MA2108 Mathematical Analysis I

AY2021/22 Semester 1

CHAPTER 1 – PRELIMINARIES

1.1. Sets and Functions

1.1.9. (*Definition*) Let $f: A \rightarrow B$ be a function from A to B.

- a. The function f is said to be injective if whenever $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.
- b. The function f is said to be surjective if f(A) = B.
- c. If f is both injective and surjective, then f is said to be bijective.

1.1.11. (*Definition*) Let $f: A \to B$ be a bijection of A onto B. Then the inverse function $f^{-1}: B \to A$ is defined such that $f^{-1}(f(x)) = x, \forall x \in A$ and $f(f^{-1}(y)) = y, \forall y \in B$.

1.2. Mathematical Induction

1.2.1. (*Well-Ordering Property of* \mathbb{N}) Every non-empty subset *S* of \mathbb{N} has a least element, i.e. there exists $m \in S$ such that $m \leq k$ for all $k \in S$.

1.3. Finite and Infinite Sets

1.3.8. (*Theorem*) The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

1.3.11. (*Theorem*) The set \mathbb{Q} of all rational numbers is denumerable.

CHAPTER 2 – THE REAL NUMBERS

2.1. The Algebraic and Order Properties of R

2.1.1. (Axioms of the Algebraic Properties of \mathbb{R})

- (A1) (*Commutative Property of Addition*) $\forall a, b \in \mathbb{R} \{a + b = b + a\}$.
- (A2) (Associative Property of Addition) $\forall a, b, c \in \mathbb{R} \{(a + b) + c = a + (b + c)\}.$
- (A3) (*Existence of Additive Identity*) $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} \{0 + a = a + 0 = a\}$.
- (A4) (Existence of Additive Inverse) $\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R} \{a + (-a) = (-a) + a = 0\}.$
- (M1) (*Commutative Property of Multiplication*) $\forall a, b \in \mathbb{R} \{a \cdot b = b \cdot a\}$.
- (M2) (Associative Property of Multiplication) $\forall a, b, c \in \mathbb{R} \{(a \cdot b) \cdot c = a \cdot (b \cdot c)\}$.
- (M3) (*Existence of Multiplicative Identity*) $\exists 1 \in \mathbb{R}, \forall a \in \mathbb{R} \{1 \cdot a = a \cdot 1 = a\}$.
- (M4) (Existence of Multiplicative Inverse) $\forall a \neq 0 \in \mathbb{R}, \exists \frac{1}{a} \in \mathbb{R} \{a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1\}.$
- (D) (Distributive Property of Multiplication over Addition)

 $\forall a, b, c \in \mathbb{R} \{ a \cdot (b+c) = a \cdot b + a \cdot c \text{ and } (b+c) \cdot a = b \cdot a + c \cdot a \}.$

2.1.4. (*Theorem*) There does not exist a rational number r such that $r^2 = 2$.

<u>Proof</u>

Assume $\exists r \in \mathbb{Q} \{r^2 = 2\}$. Then $p, q \in \mathbb{Z}^+ \{(r = \frac{p}{q}) \land (\gcd(p,q) = 1)\}$. Since $r^2 = 2, p^2 = 2q^2$. Hence p is even, let p = 2k where $k \in \mathbb{Z}^+$. Then $p^2 = 4k^2, q^2 = 2k^2$. Hence q is even, which means 2 is a common factor of p and q. This contradicts the assumption that $\gcd(p,q) = 1$, hence the assumption is false.

Hence there does not exist a rational number r such that $r^2 = 2$.

2.1.5. (Axioms of the Order Properties of \mathbb{R}) Assuming $a, b \in \mathbb{R}$:

(a) If a and b are positive, then a + b is positive.

(b) If *a* and *b* are positive, then *ab* is positive.

(c) (The Trichotomy Property) Exactly one of the following properties holds:

a is positive, a = 0, or -a is positive.

2.1.6. (*Definition*) Assuming $a, b \in \mathbb{R}$:

(a) If a - b is positive, then we write a > b or b < a.

(b) If a - b is positive or 0, then we write $a \ge b$ or $b \le a$.

2.1.7. (*Theorem*) Assuming $a, b, c \in \mathbb{R}$: (a) $(a < b) \land (b < c) \Rightarrow (a < c)$. (b) $(a < b) \Rightarrow (a + c < b + c)$. (c) $(a < b) \land (c > 0) \Rightarrow ac < bc$ and $(a < b) \land (c < 0) \Rightarrow ac > bc$.

2.1.8. (*Theorem*) (a) $\forall a \in \mathbb{R} \setminus \{0\} \{a^2 > 0\}.$ (b) 1 > 0.(c) $\forall a \in \mathbb{N} \setminus \{0\} \{a > 0\}.$

<u>Proof</u>

(a) Since a ∈ ℝ\{0}, by The Trichotomy Property, a > 0 or -a > 0. If a > 0, then a² = a ⋅ a > 0. (By Axioms 2.1.5b) If a < 0, then a² = (-a) ⋅ (-a) > 0. (By Axioms 2.1.5b)
(b) Since 1 = 1², 1 > 0. (By Theorem 2.1.8a)

2.1.9. (<i>Theorem</i>) If $a \in \mathbb{R}$ satisfies $\forall \epsilon > 0 \{ 0 \le a < \epsilon \}$, then $a = 0$.
Proof
Suppose $a > 0$.

