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CHAPTER 1 – PRELIMINARIES  

1.1. Sets and Functions 

1.1.9. (Definition) Let 𝑓: 𝐴 → 𝐵 be a function from 𝐴 to 𝐵. 
a. The function 𝑓 is said to be injective if whenever 𝑥 ≠ 𝑥 , then 𝑓(𝑥 ) ≠ 𝑓(𝑥 ).  
b. The function 𝑓 is said to be surjective if 𝑓(𝐴) = 𝐵. 
c. If 𝑓 is both injective and surjective, then 𝑓 is said to be bijective. 

 

1.1.11. (Definition) Let 𝑓: 𝐴 → 𝐵 be a bijection of 𝐴 onto 𝐵. Then the inverse function 

𝑓 : 𝐵 → 𝐴 is defined such that 𝑓 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝐴 and 𝑓 𝑓 (𝑦) = 𝑦, ∀𝑦 ∈ 𝐵. 

 

1.2. Mathematical Induction 

1.2.1. (Well-Ordering Property of ℕ) Every non-empty subset 𝑆 of ℕ has a least element, 
i.e. there exists 𝑚 ∈ 𝑆 such that 𝑚 ≤ 𝑘 for all 𝑘 ∈ 𝑆. 

 

1.3. Finite and Infinite Sets 

1.3.8. (Theorem) The set ℕ × ℕ is countably infinite. 

 

1.3.11. (Theorem) The set ℚ of all rational numbers is denumerable. 

 

 

CHAPTER 2 – THE REAL NUMBERS 

2.1. The Algebraic and Order Properties of ℝ 

2.1.1. (Axioms of the Algebraic Properties of ℝ) 
    (A1) (Commutative Property of Addition) ∀𝑎, 𝑏 ∈ ℝ {𝑎 + 𝑏 = 𝑏 + 𝑎}. 

(A2) (Associative Property of Addition) ∀𝑎, 𝑏, 𝑐 ∈ ℝ {(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)}. 
(A3) (Existence of Additive Identity) ∃0 ∈ ℝ, ∀𝑎 ∈ ℝ {0 + 𝑎 = 𝑎 + 0 = 𝑎}. 
(A4) (Existence of Additive Inverse) ∀𝑎 ∈ ℝ, ∃(−𝑎) ∈ ℝ {𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0}. 
(M1) (Commutative Property of Multiplication) ∀𝑎, 𝑏 ∈ ℝ {𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎}. 
(M2) (Associative Property of Multiplication) ∀𝑎, 𝑏, 𝑐 ∈ ℝ {(𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)}. 
(M3) (Existence of Multiplicative Identity) ∃1 ∈ ℝ, ∀𝑎 ∈ ℝ {1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎}. 

(M4) (Existence of Multiplicative Inverse) ∀𝑎 ≠ 0 ∈ ℝ, ∃ ∈ ℝ {𝑎 ⋅ = ⋅ 𝑎 = 1}. 

(D) (Distributive Property of Multiplication over Addition)  
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       ∀𝑎, 𝑏, 𝑐 ∈ ℝ {𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 and (𝑏 + 𝑐) ⋅ 𝑎 = 𝑏 ⋅ 𝑎 + 𝑐 ⋅ 𝑎}.  

 

2.1.4. (Theorem) There does not exist a rational number r such that 𝑟 = 2. 

Proof 
Assume ∃𝑟 ∈ ℚ {𝑟 = 2}. 

Then 𝑝, 𝑞 ∈ ℤ  𝑟 = ∧ (gcd(𝑝, 𝑞) = 1) . 

Since 𝑟 = 2, 𝑝 = 2𝑞 . 
Hence 𝑝 is even, let 𝑝 = 2𝑘 where 𝑘 ∈ ℤ . 
Then 𝑝 = 4𝑘 , 𝑞 = 2𝑘 . 
Hence 𝑞 is even, which means 2 is a common factor of 𝑝 and 𝑞. 
This contradicts the assumption that gcd(𝑝, 𝑞) = 1, hence the assumption is false. 
Hence there does not exist a rational number 𝑟 such that 𝑟 = 2. 
 

