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MA2104 Multivariable Calculus 

AY2020/21 Semester 2 

1. Euclidean Spaces and Vector 

 

Triangle Inequality: |𝒖 + 𝒗| ≤ |𝒖| + |𝒗| 

Cauchy-Schwarz Inequality: |𝒖 ⋅ 𝒗| ≤ |𝒖||𝒗| 

 

2. Vector-Valued Single Variable Function 

Parametrised Curve 

• 𝒓: 𝐼 → ℝ𝑛 parametrised by 𝑡: 𝒓(𝑡) = (

𝑟0(𝑡)

𝑟1(𝑡)

𝑟2(𝑡)
). 

 

Limit 

• 𝒓 has limit 𝑳 as 𝑡 → 𝑡0 if and only if ∀𝜖 ∈ ℝ≥0, ∃𝛿 ∈ ℝ≥0, such that ∀𝑡 ∈ 𝐼 with 0 < |𝑡 − 𝑡0| < 𝛿, |𝒓(𝑡) − 𝑳| < 𝜖. 

• lim
𝑡→𝑡0

𝒓(𝑡) = 𝑳 ⇔ ∀𝑗 ∈ {1,2, … , 𝑛}, lim
𝑡→𝑡0

𝑟𝑗(𝑡) = 𝐿𝑡. 

 

Continuity 

• 𝒓(𝑡) is continuous at a point 𝑡 = 𝑡0 if lim
𝑡→𝑡0

𝒓(𝑡) = 𝒓(𝑡0).  

• 𝒓(𝑡) is continuous if it is continuous at every point in its domain. 

• 𝒓(𝑡) is continuous at 𝑡 = 𝑡0 if and only if every component function is continuous there. 
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Derivative 

• 𝒓 is differentiable at a point 𝑡 if and only if ∃𝒓′(𝑡) ∈ ℝ𝑛 such that 

lim
Δ𝑡→0

1

Δ𝑡
(𝒓(𝑡 + Δ𝑡) − 𝒓(𝑡)) = 𝒓′(𝑡) in ℝ𝑛.  

• 𝒓 is differentiable on 𝐼 if 𝒓 is differentiable at every point in its domain. 

• 𝒓 is differentiable at 𝑡 if and only if every component function is differentiable 

there. 

• 𝒓 is continuously differentiable if and only if 𝒓 is differentiable and 𝒓′ is continuous. 

• Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply.  

• Dot Product Rule: 
𝑑

𝑑𝑡
[𝒖(𝑡) ⋅ 𝒗(𝑡)] = 𝒖′(𝑡) ⋅ 𝒗(𝑡) + 𝒖(𝑡) ⋅ 𝒗′(𝑡). 

• Cross Product Rule: 
𝑑

𝑑𝑡
[𝒖(𝑡) × 𝒗(𝑡)] = 𝒖′(𝑡) × 𝒗(𝑡) + 𝒖(𝑡) × 𝒗′(𝑡) 

 

Integral 

• 𝒓 is integrable over 𝐼 = [𝑎, 𝑏] if and only if ∃𝑳 ∈ ℝ𝑛 such that lim
||𝑃||→0

∑ 𝒓(𝑐𝑘)Δ𝑡𝑘
𝑛
𝑘=1 = 𝑳. 

• 𝒓 is integrable over 𝐼 if and only if every component function is integrable there. 

• Indefinite Integral 𝑹: ∀𝑥 ∈ [𝑎, 𝑏], 𝑹(𝑥) = ∫ 𝒓(𝑡)𝑑𝑡
𝑥

𝑎
. 

 

 

3. Curve, Surface and Region 

Curve 

• Smooth: 𝒓 is smooth if and only if 𝒓 is continuously differentiable and has non-vanishing derivative. 

o Non-vanishing: ∀𝑡 ∈ 𝐼, 𝒓′(𝑡) ≠ 𝟎. 

• Piecewise Smooth: Finite number of smooth curves pieced together in a continuous fashion. 

• Arc Length: ∫ |𝒓′(𝑡)|𝑑𝑡
𝑏

𝑎
. 

 

Surface 

• Parametrised Surface: 𝒓: 𝑅 → ℝ𝑛, where 𝑅 ∈ ℝ2 is an open rectangle, a closed rectangle or a region. 