Choose $\epsilon = \frac{a}{2}$, then $0 < \epsilon < a$, leading to a contradiction. Hence a = 0.

2.1.10. (*Theorem*) If ab > 0, then either a > 0, b > 0 or a < 0, b < 0.

2.1.11. (*Corollary*) If ab < 0, then either a > 0, b < 0 or a < 0, b > 0.

2.2. Absolute Value and the Real Line

2.2.1. (<i>Definition</i>) Suppose $a \in \mathbb{R}$. The absolute value of a is defined by		
(a	(a > 0)	
$ a = \{ 0 \}$	(a = 0).	
(-a)	(<i>a</i> < 0)	

2.2.2. (Theorem of Properties of Absolute Value) (a) $\forall a, b \in \mathbb{R} \{ |ab| = |a| |b| \}$. (b) $\forall a \in \mathbb{R} \{ |a|^2 = a^2 \}$. (c) If $c \ge 0$, then $|a| \le c \Rightarrow -c \le a \le c$. (d) $\forall a \in \mathbb{R} \{ -|a| \le a \le |a| \}$.

2.2.3. (Theorem of Triangle Inequality) $\forall a, b \in \mathbb{R} \{ |a + b| \le |a| + |b| \}$.

2.2.4. (Corollary) (a) $\forall a, b \in \mathbb{R} \{ ||a| - |b|| \le |a - b| \}$. (b) $\forall a, b \in \mathbb{R} \{ |a - b| \le |a| + |b| \}$.

2.2.5. (*Corollary*) $\forall a_1, a_2, \dots, a_n \in \mathbb{R} \{ |a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n| \}.$

2.2.7. (*Definition*) Let $a \in \mathbb{R}$ and $\epsilon > 0$. Then the ϵ -neighbourhood of a is the set $V_{\epsilon}(a) := \{x \in \mathbb{R} : |x - a| < \epsilon\}$.

$$a \xrightarrow{-\epsilon} (a \xrightarrow{\circ} a \xrightarrow{a+\epsilon})$$

2.2.8. (*Theorem*) Let $a \in \mathbb{R}$. If x belongs to $V_{\epsilon}(a)$ for every $\epsilon > 0$, then x = a.

2.3. The Completeness Property of ℝ

2.3.1. (*Definition*) Let S be a non-empty subset of R.
(a) A number u is called an upper bound of S if ∀s ∈ S {s ≤ u}. If such u exists, S is bounded above.

- (b) A number w is called a lower bound of S if $\forall s \in S \{w \le s\}$. If such w exists, S is bounded below.
- (c) A set is bounded if it is both bounded above and bounded below, otherwise it is unbounded.
- 2.3.2. (*Definition*) Let *S* be a non-empty subset of \mathbb{R} .
 - (a) A number u is called a supremum of S if it satisfies the following conditions:
 - (1) u is an upper bound of S;
 - (2) If v is an upper bound of S, then $u \leq v$.
 - (b) A number w is called a infimum of S if it satisfies the following conditions:
 - (1) w is a lower bound of S;
 - (2) If v is a lower bound of S, then $w \ge v$.

2.3.3. (Lemma / Equivalent Definition) Let S be a non-empty subset of \mathbb{R} .

(a) A number u is called a supremum of S if it satisfies the following conditions:

(1) u is an upper bound of S;

(2) If v < u, then $\exists s' \in S \{v < s'\}$.

(b) A number w is called a infimum of S if it satisfies the following conditions:

(1) w is a lower bound of S;

(2) If v > w, then $\exists s' \in S \{v > s'\}$.

2.3.4. (*Lemma*) Let *u* be an upper bound of $S \subset \mathbb{R}$. Then $u = \sup S$ if and only if $\forall \epsilon > 0, \exists S_{\epsilon} \in S \{u - \epsilon < S_{\epsilon}\}.$

2.3.6. (Axioms of Supremum Property of \mathbb{R}) Every non-empty subset of \mathbb{R} that has an upper bound has a supremum.

(Axioms of Infimum Property of \mathbb{R}) Every non-empty subset of \mathbb{R} that has a lower bound has an infimum.

2.4. Applications of the Supremum Property

2.4.3. (*Archimedean Property*) If $x \in \mathbb{R}$, then $\exists n_x \in \mathbb{N} \{x \le n_x\}$.

<u>Proof</u> Suppose $\exists x \in \mathbb{R}, \forall n \in \mathbb{N} \{x > n\}$. Then x is an upper bound of N. By Supremum Property, N has a supremum u. Since $u = \sup \mathbb{N}, \exists n \in \mathbb{N} \{u - 1 < n\}$. (By Lemma 2.3.3a) Then u < n + 1. Since $n + 1 \in \mathbb{N}, u$ is not an upper bound, and therefore not a supremum. Therefore, $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \{x > n\}$.