2.1.5. (Axioms of the Order Properties of ℝ) Assuming 𝑎, 𝑏 ∈ ℝ: 
(a) If 𝑎 and 𝑏 are positive, then 𝑎 + 𝑏 is positive. 
(b) If 𝑎 and 𝑏 are positive, then 𝑎𝑏 is positive. 
(c) (The Trichotomy Property) Exactly one of the following properties holds: 
    𝑎 is positive, 𝑎 = 0, or −𝑎 is positive. 

 

2.1.6. (Definition) Assuming 𝑎, 𝑏 ∈ ℝ: 
    (a) If 𝑎 − 𝑏 is positive, then we write 𝑎 > 𝑏 or 𝑏 < 𝑎. 
    (b) If 𝑎 − 𝑏 is positive or 0, then we write 𝑎 ≥ 𝑏 or 𝑏 ≤ 𝑎. 

 

2.1.7. (Theorem) Assuming 𝑎, 𝑏, 𝑐 ∈ ℝ: 
    (a) (𝑎 < 𝑏) ∧ (𝑏 < 𝑐) ⇒ (𝑎 < 𝑐). 
    (b) (𝑎 < 𝑏) ⇒ (𝑎 + 𝑐 < 𝑏 + 𝑐). 
    (c) (𝑎 < 𝑏) ∧ (𝑐 > 0) ⇒ 𝑎𝑐 < 𝑏𝑐 and (𝑎 < 𝑏) ∧ (𝑐 < 0) ⇒ 𝑎𝑐 > 𝑏𝑐. 

 

2.1.8. (Theorem) 
(a) ∀𝑎 ∈ ℝ\{0} {𝑎 > 0}. 
(b) 1 > 0. 
(c) ∀𝑎 ∈ ℕ\{0} {𝑎 > 0}. 

Proof 
(a) Since 𝑎 ∈ ℝ\{0}, by The Trichotomy Property, 𝑎 > 0 or −𝑎 > 0. 
 If 𝑎 > 0, then 𝑎 = 𝑎 ⋅ 𝑎 > 0. (By Axioms 2.1.5b) 
 If 𝑎 < 0, then 𝑎 = (−𝑎) ⋅ (−𝑎) > 0. (By Axioms 2.1.5b) 
(b) Since 1 = 1 , 1 > 0. (By Theorem 2.1.8a) 
 

2.1.9. (Theorem) If 𝑎 ∈ ℝ satisfies ∀𝜖 > 0 {0 ≤ 𝑎 < 𝜖}, then 𝑎 = 0. 

Proof 
Suppose 𝑎 > 0. 



Properties of Tian Xiao 

3 
 

Choose 𝜖 = , then 0 < 𝜖 < 𝑎, leading to a contradiction. 

Hence 𝑎 = 0. 
 

2.1.10. (Theorem) If 𝑎𝑏 > 0, then either 𝑎 > 0, 𝑏 > 0 or 𝑎 < 0, 𝑏 < 0. 

 

2.1.11. (Corollary) If 𝑎𝑏 < 0, then either 𝑎 > 0, 𝑏 < 0 or 𝑎 < 0, 𝑏 > 0. 

 

2.2. Absolute Value and the Real Line 

2.2.1. (Definition) Suppose 𝑎 ∈ ℝ. The absolute value of 𝑎 is defined by 

     |𝑎| =
𝑎
0

−𝑎
     

(𝑎 > 0)

(𝑎 = 0)
(𝑎 < 0)

. 

 

2.2.2. (Theorem of Properties of Absolute Value) 
    (a) ∀𝑎, 𝑏 ∈ ℝ {|𝑎𝑏| = |𝑎||𝑏|}. 

(b) ∀𝑎 ∈ ℝ {|𝑎| = 𝑎 }. 
(c) If 𝑐 ≥ 0, then |𝑎| ≤ 𝑐 ⇒ −𝑐 ≤ 𝑎 ≤ 𝑐. 
(d) ∀𝑎 ∈ ℝ {−|𝑎| ≤ 𝑎 ≤ |𝑎|}. 

 

2.2.3. (Theorem of Triangle Inequality) ∀𝑎, 𝑏 ∈ ℝ {|𝑎 + 𝑏| ≤ |𝑎| + |𝑏|}. 

 

2.2.4. (Corollary) 

(a) ∀𝑎, 𝑏 ∈ ℝ { |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|}. 