• Smooth: 𝒓 is smooth if and only if 𝒓 is continuously differentiable and has non-vanishing 𝒓𝒖 × 𝒓𝒗. 

• Area: ∬ |𝒓𝒖 × 𝒓𝒗|𝑑𝐴
 

𝑅
. 

 

Region 

• A region in ℝ𝑛 is a subset of ℝ𝑛, which is usually assumed to be “nice” – 

connected, open/compact, etc. 

o A region 𝑅 is open if and only if ∀𝒑 ∈ 𝑅, ∃𝑟 ∈ ℝ≥0 such that 

𝐵(𝒑, 𝑟) ⊆ 𝑅. 

o A region 𝑅 is bounded if it lies inside a disk of finite radius. 

o A region 𝑅 is compact if it is closed and bounded. 

o A compact rectangle is a subset of ℝ𝑛 in the form 𝑋 = 𝑋1 × 𝑋2 × …× 𝑋𝑛, where each 𝑋𝑖 is a 

closed and bounded interval in ℝ1 (i.e. [𝑎, 𝑏]). 

 



Compiled by Tian Xiao 

3 

 

4. Multivariable Function 

Multivariable Function 

• 𝑓: 𝑅 → ℝ𝑛 where 𝑅 ∈ ℝ𝑚 is an open region. 

• Vector of Scalar-Valued Component Functions: 𝑓(𝒑) = (
𝑓1(𝒑)
…

𝑓𝑛(𝒑)
). 

 

Limit 

• 𝒇 has limit 𝑳 as 𝒑 → 𝒑𝟎 if and only if ∀𝜖 ∈ ℝ≥0, ∃𝛿 ∈ ℝ≥0, such that ∀𝑡 ∈ 𝐼 with 0 < |𝒑 − 𝒑𝟎| < 𝛿, |𝑓(𝒑) − 𝑳| <

𝜖. 

• Calculation Rules (for all functions): Let lim
𝒑→𝒑𝟎

𝑓(𝒑) = 𝑳, lim
𝒑→𝒑𝟎

𝑔(𝒑) = 𝑴, then: 

o lim
𝒑→𝒑𝟎

(𝑓(𝒑) ± 𝑔(𝒑)) = 𝑳 ±𝑴; 

o lim
𝒑→𝒑𝟎

𝑐𝑓(𝒑) = 𝑐𝑳. 

• Calculation Rules (for all scalar-valued functions): Let lim
𝒑→𝒑𝟎

𝑓(𝒑) = 𝐿, lim
𝒑→𝒑𝟎

𝑔(𝒑) = 𝑀, then: 

o lim
𝒑→𝒑𝟎

(𝑓(𝒑) ⋅ 𝑔(𝒑)) = 𝐿 ⋅ 𝑀; 

o lim
𝒑→𝒑𝟎

(
𝑓(𝒑)

𝑔(𝒑)
) =

𝐿

𝑀
, where 𝑀 ≠ 0; 

o lim
𝒑→𝒑𝟎

(𝑓(𝒑))
𝑛
= 𝐿𝑛, where 𝑛 is a positive integer; 

o lim
𝒑→𝒑𝟎

(√𝑓(𝒑)
𝑛

) = √𝐿
𝑛

, where 𝑛 is a positive integer. 

 

Continuity 

• 𝑓(𝒑) is continuous at a point 𝒑 = 𝒑𝟎 if lim
𝒑→𝒑𝟎

𝑓(𝒑) = 𝑓(𝒑𝟎). 

• 𝑓(𝒑) is continuous on 𝑅 if it is continuous at every point on 𝑅.  

• If 𝑓 is continuous at 𝒑𝟎, 𝑔 is continuous at 𝑓(𝒑𝟎), then 𝑔 ∘ 𝑓 is continuous at 𝒑𝟎. 

 

Differentiability 

• 𝑓 is differentiable at a point 𝒑𝟎 if and only if ∃𝐴:ℝ𝑚 → ℝ𝑛 such that ∀𝜖 ∈ ℝ≥0, ∃𝛿 ∈ ℝ≥0, such that ∀𝒑 ∈ 𝑅 

with |𝒑 − 𝒑𝟎| < 𝜹, one has |𝑓(𝒑) − (𝑓(𝒑𝟎) + 𝐴(𝒑 − 𝒑𝟎))| ≤ 𝜖|𝒑 − 𝒑𝟎|. Here 

• 𝑓 is differentiable on 𝑅 if it is differentiable at every point on 𝑅. 