2.4.4. (Corollary) Let $\overline{S} = \{\frac{1}{n} : n \in \mathbb{N}\}$, then $\inf S = 0$.

2.4.5. (*Corollary*) $\forall \epsilon > 0, \exists n \in \mathbb{N} \{ \frac{1}{n} < \epsilon \}.$

2.4.6. (Corollary) If x > 0, then $\exists n \in \mathbb{N} \{n - 1 < x < n\}$.

2.4.7. (*Theorem*) There exists a unique positive real number b such that $b^2 = 2$.

<u>Proof</u>

1. Existence

- 1.1. Existence of sup *S*, where $S = \{x \in \mathbb{R} : (x > 0) \land (x^2 < 2)\}$
 - 1.1.1. Since $1 \in S, S \neq \emptyset$.
 - 1.1.2. Suppose x > 2, then $x^2 > 4$, hence $x \notin S$.
 - 1.1.3. Hence $(x \in S) \Rightarrow (x \leq 2)$.
 - 1.1.4. Hence 2 is an upper bound of S, S is bounded above.
 - 1.1.5. By Supremum Property, sup S exists.
- 1.2. Existence of positive real number *b* such that $b^2 = 2$
 - 1.2.1. Let $b = \sup S$.
 - 1.2.2. Suppose $b^2 < 2$.
 - 1.2.2.1. Then $\frac{2b+1}{2-b^2} > 0$.
 - 1.2.2.2. By Archimedean Property, $\exists n \in \mathbb{N} \ \left\{ \frac{2b+1}{2-b^2} \leq n \right\}$.
 - 1.2.2.3. $\left(b+\frac{1}{n}\right)^2 = b^2 + \frac{2b}{n} + \frac{1}{n^2} \le b^2 + \frac{2b+1}{n} \le b^2 + 2 b^2 = 2.$ 1.2.2.4. Hence $b + \frac{1}{n} \in S.$

1.2.2.5. Since $b + \frac{1}{n} > b$, this contradicts 1.2.1. Hence 1.2.2 is false. 1.2.3. Suppose $b^2 > 2$.

1.2.3.1. Then $\frac{2b}{b^2-2} > 0$. 1.2.3.2. By Archimedean Property, $\exists n \in \mathbb{N} \{\frac{2b}{b^2-2} \le n\}$. 1.2.3.3. $\left(b - \frac{1}{n}\right)^2 = b^2 - \frac{2b}{n} + \frac{1}{n^2} > b^2 - \frac{2b}{n} \ge b^2 - b^2 + 2 = 2$. 1.2.3.4. Hence $\forall x \in S \{x^2 < 2 < (b - \frac{1}{n})^2\}$. 1.2.3.5. Hence $b - \frac{1}{n}$ is an upper bound of *S*. 1.2.3.6. Since $b - \frac{1}{n} < b$, this contradicts 1.2.1. Hence 1.2.3 is false. 1.2.4. Hence $b^2 = 2$. Such *b* exists.

2. Uniqueness

2.1. Suppose a² = 2.
2.2. Suppose a < sup S.
2.2.1. a² - 2 = a² - (sup S)² = (a + sup S)(a - sup S) < 0.
2.2.2. Hence a² < 2. This contradicts 2.1, hence 2.2 is false.
2.3. Suppose a > sup S.
2.3.1. a² - 2 = a² - (sup S)² = (a + sup S)(a - sup S) > 0.

2.3.2. Hence $a^2 > 2$. This contradicts 2.1, hence 2.3 is false. 2.4. Hence $a = \sup S$. This proves its uniqueness.

2.4.8. (The Density Theorem of \mathbb{Q}) $\forall x, y \in \mathbb{R} \{(x < y) \land (\exists r \in \mathbb{Q} \{x < r < y\})\}.$

2.4.9. (*The Density Theorem of Irrational Numbers*) $\forall x, y \in \mathbb{R} \{(x < y) \land (\exists r \in \mathbb{R} \setminus \mathbb{Q} \{x < r < y\})\}.$

2.5. Intervals

2.5.1. (*Theorem of Nested Interval Property*) If $I_n = [a_n, b_n], n \in \mathbb{N}$ is a nested sequence of close bounded intervals, then $\exists \xi \in \mathbb{R}, \forall n \in \mathbb{N} \{\xi \in I_n\}$.

2.5.2. (*Theorem*) If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of close bounded intervals such that $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, then the number ξ contained in all intervals is unique.

CHAPTER 3 – SEQUENCES AND SERIES

3.1. Sequences and Their Limits

3.1.1. (*Definition*) A sequence in \mathbb{R} is a real-valued function $X: \mathbb{N} \to \mathbb{R}$. The numbers X(n), n = 1, 2, 3, ... are called terms of the sequence.