(b) ∀𝑎, 𝑏 ∈ ℝ {|𝑎 − 𝑏| ≤ |𝑎| + |𝑏|}. 

 

2.2.5. (Corollary) ∀𝑎 , 𝑎 , … , 𝑎 ∈ ℝ {|𝑎 + 𝑎 + ⋯ + 𝑎 | ≤ |𝑎 | + |𝑎 | + ⋯ + |𝑎 |}. 

 

2.2.7. (Definition) Let 𝑎 ∈ ℝ and 𝜖 > 0. Then the 𝜖-neighbourhood of 𝑎 is the set 𝑉 (𝑎) ≔

{𝑥 ∈ ℝ ∶ |𝑥 − 𝑎| < 𝜖}. 

 
 

2.2.8. (Theorem) Let  𝑎 ∈ ℝ. If 𝑥 belongs to 𝑉 (𝑎) for every 𝜖 > 0, then 𝑥 = 𝑎. 

 

2.3. The Completeness Property of ℝ 

2.3.1. (Definition) Let 𝑆 be a non-empty subset of ℝ.  
(a) A number 𝑢 is called an upper bound of 𝑆 if ∀𝑠 ∈ 𝑆 {𝑠 ≤ 𝑢}. If such 𝑢 exists, 𝑆 is 

 bounded above. 



Properties of Tian Xiao 

4 
 

(b) A number 𝑤 is called a lower bound of 𝑆 if ∀𝑠 ∈ 𝑆 {𝑤 ≤ 𝑠}. If such 𝑤 exists, 𝑆 is 
 bounded below. 

(c) A set is bounded if it is both bounded above and bounded below, otherwise it is 
 unbounded. 

 

2.3.2. (Definition) Let 𝑆 be a non-empty subset of ℝ. 
(a) A number 𝑢 is called a supremum of 𝑆 if it satisfies the following conditions: 
 (1) 𝑢 is an upper bound of 𝑆; 
 (2) If 𝑣 is an upper bound of 𝑆, then 𝑢 ≤ 𝑣. 
(b) A number 𝑤 is called a infimum of 𝑆 if it satisfies the following conditions: 
 (1) 𝑤 is a lower bound of 𝑆; 
 (2) If 𝑣 is a lower bound of 𝑆, then 𝑤 ≥ 𝑣. 

 

2.3.3. (Lemma / Equivalent Definition) Let 𝑆 be a non-empty subset of ℝ. 
(a) A number 𝑢 is called a supremum of 𝑆 if it satisfies the following conditions: 
 (1) 𝑢 is an upper bound of 𝑆; 
 (2) If 𝑣 < 𝑢, then ∃𝑠 ∈ 𝑆 {𝑣 < 𝑠′}. 
(b) A number 𝑤 is called a infimum of 𝑆 if it satisfies the following conditions: 
 (1) 𝑤 is a lower bound of 𝑆; 
 (2) If 𝑣 > 𝑤, then ∃𝑠 ∈ 𝑆 {𝑣 > 𝑠′}. 

 

2.3.4. (Lemma) Let 𝑢 be an upper bound of 𝑆 ⊂ ℝ. Then 𝑢 = sup 𝑆 if and only if ∀𝜖 >

0, ∃𝑆 ∈ 𝑆 {𝑢 − 𝜖 < 𝑆 }. 

 

2.3.6. (Axioms of Supremum Property of ℝ) Every non-empty subset of ℝ that has an upper 
bound has a supremum.  
 (Axioms of Infimum Property of ℝ) Every non-empty subset of ℝ that has a lower 
bound has an infimum. 

 

2.4. Applications of the Supremum Property 

2.4.3. (Archimedean Property) If 𝑥 ∈ ℝ, then ∃𝑛 ∈ ℕ {𝑥 ≤ 𝑛 }. 

Proof 
Suppose ∃𝑥 ∈ ℝ, ∀𝑛 ∈ ℕ {𝑥 > 𝑛}. 
Then 𝑥 is an upper bound of ℕ. 
By Supremum Property, ℕ has a supremum 𝑢. 
Since 𝑢 = sup ℕ, ∃𝑛 ∈ ℕ {𝑢 − 1 < 𝑛}. (By Lemma 2.3.3a) 
Then 𝑢 < 𝑛 + 1.  
Since 𝑛 + 1 ∈ ℕ, 𝑢 is not an upper bound, and therefore not a supremum. 
Therefore, ∀𝑥 ∈ ℝ, ∃𝑛 ∈ ℕ {𝑥 > 𝑛}. 
 