• Differentiability implies continuity. 

• Directional Derivative w.r.t. 𝒖: (𝐷𝒖𝑓)(𝒑𝟎) = lim
𝑠→0

𝑓(𝒑𝟎+𝑠𝒖)−𝑓(𝒑𝟎)

𝑠
= 𝐴𝒖. 

• (𝐷𝒖𝑓)(𝒑𝟎) = (
(𝐷𝒖𝑓1)(𝒑𝟎)

…
(𝐷𝒖𝑓𝑛)(𝒑𝟎)

). 

• Partial Derivative: Directional derivative w.r.t. standard unit vectors, 
𝜕𝑓

𝜕𝑥𝑗
(𝒑𝟎) = 𝑓𝑥𝑗(𝒑𝟎) = lim

𝑠→0

𝑓(𝒑𝟎+𝑠𝒆𝒋)−𝑓(𝒑𝟎)

𝑠
. 

• (𝐷𝑓)(𝒑𝟎) =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
(𝒑𝟎) ⋯

𝜕𝑓1

𝜕𝑥𝑛
(𝒑𝟎)

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
(𝒑0) ⋯

𝜕𝑓𝑛

𝜕𝑥𝑛
(𝒑0)]

 
 
 

= 𝐽𝑓(𝒑𝟎). 
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• Gradient of Scalar-Valued Function: (Δ𝑓)(𝒑) = (

𝜕𝑓

𝜕𝑥1
(𝒑)
…

𝜕𝑓

𝜕𝑥𝑛
(𝒑)

). This is obviously same as first row of total 

derivative map. Hence, (Δ𝑓)(𝒑) ⋅ 𝒖 = (𝐷𝒖𝑓)(𝒑). 

• Sum Rule, Difference Rule, Scalar Multiplication Rule and Chain Rule apply. 

• 𝑓 is continuously differentiable on 𝑅 if and only if 𝑓 is differentiable on 𝑅 and 𝑓′ is continuous. 

• 𝑓 is continuously differentiable on 𝑅 if and only if all partial derivatives of every component function exist 

and is continuous. 

• 𝑓 is of class 𝐶𝑟 if and only if all partial derivatives of every component function exist and is of class 𝐶𝑟−1. 

• Taylor’s Theorem: Let 𝑅 be an open subset of ℝ𝑚, 𝑓: 𝑅 → ℝ be a scalar-valued function of class 𝐶𝑟+1. Let 

𝒑𝟎 ∈ 𝑹 and suppose 𝛿 ∈ ℝ≥0 such that 𝐵(𝒑𝟎, 𝛿) ⊆ 𝑅 (in domain). Then, ∀𝝃 ∈ ℝ𝑚 with |𝝃| < 𝛿, one has 

𝑓(𝒑𝟎 + 𝝃) = [∑ ∑
1

𝜶!

𝜕𝑑𝑓

𝜕𝑥1
𝛼1…𝜕𝑥𝑚

𝛼𝑚 (𝒑𝟎) ⋅ (𝜉1
𝛼1 …𝜉𝑚

𝛼𝑚) 
𝜶∈ℤ≥0

𝑚

|𝜶|=𝑑

𝑟
𝑑=0 ] + 𝑅(𝝃), where 𝜶 = (

𝛼1
…
𝛼𝑚
), |𝜶| = 𝛼1 +⋯+ 𝛼𝑚, 𝜶! =

𝛼1! … 𝛼𝑚!. Here, ∃𝑐 ∈ (0,1) (so that it is inside the open ball) such that 𝑅(𝝃) = ∑
1

𝛼!

𝜕𝑑𝑓

𝜕𝑥1
𝛼1…𝜕𝑥𝑚

𝛼𝑚 (𝒑𝟎 +
 
𝜶∈ℤ≥0

𝑚

|𝜶|=𝑟+1

𝑐𝝃) ⋅ (𝜉1
𝛼1 …𝜉𝑚

𝛼𝑚). 

o Case 𝑚 = 1: ∃𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑏) = [𝑓(𝑎) + 𝑓′(𝑎)(𝑏 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑏 − 𝑎)2 +⋯+

𝑓(𝑛)(𝑎)

𝑛!
(𝑏 − 𝑎)𝑛] + [

𝑓(𝑛+1)(𝑐)