3.1.3. (*Definition*) A sequence $X = (x_n)$ in \mathbb{R} is said to be convergent to $x \in \mathbb{R}$, or x is said to be a limit of (x_n) if $\forall \epsilon > 0, \exists K = K(\epsilon) \in \mathbb{N} \{ \forall n \ge K(\epsilon) \{ |x_n - x| < \epsilon \} \}$. If such limit exists, X is convergent; otherwise, it is divergent.

3.1.4. (*Theorem*) If (x_n) converges, then it has only one limit.

3.1.5. (*Theorem*) Let $X = (x_n)$ be sequence of real numbers and $x \in \mathbb{R}$, then the following statements are equivalent:

(a) X converges to x.

(b) $\forall \epsilon > 0, \exists K \in \mathbb{N} \{ \forall n \ge K \{ |x_n - x| < \epsilon \} \}.$

- (c) $\forall \epsilon > 0, \exists K \in \mathbb{N} \{ \forall n \ge K \{ x \epsilon < x_n < x + \epsilon \} \}.$
- (d) For every ϵ -neighbourhood $V_{\epsilon}(x)$ of x, there exists a natural number K such that $\forall n \ge K \{x_n \in V_{\epsilon}(x)\}.$

3.2. Limit Theorems

3.2.1. (*Definition*) A sequence $X = (x_n)$ of real numbers is said to be bounded if there exists a real number M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$.

3.2.2. (*Theorem*) A convergent sequence of real numbers is bounded.

3.2.3. (*Theorem*) If $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$ and $c \in \mathbb{R}$, then (a) $\lim_{n \to \infty} (x_n + y_n) = x + y$. (b) $\lim_{n \to \infty} (x_n - y_n) = x - y$. (c) $\lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y$. (d) $\lim_{n \to \infty} c(x_n) = cx$. (e) $\lim_{n \to \infty} (x_n/y_n) = x/y$, provided $\forall n \in \mathbb{N} \{y_n \neq 0\}$ and $y \neq 0$.

3.2.4. (*Theorem*) If $\forall n \in \mathbb{N} \{x_n > 0\}$ and (x_n) converges, then $\lim_{n \to \infty} x_n \ge 0$.

3.2.5. (*Theorem*) If (x_n) and (y_n) are convergent and $\forall n \in \mathbb{N} \{x_n \ge y_n\}$, then $\lim_{n \to \infty} x_n \ge \lim_{n \to \infty} y_n$.

3.2.6. (*Theorem*) If $a, b \in \mathbb{R}$ and $\forall n \in \mathbb{N} \{a \le x_n \le b\}$ and (x_n) is convergent, then $a \le \lim_{n \to \infty} x_n \le b$.

3.2.7. (*Squeeze Theorem*) Suppose that $X = (x_n)$, $Y = (y_n)$, $Z = (z_n)$ are sequences of real numbers such that $\forall n \in \mathbb{N} \{x_n \le y_n \le z_n\}$ and that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, then Y is convergent and $\lim_{n \to \infty} y_n = a$.

3.3. Monotone Sequences

3.3.1. (*Definition*) We say the sequence (x_n) is increasing if $x_1 \le x_2 \le x_3 \le \dots \le x_n \le x_{n+1} \le \dots$.

We say the sequence (x_n) is decreasing if $x_1 \ge x_2 \ge x_3 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$.

We say the sequence (x_n) is monotone if it is either increasing or decreasing.

3.3.2. (Monotone Convergence Theorem) Let (x_n) be a monotone sequence of real numbers. Then (x_n) is convergent if and only if (x_n) is bounded.

Particularly, if (x_n) is bounded and increasing, $\lim_{x\to\infty} x_n = \sup\{x_n : n \in \mathbb{N}\}$. If (x_n) is bounded and decreasing, $\lim_{x\to\infty} x_n = \inf\{x_n : n \in \mathbb{N}\}$.

3.4 Subsequences and the Bolzano-Weierstrass Theorem

3.4.1. (*Definition*) Let $X = (x_n)$ be a sequence of real numbers and let $n_1 < n_2 < \dots < n_k < \dots$ be a strictly increasing sequence of natural numbers. Then the sequence $X' = (x_{n_k})$ given by $(x_{n_1}, x_{n_2}, \dots, x_{n_k}, \dots)$ is a subsequence of X.

3.4.2. (*Theorem*) If (x_n) converges to x, then any subsequence (x_{n_k}) also converges to x.

3.4.5. (*Theorem*) If (x_n) has either of the following properties, then (x_n) is divergent:
(a) (x_n) has two convergent subsequences whose limits are not equal.
(b) (x_n) is unbounded.

3.4.7. (*Theorem*) Every sequence has a monotone subsequence.

3.4.8. (*Bolzano-Weierstrass Theorem*) Every bounded sequence has a convergent subsequence.

<u>3.5. The Cauchy Criterion</u>

3.5.4. (Lemma) A Cauchy sequence of real number is bounded.

3.5.5. (*Theorem*) A sequence of real number is convergent if and only if it is a Cauchy sequence.