2.4.4. (Corollary) Let 𝑆 = { ∶ 𝑛 ∈ ℕ}, then inf 𝑆 = 0. 



Properties of Tian Xiao 

5 
 

 

2.4.5. (Corollary) ∀𝜖 > 0, ∃𝑛 ∈ ℕ { < 𝜖}. 

 

2.4.6. (Corollary) If 𝑥 > 0, then ∃𝑛 ∈ ℕ {𝑛 − 1 < 𝑥 < 𝑛}. 

 

2.4.7. (Theorem) There exists a unique positive real number 𝑏 such that 𝑏 = 2. 

Proof 
1. Existence 
 1.1. Existence of sup 𝑆, where 𝑆 = {𝑥 ∈ ℝ ∶ (𝑥 > 0) ∧ (𝑥 < 2)} 
  1.1.1. Since 1 ∈ 𝑆, 𝑆 ≠ ∅. 
  1.1.2. Suppose 𝑥 > 2, then 𝑥 > 4, hence 𝑥 ∉ 𝑆. 
  1.1.3. Hence (𝑥 ∈ 𝑆) ⇒ (𝑥 ≤ 2). 
  1.1.4. Hence 2 is an upper bound of 𝑆, 𝑆 is bounded above. 
  1.1.5. By Supremum Property, sup 𝑆 exists. 
 1.2. Existence of positive real number 𝑏 such that 𝑏 = 2 
  1.2.1. Let 𝑏 = sup 𝑆. 
  1.2.2. Suppose 𝑏 < 2. 

   1.2.2.1. Then > 0. 

   1.2.2.2. By Archimedean Property, ∃𝑛 ∈ ℕ ≤ 𝑛 . 

   1.2.2.3. 𝑏 + = 𝑏 + + ≤ 𝑏 + ≤ 𝑏 + 2 − 𝑏 = 2. 

   1.2.2.4. Hence 𝑏 + ∈ 𝑆.  

   1.2.2.5. Since 𝑏 + > 𝑏, this contradicts 1.2.1. Hence 1.2.2 is false. 

  1.2.3. Suppose 𝑏 > 2. 

   1.2.3.1. Then > 0. 

   1.2.3.2. By Archimedean Property, ∃𝑛 ∈ ℕ ≤ 𝑛 . 

   1.2.3.3. 𝑏 − = 𝑏 − + > 𝑏 − ≥ 𝑏 − 𝑏 + 2 = 2. 

   1.2.3.4. Hence ∀𝑥 ∈ 𝑆 𝑥 < 2 < 𝑏 − .  

   1.2.3.5. Hence 𝑏 −  is an upper bound of 𝑆. 

   1.2.3.6. Since 𝑏 − < 𝑏, this contradicts 1.2.1. Hence 1.2.3 is false. 

  1.2.4. Hence 𝑏 = 2. Such 𝑏 exists. 
2. Uniqueness 
 2.1. Suppose 𝑎 = 2. 
 2.2. Suppose 𝑎 < sup 𝑆. 
  2.2.1. 𝑎 − 2 = 𝑎 − (sup 𝑆) = (𝑎 + sup 𝑆)(𝑎 − sup 𝑆) < 0. 
  2.2.2. Hence 𝑎 < 2. This contradicts 2.1, hence 2.2 is false. 
 2.3. Suppose 𝑎 > sup 𝑆. 
  2.3.1. 𝑎 − 2 = 𝑎 − (sup 𝑆) = (𝑎 + sup 𝑆)(𝑎 − sup 𝑆) > 0. 
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  2.3.2. Hence 𝑎 > 2. This contradicts 2.1, hence 2.3 is false. 
 2.4. Hence 𝑎 = sup 𝑆. This proves its uniqueness. 
 

2.4.8. (The Density Theorem of  ℚ) ∀𝑥, 𝑦 ∈ ℝ {(𝑥 < 𝑦) ∧ (∃𝑟 ∈ ℚ {𝑥 < 𝑟 < 𝑦})}. 