(𝑛+1)!
(𝑏 − 𝑎)𝑛+1]. 

o Case 𝑚 = 2: ∃𝑐 ∈ (0,1) such that 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) = [𝑓(𝑎, 𝑏) + (ℎ𝑓𝑥 + 𝑘𝑓𝑦)|𝑎,𝑏 +

1

2!
(ℎ2𝑓𝑥𝑥 + 2ℎ𝑘𝑓𝑥𝑦 + 𝑘

2𝑓𝑦𝑦)|𝑎,𝑏 +⋯+
1

𝑛!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛

𝑓|𝑎,𝑏] + [
1

(𝑛+1)!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛+1

𝑓|𝑎+𝑐ℎ,𝑏+𝑐𝑘]. 

o Proof is simple by induction. 

• Linear Approximation: 𝑓(𝒑) ≈ 𝐿(𝒑) = 𝑓(𝒑𝟎) + ∑ 𝑓𝑥𝑘(𝒑𝟎)(𝑝𝑘 − 𝑝0𝑘)
𝑚
𝑘=1 . 

o Error: Let 𝝃 = 𝒑 − 𝒑𝟎, then 𝐸(𝒑) ≤
1

2
𝑀(∑ |𝜉𝑖|

𝑚
𝑖=1

2
), where ∀𝑖, 𝑗 ∈ {1, … ,𝑚}, ∀𝒑 ∈ 𝑅, 𝑓𝑥𝑖𝑥𝑗(𝒑) ≤ 𝑀. 

o Proof is via Taylor’s Theorem (Case 𝑛 = 1). 

 

Integral 

• 𝑓 is Riemann integrable over 𝑋 if and only if 

∃𝑳 ∈ ℝ𝑛 such that lim
||𝑃||→0

∑ 𝑓(𝑡(𝑅))|𝑅|𝑅∈𝑃 = 𝑳.  

• Sum Rule, Difference Rule, Scalar 

Multiplication Rule apply. 

• Domination Rule: ∫  is order-preserving. 

• Additivity Rule: ∫ 𝑓𝑑𝐴
 

𝑅
= ∫ 𝑓𝑑𝐴

 

𝑅1
+ ∫ 𝑓𝑑𝐴

 

𝑅2
 if 𝑅 = 𝑅1 ∪ 𝑅2 and |𝑅1 ∩ 𝑅2| = 0. 

• 𝑓 is Riemann integrable if and only if every component function is Riemann integrable. 

• A function 𝑓 is Riemann integrable if and only if 𝑓 is bounded and 𝐷𝑖𝑠(𝑓) is of measure 0 in ℝ𝑚. 

o Measure 0: ∀𝜖 ≥ 0, ∃rectangles 𝑅1, … , 𝑅𝑛 such that 𝐷𝑖𝑠(𝑓) ⊆ 𝑅1 ∪ …∪ 𝑅𝑛 and |𝑅1| + ⋯+ |𝑅𝑛| < 𝜖. 

o Every continuous function on 𝑿 is Riemann integrable. 

• 𝑅 ⊆ ℝ𝑚 is a “nice” region if 𝑅 us closed, bounded and the set of boundary points is of measure 0.  
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• Fubini’s Theorem: Given 𝑅 is a nice region and 𝑓 is continuous on 𝑅, then ∫ 𝑓(𝑥, 𝑦)𝑑(𝑥, 𝑦)
 

𝑋×𝑌
=

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
 

𝑌
𝑑𝑥

 

𝑋
= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥

 

𝑋
𝑑𝑦

 

𝑌
. 

• Volume: 𝑣𝑜𝑙(𝑅) = ∫ 1𝑑𝒙
 

𝑅
. 

• Average Value: 
∫ 𝑓𝑑𝒙
 
𝑅

∫ 1𝑑𝒙
 
𝑅

. 

• Change of Variable Formula: ∫ 𝑓(𝒙)𝑑𝒙
 

𝑅
= ∫ 𝑓(𝑔(𝒖))|𝐽𝑔(𝒖)|𝑑𝒖

 

𝐺
. 

• Polar Integral: ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

𝑅
= ∫ 𝑓(𝑟 cos 𝜃 , 𝑟 sin 𝜃) 𝑟 𝑑𝑟𝑑𝜃

 

𝐺
. 