3.5.7. (*Definition*) A sequence $X = (x_n)$ is said to be contractive if and only if $\forall n \in \mathbb{N}, \exists 0 < C < 1 \{ |x_{n+2} - x_{n+1}| \leq C |x_{n+1} - x_n| \}$. The number *C* is called the constant of the contractive sequence.

3.5.8. (*Theorem*) Every contractive sequence is a Cauchy sequence and hence is convergent.

3.6. Properly Divergent Sequences

3.6.1. (*Definition*) Let (x_n) be a sequence of real numbers. We say that (x_n) tends to $+\infty$ $(\lim_{n \to \infty} x_n = +\infty)$ if $\forall \alpha \in \mathbb{R}, \exists K = K(\alpha) \in \mathbb{R} \{ \forall n \ge K(\alpha) \{ x_n > \alpha \} \}.$

We say that (x_n) tends to $-\infty (\lim_{n \to \infty} x_n = -\infty)$ if $\forall \beta \in \mathbb{R}, \exists K = K(\beta) \in \mathbb{R} \{ \forall n \ge K(\alpha\beta) \{x_n < \beta\} \}.$

We say that (x_n) is properly divergent if either $\lim_{n \to \infty} x_n = +\infty$ or $\lim_{n \to \infty} x_n = -\infty$.

3.6.2. (*Theorem*) Let (x_n) and (y_n) be two sequences of real numbers and suppose that ∀n ∈ N {x_n ≤ y_n}, then:
(a) If lim x_n = +∞, then lim y_n = +∞.
(b) If lim y_n = -∞, then lim x_n = -∞.

3.6.3. (*Theorem*) If (x_n) is an unbounded increasing sequence, then $\lim_{n \to \infty} x_n = +\infty$. If (x_n) is an unbounded decreasing sequence, then $\lim_{n \to \infty} x_n = -\infty$.

3.7. Introduction to Infinite Series

3.7.1. (*Definition*) Let $X = (x_n)$ be a sequence of real numbers, then the infinite series generated by X is the sequence $S = (s_k)$ defined by:

$$s_1 = x_1$$

$$s_2 = s_1 + x_2$$

$$\dots$$

$$s_k = s_{k-1} + x_k$$

$$\dots$$

The numbers x_n are called the terms of the series and the numbers s_k are called the partial sums of the series.

If $\lim_{n\to\infty} s_n$ exists, we say that *S* is convergent and $\lim_{n\to\infty} s_n$ is called the sum or value of the series; otherwise, *S* is divergent.

Convergence Tests

3.7.3. (*Theorem of the n-th term test*) If the series $\sum x_n$ converges, then $\lim_{n \to \infty} x_n = 0$. Or equivalently, if $\lim_{n \to \infty} x_n \neq 0$, the series $\sum x_n$ diverges.

3.7.4. (*Theorem of Cauchy-criterion test*) The series $\sum x_n$ converges if and only if $\forall \epsilon > 0$, $\exists M = M(\epsilon) \in \mathbb{N} \{ \forall m > n > M(\epsilon) \{ |s_m - s_n| = |x_{n+1} + x_{n+2} + \dots + x_m| < \epsilon \} \}.$

3.7.5. (*Theorem of partial sum bounded test for series with non-negative terms*) Suppose $\forall n \in \mathbb{N} \{x_n \ge 0\}$. Then the series $\sum x_n$ converges if and only if the sequence (s_n) of partial sums is bounded.

3.7.7. (*Comparison Test*) Let (x_n) , (y_n) be real sequences and suppose that for some $K \in \mathbb{N}$, we have $\forall n \ge K \{ 0 \le x_n \le y_n \}$. Then:

(a) The convergence of $\sum y_n$ implies the convergence of $\sum x_n$.

(b) The divergence of $\sum x_n$ implies the divergence of $\sum y_n$.

3.7.8. (*Limit Comparison Test*) Let (x_n) , (y_n) be strictly positive sequences and suppose that the following limit exists:

$$r = \lim_{n \to \infty} \frac{x_n}{y_n}$$

(a) If r > 0, then $\sum x_n$ is convergent if and only if $\sum y_n$ is convergent.

(b) If r = 0 and if $\sum y_n$ is convergent, then $\sum x_n$ is convergent.

CHAPTER 9 – INFINITE SERIES

9.1. Absolute Convergence

9.1.1. (*Definition*) The series $\sum x_n$ is absolutely convergent if the series $\sum |x_n|$ is convergent.

A series is said to be conditionally convergent if it is convergent but it is not absolutely convergent.

9.1.2. (*Theorem*) If a series $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then it is convergent.

9.2. Tests for Absolute Convergence

9.2.1. (*Limit Comparison Test II*) Suppose that (x_n) , (y_n) are non-zero sequences and suppose that the following limits exists:

$$r \coloneqq \lim_{n \to \infty} \left(\frac{|x_n|}{|y_n|} \right)$$

- a. If r > 0, then $\sum x_n$ is absolutely convergent if and only if $\sum y_n$ is absolutely convergent.
- b. If r = 0, then if $\sum y_n$ is absolutely convergent, then $\sum x_n$ is absolutely convergent.