 

2.4.9. (The Density Theorem of Irrational Numbers) ∀𝑥, 𝑦 ∈ ℝ {(𝑥 < 𝑦) ∧

(∃𝑟 ∈ ℝ\ℚ {𝑥 < 𝑟 < 𝑦})}. 

 

2.5. Intervals 

2.5.1. (Theorem of Nested Interval Property) If 𝐼 = [𝑎 , 𝑏 ], 𝑛 ∈ ℕ is a nested sequence 
of close bounded intervals, then ∃𝜉 ∈ ℝ, ∀𝑛 ∈ ℕ {𝜉 ∈ 𝐼 }.  

 

2.5.2. (Theorem) If 𝐼 = [𝑎 , 𝑏 ], 𝑛 ∈ ℕ is a nested sequence of close bounded intervals 
such that inf{𝑏 − 𝑎 ∶ 𝑛 ∈ ℕ} = 0, then the number 𝜉 contained in all intervals is unique.  

 

 

CHAPTER 3 – SEQUENCES AND SERIES 

3.1. Sequences and Their Limits 

3.1.1. (Definition) A sequence in ℝ is a real-valued function 𝑋: ℕ → ℝ. The numbers 
𝑋(𝑛), 𝑛 = 1,2,3, … are called terms of the sequence. 

 

3.1.3. (Definition) A sequence 𝑋 = (𝑥 ) in ℝ is said to be convergent to 𝑥 ∈ ℝ, or 𝑥 is said 

to be a limit of (𝑥 ) if ∀𝜖 > 0, ∃𝐾 = 𝐾(𝜖) ∈ ℕ ∀𝑛 ≥ 𝐾(𝜖) {|𝑥 − 𝑥| < 𝜖} . If such limit 

exists, 𝑋 is convergent; otherwise, it is divergent. 

 

3.1.4. (Theorem) If (𝑥 ) converges, then it has only one limit. 

 

3.1.5. (Theorem) Let 𝑋 = (𝑥 ) be sequence of real numbers and 𝑥 ∈ ℝ, then the following 
statements are equivalent: 

(a) 𝑋 converges to 𝑥. 

(b) ∀𝜖 > 0, ∃𝐾 ∈ ℕ ∀𝑛 ≥ 𝐾 {|𝑥 − 𝑥| < 𝜖} . 

(c) ∀𝜖 > 0, ∃𝐾 ∈ ℕ ∀𝑛 ≥ 𝐾 {𝑥 − 𝜖 < 𝑥 < 𝑥 + 𝜖} . 

(d) For every 𝜖-neighbourhood 𝑉 (𝑥) of 𝑥, there exists a natural number 𝐾 such that 
 ∀𝑛 ≥ 𝐾 {𝑥 ∈ 𝑉 (𝑥)}. 

 

3.2. Limit Theorems 
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3.2.1. (Definition) A sequence 𝑋 = (𝑥 ) of real numbers is said to be bounded if there 
exists a real number 𝑀 > 0 such that |𝑥 | < 𝑀 for all 𝑛 ∈ ℕ. 

 

3.2.2. (Theorem) A convergent sequence of real numbers is bounded. 

 

3.2.3. (Theorem) If lim
→

𝑥 = 𝑥, lim
→

𝑦 = 𝑦 and 𝑐 ∈ ℝ, then 

    (a) lim
→

(𝑥 + 𝑦 ) = 𝑥 + 𝑦. 

    (b) lim
→

(𝑥 − 𝑦 ) = 𝑥 − 𝑦. 

    (c) lim
→

(𝑥 ⋅ 𝑦 ) = 𝑥 ⋅ 𝑦. 

(d) lim
→

𝑐(𝑥 ) = 𝑐𝑥. 

    (e) lim
→

(𝑥 /𝑦 ) = 𝑥/𝑦, provided ∀𝑛 ∈ ℕ {𝑦 ≠ 0} and 𝑦 ≠ 0. 

 

3.2.4. (Theorem) If ∀𝑛 ∈ ℕ {𝑥 > 0} and (𝑥 ) converges, then lim
→

𝑥 ≥ 0. 