• Cylindrical Integral: ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
 

𝑅
=

∫ 𝑓(𝑟 cos 𝜃 , 𝑟 sin 𝜃 , 𝑧) 𝑟 𝑑𝑟𝑑𝜃𝑑𝑧
 

𝐺
. 

• Spherical Integral: ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
 

𝑅
= ∫ 𝑓(𝜌 sin𝜙 cos 𝜃 , 𝜌 sin𝜙 sin 𝜃 , 𝜌 cos 𝜙) 𝜌2 sin𝜙 𝑑𝜌𝑑𝜙𝑑𝜃

 

𝐺
.  

 

 

5. Line Integral 

Line Integral Of Scalar-Valued Function 

• Let 𝐶 be a smooth curve in ℝ𝑛, and 𝒓(𝑡) is a bijective smooth parametrisation of 𝐶. Let 𝑓: 𝐶 → ℝ be a 

scalar-valued function on 𝐶. Then ∫ 𝑓 𝑑𝑠
 

𝐶
= ∫ 𝑓(𝒓(𝑡))|𝒓′(𝑡)|𝑑𝑡

 

𝐼
. 

• Additivity Rule: If a piecewise smooth curve 𝐶 is made up of finite number of smooth curves 𝐶1, 𝐶2, … , 𝐶𝑛, 

then ∫ 𝑓 𝑑𝑠
 

𝐶
= ∫ 𝑓 𝑑𝑠

 

𝐶1
+ ∫ 𝑓 𝑑𝑠

 

𝐶2
+⋯+ ∫ 𝑓 𝑑𝑠

 

𝐶𝑛
. 

 

Vector Field and Gradient 

• A vector field on 𝑋 ⊆ ℝ𝑛 is a vector-valued function 𝑭: 𝑋 → ℝ𝑛. 

• A vector field is continuous/smooth if and only if 𝑭 is continuous/smooth. 

• Gradient: ∇𝑓(𝒑) = (
𝜕𝑓

𝜕𝑥1
(𝒑),

𝜕𝑓

𝜕𝑥2
(𝒑), … ,

𝜕𝑓

𝜕𝑥𝑛
(𝒑)). 𝑓 is a potential function of ∇𝑓. 

• Δ𝑓 is a continuous vector field if and only if 𝑓 is continuously differentiable. 

• Sum Rule, Difference Rule, Constant Multiple Rule, Product Rule and Quotient Rule apply. 

• Conservative fields are gradient fields, ∫ 𝑭 ⋅ 𝑑𝒓
 

𝐶
 is path independent on conservative fields. 

• If 𝑭 is conservative on 𝐷, then ∮ 𝑭 ⋅ 𝑑𝒓
 

𝐶
= 0 around every loop in 𝐷. 

• Component Test for Conservative Fields: If 𝑭 id s gradient vector field, then ∀𝑖, 𝑗 ∈ {1,2, … , 𝑛}, 
𝜕𝐹𝑖

𝜕𝑥𝑗
=

𝜕𝐹𝑗

𝜕𝑥𝑖
 

on 𝐷. If 𝐷 is connected and simply connected, then the converse holds. 

o In ℝ3, let 𝑭 = 𝑀(𝑥, 𝑦, 𝑧)𝒊 + 𝑁(𝑥, 𝑦, 𝑧)𝒋 + 𝑃(𝑥, 𝑦, 𝑧)𝒌 be a field on an open simply connected domain, 

then 𝑭 is conservative if and only if 

{
 
 

 
 
𝜕𝑃

𝜕𝑦
=

𝜕𝑁

𝜕𝑧

𝜕𝑀

𝜕𝑧
=

𝜕𝑃

𝜕𝑥
𝜕𝑁

𝜕𝑥
=

𝜕𝑀

𝜕𝑦

 . 

 

Line Integral Of Vector Field 

• Let 𝐶 be a smooth curve in ℝ𝑛, and 𝒓(𝑡) is a bijective smooth parametrisation of 𝐶. Let 𝑭: 𝐶 → ℝ𝑛 be a 

continuous vector field on 𝐶. Then ∫ 𝑭 ⋅ 𝑑𝒓
 

𝐶
= ∫ 𝑭(𝒓(𝑡)) ⋅ 𝒓′(𝑡)𝑑𝑡

 

𝐼
. 
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o This depends on the chosen 𝒓 up to orientation. 