9.2.2. (*Root Test*) Let (x_n) be a sequence.

a. If there exist $r \in \mathbb{R}$ with $0 \le r < 1$ and $K \in \mathbb{N}$ such that $|x_n|^{\frac{1}{n}} \le r$ for $n \ge K$, then the series $\sum x_n$ is absolutely convergent.

b. If there exists $K \in \mathbb{N}$ such that $|x_n|^{\frac{1}{n}} \ge 1$ for $n \ge K$, then the series $\sum x_n$ is divergent.

9.2.3. (*Corollary of another version of root test*) Suppose that the limit $r \coloneqq \lim_{n \to \infty} |x_n|^{\frac{1}{n}}$ exists. Then $\sum x_n$ is absolutely convergent when r < 1 and is divergent when r > 1.

- 9.2.4. (*Ratio Test*) Let (x_n) be a sequence of nonzero real numbers.
 - a. If there exist *r* with 0 < r < 1 and $K \in \mathbb{N}$ such that $\left|\frac{x_{n+1}}{x_n}\right| \le r$ for $n \ge K$, then $\sum x_n$ is absolutely convergent.
 - b. If there exists $K \in \mathbb{N}$ such that $\left|\frac{x_{n+1}}{x_n}\right| \ge 1$ for $n \ge K$, then $\sum x_n$ is divergent.

9.2.5. (*Corollary of another version of ratio test*) Let (x_n) be a sequence of nonzero real numbers and suppose that the limit $r := \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exists. Then $\sum x_n$ is absolutely convergent when r < 1 and is divergent when r > 1.

CHAPTER 4 – LIMITS

4.1. Limits of Functions

4.1.1. (*Definition*) Let A be a subset of \mathbb{R} . A point c is called a cluster point of A if for every $\delta > 0$ there exists at least one point $x \in A$ such that $0 < |x - c| < \delta$, i.e. $(V_{\delta}(c) \setminus \{c\}) \cap A \neq \emptyset$ for any $\delta > 0$.

4.1.2. (*Theorem of alternative definition of cluster points*) A real number c is a cluster point of A if and only if there exists a sequence (a_n) in A such that $\lim a_n = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.

4.1.4. (*Definition*) Let $A \subseteq \mathbb{R}$ and c be a cluster point of A. For a function $f: A \to \mathbb{R}$, a real number L is said to be a limit of f at c if for any given $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$, that is,

 $x \in A \cap (V_{\delta}(c){c}) \Rightarrow f(x) \in V_{\epsilon}(L)$

In this case, we write $\lim_{x \to a} f(x) = L$.

<u>Example</u>

Prove $\lim x^2 = 4$.

For any $\epsilon > 0$ we choose $0 < \delta < \min\{2 - \sqrt{4 - \epsilon}, \sqrt{4 + \epsilon} - 2\}$. Then whenever $0 < |x - 2| < \delta$, we have $x \in (\sqrt{4 - \epsilon}, \sqrt{4 + \epsilon})$ and hence $|x^2 - 4| < \epsilon$. 4.1.5. (*Theorem of uniqueness of limit*) If $f: A \to \mathbb{R}$ and if c is a cluster point of A, then f can have only one limit at c.

4.1.8. (*Sequential Criterion of Limits*) Let $f: A \to \mathbb{R}$ and *a* be a cluster point of *A*. The following statements are equivalent:

- 1. $\lim_{x \to a} f(x) = L.$
- 2. For every sequence (x_n) in A that converges to a such that $x_n \neq a$ for all n, the sequence $(f(x_n))$ converges to L.

4.2. Limit Theorems

4.2.1. (*Definition*) Let $f: A \to \mathbb{R}$ and c be a cluster point of A. We say that f is bounded on a neighbourhood of c if there exists $V_{\delta}(c)$ and a constant M > 0 such that $|f(x)| \le M$ for all $x \in A \cap V_{\delta}(c)$.

4.2.2. (*Theorem*) If $f: A \to \mathbb{R}$ has a limit at a cluster point *c*, then *f* is bounded on some neighbourhood of *c*.

- 4.2.3. (*Theorem*) Suppose that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Let $b \in \mathbb{R}$.
 - a. $\lim_{x \to \infty} (f \pm g)(x) = L \pm M;$
 - b. $\lim_{x \to c} (fg)(x) = LM, \lim_{x \to c} (bf)(x) = bL;$
 - c. If $h(x) \neq 0$ for all $x \in A$ and $\lim_{x \to c} h(x) = H \neq 0$, then $\lim_{x \to c} (\frac{f}{h})(x) = \frac{L}{H}$.

4.2.6. (*Theorem*) If $f(x) \le g(x)$ for all $x \in A$ and both $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ exist, then $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$.

4.2.7. (Squeeze Theorem) Suppose that $f(x) \le g(x) \le h(x)$ for all $x \in A$ and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, then $\lim_{x \to c} g(x) = L$.