 

3.2.5. (Theorem) If (𝑥 ) and (𝑦 ) are convergent and ∀𝑛 ∈ ℕ {𝑥 ≥ 𝑦 }, then lim
→

𝑥 ≥

lim
→

𝑦 . 

 

3.2.6. (Theorem) If 𝑎, 𝑏 ∈ ℝ and ∀𝑛 ∈ ℕ {𝑎 ≤ 𝑥 ≤ 𝑏} and (𝑥 ) is convergent, then 𝑎 ≤

lim
→

𝑥 ≤ 𝑏. 

 

3.2.7. (Squeeze Theorem) Suppose that 𝑋 = (𝑥 ), 𝑌 = (𝑦 ), 𝑍 = (𝑧 ) are sequences of real 
numbers such that ∀𝑛 ∈ ℕ {𝑥 ≤ 𝑦 ≤ 𝑧 } and that lim

→
𝑥 = lim

→
𝑧 = 𝑎, then 𝑌 is 

convergent and lim
→

𝑦 = 𝑎. 

 

3.3. Monotone Sequences 

3.3.1. (Definition) We say the sequence (𝑥 ) is increasing if 𝑥 ≤ 𝑥 ≤ 𝑥 ≤ ⋯ ≤ 𝑥 ≤

𝑥 ≤ ⋯. 
 
We say the sequence (𝑥 ) is decreasing if 𝑥 ≥ 𝑥 ≥ 𝑥 ≥ ⋯ ≥ 𝑥 ≥ 𝑥 ≥ ⋯. 
 
We say the sequence (𝑥 ) is monotone if it is either increasing or decreasing. 

 

3.3.2. (Monotone Convergence Theorem) Let (𝑥 ) be a monotone sequence of real 
numbers. Then (𝑥 ) is convergent if and only if (𝑥 ) is bounded. 
 
Particularly, if (𝑥 ) is bounded and increasing, lim

→
𝑥 = sup{𝑥 ∶ 𝑛 ∈ ℕ}. 

If (𝑥 ) is bounded and decreasing, lim
→

𝑥 = inf{𝑥 ∶ 𝑛 ∈ ℕ}. 
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3.4 Subsequences and the Bolzano-Weierstrass Theorem 

3.4.1. (Definition) Let 𝑋 = (𝑥 ) be a sequence of real numbers and let 𝑛 < 𝑛 < ⋯ <

𝑛 < ⋯ be a strictly increasing sequence of natural numbers. Then the sequence 𝑋 =

(𝑥 ) given by (𝑥 , 𝑥 , … , 𝑥 , … ) is a subsequence of 𝑋. 

 

3.4.2. (Theorem) If (𝑥 ) converges to 𝑥, then any subsequence (𝑥 ) also converges to 𝑥. 

 

3.4.5. (Theorem) If (𝑥 ) has either of the following properties, then (𝑥 ) is divergent: 
    (a) (𝑥 ) has two convergent subsequences whose limits are not equal. 
    (b) (𝑥 ) is unbounded. 

 

3.4.7. (Theorem) Every sequence has a monotone subsequence. 

 

3.4.8. (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent 
subsequence. 

 

3.5. The Cauchy Criterion 

3.5.1. (Definition) A sequence (𝑥 ) is said to be a Cauchy sequence if ∀𝜖 > 0, ∃𝐻 =

𝐻(𝜖) ∈ ℕ ∀𝑛, 𝑚 ≥ 𝐻 {|𝑥 − 𝑥 | < 𝜖}}. 

 
 

3.5.4. (Lemma) A Cauchy sequence of real number is bounded. 

 

3.5.5. (Theorem) A sequence of real number is convergent if and only if it is a Cauchy 
sequence. 

 

3.5.7. (Definition) A sequence 𝑋 = (𝑥 ) is said to be contractive if and only if ∀𝑛 ∈

ℕ, ∃0 < 𝐶 < 1 {|𝑥 − 𝑥 | ≤ 𝐶|𝑥 − 𝑥 |}. The number 𝐶 is called the constant of 
the contractive sequence. 

 

3.5.8. (Theorem) Every contractive sequence is a Cauchy sequence and hence is 
convergent.  