• Fundamental Theorem of Line Integrals: When 𝐶 is smooth/piecewise smooth, ∫ ∇𝑓 ⋅ 𝑑𝒓
 

𝐶
= 𝑓(𝑩) − 𝑓(𝑨). 

 

 

6. Surface Integral 

Surface Integral of Scalar-Valued Function 

• Let 𝑆 be a smooth surface in ℝ𝑛, and 𝒓(𝑢, 𝑣) is a bijective smooth parametrisation of 𝑆. Let 𝐺: 𝑆 → ℝ be a 

scalar-valued function on 𝑆. Then ∫ 𝐺 𝑑𝜎
 

𝑆
= ∫ 𝐺(𝒓(𝑢, 𝑣))|𝒓𝑢(𝑢, 𝑣) × 𝒓𝑣(𝑢, 𝑣)|𝑑(𝑢, 𝑣)

 

𝑅
. 

o Area of Smooth Surface: ∫ 1 𝑑𝜎
 

𝑆
= ∫ |𝒓𝑢(𝑢, 𝑣) × 𝒓𝑣(𝑢, 𝑣)|𝑑(𝑢, 𝑣)

 

𝑅
. 

• Additivity Rule: If a piecewise smooth surface 𝑆 is made up of finite number of smooth curves 𝑆1, 𝑆2, … , 𝑆𝑛, 

then ∫ 𝑓 𝑑𝑠
 

𝑆
= ∫ 𝑓 𝑑𝑠

 

𝑆1
+ ∫ 𝑓 𝑑𝑠

 

𝑆2
+⋯+ ∫ 𝑓 𝑑𝑠

 

𝑆𝑛
. 

 

Surface Integral of Vector Field 

• Let 𝑆 be a smooth surface in ℝ𝑛, and 𝒓(𝑢, 𝑣) is a bijective smooth parametrisation of 𝑆. Let 𝑭: 𝑆 → ℝ3 be a 

continuous vector field on 𝑆. Then ∫ 𝑭 𝑑𝑺
 

𝑆
= ∫ 𝑭 ⋅ 𝒏 𝑑𝜎

 

𝑆
= ∫ 𝑭(𝒓(𝑢, 𝑣)) ⋅ 𝒓𝑢(𝑢, 𝑣) × 𝒓𝑣(𝑢, 𝑣) 𝑑(𝑢, 𝑣)

 

𝑅
. 

o This depends on the chosen 𝒓 up to orientation. 

Curl and Divergence 

• Let 𝑈 be an open set in ℝ3, 𝑭:𝑈 → ℝ3 be a differentiable vector field. Then the curl of 𝑭 is the vector field 

∇ × 𝑭:𝑈 → ℝ3 given by (∇ × 𝑭)(𝒑) =

(

 
 

𝜕𝑃

𝜕𝑦
(𝒑) −

𝜕𝑁

𝜕𝑧
(𝒑)

𝜕𝑀

𝜕𝑧
(𝒑) −

𝜕𝑃

𝜕𝑥
(𝒑)

𝜕𝑁

𝜕𝑥
(𝒑) −

𝜕𝑀

𝜕𝑦
(𝒑)

)

 
 

. 

o ∇ × 𝑭 =

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 
× (

𝑀
𝑁
𝑃
). 

o ∇ × 𝑭 is continuous vector field if and only if 𝑭 is continuously differentiable. 

o Let 𝑮 = ∇ × 𝑭, then 𝑮 is a curl vector field and 𝑭 is a vector potential of 𝑮.  

• Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply. 

o Product Rule: ∇ × (𝑓𝑭) = 𝑓(∇ × 𝑭) + (∇𝑓) × 𝑭. 

• Given 𝑓 is twice continuously differentiable, ∇ × (∇𝑓) = 𝟎. 

• Stokes’ Theorem: Let 𝑆 be a smooth surface in ℝ3, and 𝒓(𝑢, 𝑣) is a bijective smooth parametrisation of 𝑆. 