4.2.9. (*Theorem*) If $\lim_{x \to c} f(x) > 0$, then there exists $V_{\delta}(c)$ of c such that f(x) > 0 for all $x \in A \cap V_{\delta}(c), x \neq c$.

4.3. Some Extensions of the Limit Concept

4.3.1. (*Definition*) Let c be a cluster point of $A \cap (c, \infty)$. We say that L is the right-hand limit of f at c if for any $\epsilon > 0$, $\exists \delta > 0$ such that $0 < x - c < \delta \Rightarrow |f(x) - L| < \epsilon$. In this case we write $\lim_{x \to c^+} f(x) = L$.

Let *c* be a cluster point of $A \cap (c, \infty)$. We say that *L* is the left-hand limit of *f* at *c* if for any $\epsilon > 0$, $\exists \delta > 0$ such that $0 < c - x < \delta \Rightarrow |f(x) - L| < \epsilon$. In this case we write $\lim_{x \to c^-} f(x) = L$.

4.3.3. (*Theorem*) $\lim_{x \to c} f(x) = L$ exists if and only if both $\lim_{x \to c^+} f(x)$ and $\lim_{x \to c^-} f(x)$ exist and $\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$.

CHAPTER 5 – CONTINUOUS FUNCTIONS

5.1. Continuous Functions

5.1.1. (ϵ - δ Definition of Continuity) Let $A \subset \mathbb{R}$, let $f: A \to \mathbb{R}$ and let $c \in A$. We say that f is continuous at c if given any number $\epsilon > 0$, there exists $\delta > 0$ such that if x is any point of A satisfying $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Equivalently, if c is a cluster point, f(x) is continuous at c if and only if $f(c) = \lim_{x \to a} f(x)$.

5.1.2. (Equivalent Definition of Continuity) Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ and $c \in A$. We say that f is continuous at c if given any ϵ -neighbourhood $V_{\epsilon}(f(c))$ of f(c), there exists a δ -neighbourhood $V_{\delta}(c)$ of c such that if x is any point of $A \cap V_{\delta}(c)$, then f(x) belongs to $V_{\epsilon}(f(c))$, that is $f(A \cap V_{\delta}(c)) \subseteq V_{\epsilon}(f(c))$.

If f fails to be continuous at c, then we say that f is discontinuous at c. If f is continuous at every point in A, then we say that f is continuous on A.

5.1.3. (Sequential Criterion for Continuity) f is continuous at x = a if and only if for every sequence (x_n) in the domain of f such that $x_n \to a$, we have $f(x_n) \to f(a)$.

5.1.4. (*Discontinuity Criterion*) f is discontinuous at x = a if and only if there exists a sequence (x_n) in the domain of f such that $x_n \to a$, but $f(x_n) \neq f(a)$.

5.2. Combinations of Continuous Functions

5.2.1. (*Theorem*) Suppose that f and g are continuous at x = c, then
a. f ± g, f ⋅ g and bf are also continuous at x = c, where b is a constant.
b. If g(c) ≠ 0, then f/g is also continuous at x = c.

5.2.2. (*Theorem*) Suppose that f and g are continuous on A, then a. $f \pm g$, $f \cdot g$ and bf are also continuous on A, where b is a constant. b. If $g(c) \neq 0$, then f/g is also continuous on A.

5.2.6. (*Theorem*) Let $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at c, and g is continuous at b = f(c), then $g \circ f$ is continuous at c.

5.2.7. (*Theorem*) Let $f: A \rightarrow \mathbb{R}$, $g: B \rightarrow \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous on A and g is continuous on B, then $g \circ f$ is continuous on A.

5.3. Continuous Functions on Intervals

5.3.1. (*Definition*) A function $f: A \to \mathbb{R}$ is said to be bounded on A if there exists M > 0 such that $|f(x)| \le M, \forall x \in A$.

5.3.2. (Boundness Theorem) If f is continuous on [a, b], then f is bounded on [a, b].

5.3.3. (*Definition 5.3.3*) We say that f has an absolute maximum on A if there exists $x^* \in A$ such that $f(x^*) \ge f(x), \forall x \in A$. So, in this case, $f(x^*) = \sup f(A) = \max f(A)$.

We say that f has an absolute minimum on A if there exists $x^* \in A$ such that $f(x^*) \le f(x), \forall x \in A$. So, in this case, $f(x^*) = \inf f(A) = \min f(A)$.

5.3.4. (*Maximum-Minimum Theorem*) If f is continuous on [a, b], then f has an absolute maximum and an absolute minimum on [a, b].

5.3.5. (*Location of Roots Theorem*) If f is continuous on [a, b] and f(a)f(b) < 0, then there exists a point c in (a, b) such that f(c) = 0.

5.3.7. (Intermediate Value Theorem) Let I be an interval, f be continuous on I, and $a, b \in I$ with $f(a) \le f(b)$. For any $k \in [f(a), f(b)]$, there exists a point c in I such that f(c) = k.