 

3.6. Properly Divergent Sequences 
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3.6.1. (Definition) Let (𝑥 ) be a sequence of real numbers. We say that (𝑥 ) tends to +∞ 

( lim
→

𝑥 = +∞) if ∀𝛼 ∈ ℝ, ∃𝐾 = 𝐾(𝛼) ∈ ℝ ∀𝑛 ≥ 𝐾(𝛼) {𝑥 > 𝛼} . 

 

We say that (𝑥 ) tends to −∞ ( lim
→

𝑥 = −∞) if ∀𝛽 ∈ ℝ, ∃𝐾 = 𝐾(𝛽) ∈ ℝ ∀𝑛 ≥

𝐾(𝛼𝛽) {𝑥 < 𝛽} . 

 
We say that (𝑥 ) is properly divergent if either lim

→
𝑥 = +∞ or lim

→
𝑥 = −∞. 

 

3.6.2. (Theorem) Let (𝑥 ) and (𝑦 ) be two sequences of real numbers and suppose that 
∀𝑛 ∈ ℕ {𝑥 ≤ 𝑦 }, then: 

(a) If lim
→

𝑥 = +∞, then lim
→

𝑦 = +∞. 

(b) If lim
→

𝑦 = −∞, then lim
→

𝑥 = −∞. 

 

3.6.3. (Theorem) If (𝑥 ) is an unbounded increasing sequence, then lim
→

𝑥 = +∞. 

If (𝑥 ) is an unbounded decreasing sequence, then lim
→

𝑥 = −∞. 

 

3.7. Introduction to Infinite Series 

3.7.1. (Definition) Let 𝑋 = (𝑥 ) be a sequence of real numbers, then the infinite series 
generated by 𝑋 is the sequence 𝑆 = (𝑠 ) defined by: 

𝑠 = 𝑥  
𝑠 = 𝑠 + 𝑥  

… 
𝑠 = 𝑠 + 𝑥  

… 
The numbers 𝑥  are called the terms of the series and the numbers 𝑠  are called the partial 
sums of the series.  
 
If lim

→
𝑠  exists, we say that 𝑆 is convergent and lim

→
𝑠  is called the sum or value of the 

series; otherwise, 𝑆 is divergent. 

 
Convergence Tests 
 

3.7.3. (Theorem of the 𝑛-th term test) If the series ∑ 𝑥  converges, then  lim
→

𝑥 = 0. Or 

equivalently, if lim
→

𝑥 ≠ 0, the series ∑ 𝑥  diverges. 

 

3.7.4. (Theorem of Cauchy-criterion test) The series ∑ 𝑥  converges if and only if ∀𝜖 >

0, ∃𝑀 = 𝑀(𝜖) ∈ ℕ ∀𝑚 > 𝑛 > 𝑀(𝜖) {|𝑠 − 𝑠 | = |𝑥 + 𝑥 + ⋯ + 𝑥 | < 𝜖} . 
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3.7.5. (Theorem of partial sum bounded test for series with non-negative terms) Suppose 
∀𝑛 ∈ ℕ {𝑥 ≥ 0}. Then the series ∑ 𝑥  converges if and only if the sequence (𝑠 ) of 
partial sums is bounded. 

 

3.7.7. (Comparison Test) Let (𝑥 ), (𝑦 ) be real sequences and suppose that for some 𝐾 ∈

ℕ, we have ∀𝑛 ≥ 𝐾 {0 ≤ 𝑥 ≤ 𝑦 }. Then: 
(a) The convergence of ∑ 𝑦  implies the convergence of ∑ 𝑥 . 
(b) The divergence of ∑ 𝑥  implies the divergence of ∑ 𝑦 . 

 

3.7.8. (Limit Comparison Test) Let (𝑥 ), (𝑦 ) be strictly positive sequences and suppose 
that the following limit exists: 

𝑟 = lim
→

𝑥

𝑦
 

    (a) If 𝑟 > 0, then ∑ 𝑥  is convergent if and only if ∑ 𝑦  is convergent. 
    (b) If 𝑟 = 0 and if ∑ 𝑦  is convergent, then ∑ 𝑥  is convergent. 

 

 

CHAPTER 9 – INFINITE SERIES 

9.1. Absolute Convergence 

9.1.1. (Definition) The series ∑ 𝑥  is absolutely convergent if the series ∑|𝑥 | is 
convergent.  
 
