture Notes by Prof. Chin Chee Whye.