5.3.10. (*Closed Interval Theorem*) If f is continuous on [a, b], then $f([a, b]) := {f(x) :: x \in [a, b]} = [m, M]$, where $m = \inf f([a, b])$ and $M = \sup f([a, b])$.

5.4. Uniform Continuity

5.4.1. (*Definition*) Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$. We say that f is uniformly continuous on A if for each $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$ such that $\forall x, y \in A, |x - y| < \delta(\epsilon) \Rightarrow |f(x) - f(y)| < \epsilon$.

5.4.2. (Sequential Criterion for Uniform Continuity) The function $f: A \to \mathbb{R}$ is uniformly continuous on A if and only if for any two sequences $(x_n), (y_n)$ in A such that $\lim_{n \to \infty} x_n - y_n = 0$, we have $\lim_{n \to \infty} f(x_n) - f(y_n) = 0$.

5.4.2. (Nonuniform Continuity Criteria) The following statements are equivalent:

- 1. *f* is not uniformly continuous on *A*.
- 2. $\exists \epsilon_0 > 0 \text{ s. } t. \forall \delta > 0, \exists x_\delta, y_\delta \text{ s. } t. |x_\delta y_\delta| < \delta \text{ and } |f(x_\delta) f(y_\delta)| \ge \epsilon_0.$
- 3. $\exists \epsilon_0 > 0, (x_n), (y_n) \text{ s. t. } \lim_{n \to \infty} x_n y_n = 0 \text{ and } |f(x_\delta) f(y_\delta)| \ge \epsilon_0.$

5.4.3. (Uniform Continuity Theorem) If f is continuous on a closed bounded interval [a, b], then it is uniformly continuous on [a, b].

5.4.4. (*Lipschitz Condition*) A function $f: A \to \mathbb{R}$ is said to be Lipschitz function on A if there exists a K > 0 such that $|f(x) - f(y)| \le K|x - y|, \forall x, y \in A$.

5.4.5. (*Theorem*) If $f: A \to \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.

5.4.7. (Theorem of uniformly continuous functions preserve Cauchy sequence) If $f: A \to \mathbb{R}$ is uniformly continuous on A and (x_n) is a Cauchy sequence in A, then $(f(x_n))$ is a Cauchy sequence.

5.4.8. (Continuous Extension Theorem) A function f is uniformly continuous on the interval (a, b) if and only if it can be defined at the endpoints a and b such that the extended function is continuous on [a, b].

5.6. Monotone and Inverse Functions

5.6.1. (*Definition*) The function $f: A \to \mathbb{R}$ is said to be increasing on A if whenever $x_1, x_2 \in A$, $x_1 \leq x_2$, then $f(x_1) \leq f(x_2)$. The function f is said to be strictly increasing if whenever $x_1, x_2 \in A$, $x_1 < x_2$, then $f(x_1) < f(x_2)$.

The function $f: A \to \mathbb{R}$ is said to be decreasing on A if whenever $x_1, x_2 \in A, x_1 \ge x_2$, then $f(x_1) \ge f(x_2)$. The function f is said to be strictly decreasing if whenever $x_1, x_2 \in A$, $x_1 > x_2$, then $f(x_1) > f(x_2)$.

If a function is either increasing or decreasing on A, we say that it is monotone on A. If f is either strictly increasing or strictly decreasing on A, we say that f is strictly monotone on A.

5.6.1. (*Theorem of one-sides limits for monotone functions exist*) Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be increasing on *I*. Suppose that $c \in I$ is not an endpoint of *I*. Then

(i) $\lim_{x \to c^{-}} f(x) = \sup\{f(x) :: x \in I, x < c\}.$ (ii) $\lim_{x \to c^{+}} f(x) = \inf\{f(x) :: x \in I, x > c\}.$

5.6.2. (Corollary) The following statements are equivalent:

- a. f is continuous at c.
- b. $\lim_{x \to c^{-}} f(x) = f(c) = \lim_{x \to c^{+}} f(x).$
- c. $\sup\{f(x) :: x \in I, x < c\} = f(c) = \inf\{f(x) :: x \in I, x > c\}.$

5.6.3. (*Definition*) If $f: I \to \mathbb{R}$ is increasing on *I* and if *c* is not an endpoint of *I*, we define the jump of *f* at *c* to be $j_f(c) \coloneqq \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x) = \inf\{f(x) :: x \in I, x > c\} - \sup\{f(x) :: x \in I, x < c\}.$

5.6.3. (*Theorem*) Let $f: I \to \mathbb{R}$ be increasing on *I*. Then *f* is continuous at *c* if and only if $j_f(c) = 0$.

5.6.4. (*Theorem*) Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be monotone on I. Then the set of points $D \subseteq I$ at which f is discontinuous is a countable set.

5.6.5. (*Continuous Inverse Theorem*) Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be strictly monotone and continuous. Then the inverse function f^{-1} is also strictly monotone and continuous on *J*.

REFERENCES

- 1. Bartle, R. G. & Sherbert, D. R. Introduction to Real Analysis. (Wiley, 2011).
- 2. MA2108 Lecture Notes by Professor An Xinliang.