Let 𝜕𝑆 be the counter-clockwise boundary of 𝑆. Let 𝑭 be a continuously differentiable vector field defined on 

𝑆,  then ∫ (∇ × 𝑭) ⋅ 𝒏 𝑑𝜎
 

𝑆
= ∮ 𝑭 ⋅ 𝑑𝒓

 

𝜕𝑆
= ∫ 𝑭(𝒓(𝑡)) ⋅ 𝒓′(𝑡)𝑑𝑡

 

𝜕𝑆
. 

o Green’s Theorem: ∮ 𝑭 ⋅ 𝑻 𝑑𝑠
 

𝐶
= ∮ 𝑀 𝑑𝑥 + 𝑁 𝑑𝑦

 

𝐶
= ∬ (

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
) 𝑑𝑥𝑑𝑦

 

𝑅
. 

• Let 𝑈 be an open set in ℝ3, 𝑭:𝑈 → ℝ3 be a differentiable vector field. Then the divergence of 𝑭 is the 

scalar valued function ∇ ⋅ 𝑭:𝑈 → ℝ given by (∇ ⋅ 𝑭)(𝒑) =
𝜕𝐹1

𝜕𝑥1
+⋯+

𝜕𝐹𝑛

𝜕𝑥𝑛
. 
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o ∇ ⋅ 𝑭 =

(

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧)

 
 
⋅ (
𝑀
𝑁
𝑃
). 

o ∇ ⋅ 𝑭 is continuous if 𝑭 is continuously differentiable. 

• Sum Rule, Difference Rule, Constant Multiple Rule and Product Rule apply. 

o Product Rule: ∇ ⋅ (𝑓𝑭) = 𝑓(∇ ⋅ 𝑭) + (∇𝑓) ⋅ 𝑭. 

• Given 𝑭 is twice continuously differentiable, ∇ ⋅ (∇ × 𝑭) = 0. 

• Divergence Theorem: Let 𝐷 be a nice region in ℝ3, whose boundary 𝜕𝐷 is a piecewise smooth surface. 

Let 𝑭:𝐷 → ℝ3 be a continuously differentiable vector field on 𝐷. Then ∫ (∇ ⋅ 𝑭)𝑑𝑉
 

𝐷
= ∮ 𝑭 ⋅ 𝒏 𝑑𝜎

 

𝜕𝐷
.  

 

 

 

7. Application of Multivariable Calculus 

Extreme Value 

• Let 𝑓: 𝑅 → ℝ be a scalar-valued function. If 𝑅 is compact and 𝑓 is continuous, then there exists a global 

maximum value 𝑓(𝒑) such that ∀𝒒 ∈ 𝑅, 𝑓(𝒒) ≤ 𝑓(𝒑). 

• 𝒑 ∈ 𝑅 is a local maximum point for 𝑓 if and only if ∃𝜖 ∈ ℝ≥0 such that ∀𝒒 ∈ 𝑅 with |𝑞 − 𝑝| < 𝜖, one has 

𝑓(𝒒) ≤ 𝑓(𝒑). 

• First Derivative Test: If 𝒑 is a local maximum/minimum point of 𝑓, then (∇𝑓)(𝒑) = (

𝜕𝑓

𝜕𝑥1
(𝒑)
…

𝜕𝑓

𝜕𝑥𝑛
(𝒑)

) = 𝟎. 

• 𝒑 ∈ 𝑅 is a critical point of 𝑓 when all partial derivatives of 𝑓 is 0 (or some does not exist). 

• 𝒑 ∈ 𝑅 is a saddle point if and only if it is a critical point but not a local maximum/minimum point. 

• Second Derivative Test: Assume 𝑓 os twice continuously differentiable. The Hessian of 𝑓 is the matrix-

valued function given by 𝐻𝑓(𝒑) = [
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝒑)]. Suppose 𝒑 is a critical point of 𝑓, then: 

o If 𝐻𝑓(𝒑) is negative definite (all eigenvalues are negative), then 𝒑 is a local maximum point. 

o If 𝐻𝑓(𝒑) is positive definite (all eigenvalues are positive), then 𝒑 is a local minimum point. 

o If 𝐻𝑓(𝒑) is indefinite (some eigenvalues are opposite signed), then 𝒑 is a saddle point. 

o Otherwise, the test is inconclusive. 

o What does this imply in ℝ2? 
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Maxwell’s Equations 
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• Laplacian of Scalar-Valued Function: Divergence of gradient, ∇2𝑓 = ∇ ⋅ (∇𝑓). 

• Laplacian of Vector Field: Gradient of divergence minus curl of curl, ∇2𝑨 = ∇(∇ ⋅ 𝑨) − ∇ × (∇ × 𝑨). 
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