A series is said to be conditionally convergent if it is convergent but it is not absolutely 
convergent. 

 

9.1.2. (Theorem) If a series ∑ 𝑥  is absolutely convergent, then it is convergent. 

 

9.2. Tests for Absolute Convergence 

9.2.1. (Limit Comparison Test II) Suppose that (𝑥 ), (𝑦 ) are non-zero sequences and 
suppose that the following limits exists:  

𝑟 ≔ lim
→

(
|𝑥 |

|𝑦 |
) 

a. If 𝑟 > 0, then ∑ 𝑥  is absolutely convergent if and only if ∑ 𝑦  ia absolutely 
convergent. 

b. If 𝑟 = 0, then if ∑ 𝑦  is absolutely convergent, then ∑ 𝑥  is absolutely convergent. 

 

9.2.2. (Root Test) Let (𝑥 ) be a sequence. 

a. If there exist 𝑟 ∈ ℝ with 0 ≤ 𝑟 < 1 and 𝐾 ∈ ℕ such that |𝑥 | ≤ 𝑟 for 𝑛 ≥ 𝐾, then 
the series ∑ 𝑥  is absolutely convergent. 
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b. If there exists 𝐾 ∈ ℕ such that |𝑥 | ≥ 1 for 𝑛 ≥ 𝐾, then the series ∑ 𝑥  is 
divergent. 

 

9.2.3. (Corollary of another version of root test) Suppose that the limit 𝑟 ≔ lim
→

|𝑥 |  

exists. Then ∑ 𝑥  is absolutely convergent when 𝑟 < 1 and is divergent when 𝑟 > 1. 

 

9.2.4. (Ratio Test) Let (𝑥 ) be a sequence of nonzero real numbers. 

a. If there exist 𝑟 with 0 < 𝑟 < 1 and 𝐾 ∈ ℕ such that ≤ 𝑟 for 𝑛 ≥ 𝐾, then 

∑ 𝑥  is absolutely convergent. 

b. If there exists 𝐾 ∈ ℕ such that ≥ 1 for 𝑛 ≥ 𝐾, then ∑ 𝑥  is divergent. 

 

9.2.5. (Corollary of another version of ratio test) Let (𝑥 ) be a sequence of nonzero real 

numbers and suppose that the limit 𝑟 ≔ lim
→

 exists. Then ∑ 𝑥  is absolutely 

convergent when 𝑟 < 1 and is divergent when 𝑟 > 1. 

 

 

CHAPTER 4 – LIMITS 

4.1. Limits of Functions 

4.1.1. (Definition) Let 𝐴 be a subset of ℝ. A point 𝑐 is called a cluster point of 𝐴 if for 
every 𝛿 > 0 there exists at least one point 𝑥 ∈ 𝐴 such that 0 < |𝑥 − 𝑐| < 𝛿, i.e. 
(𝑉 (𝑐)\{𝑐}) ∩ 𝐴 ≠ ∅ for any 𝛿 > 0. 

 

4.1.2. (Theorem of alternative definition of cluster points) A real number 𝑐 is a cluster 
point of 𝐴 if and only if there exists a sequence (𝑎 ) in 𝐴 such that lim 𝑎 = 𝑐 and 𝑎 ≠ 𝑐 
for all 𝑛 ∈ ℕ. 

 

4.1.4. (Definition) Let 𝐴 ⊆ ℝ and 𝑐 be a cluster point of 𝐴. For a function 𝑓: 𝐴 → ℝ, a real 
number 𝐿 is said to be a limit of 𝑓 at 𝑐 if for any given 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖) > 0 
such that if 𝑥 ∈ 𝐴 and 0 < |𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝐿| < 𝜖, that is, 

𝑥 ∈ 𝐴 ∩ (𝑉_𝛿 (𝑐){𝑐}) ⇒ 𝑓(𝑥) ∈ 𝑉 (𝐿) 
In this case, we write lim

→
𝑓(𝑥) = 𝐿. 

Example 
Prove lim

→
𝑥 = 4. 

For any 𝜖 > 0 we choose 0 < 𝛿 < min{2 − √4 − 𝜖, √4 + 𝜖 − 2}. 

Then whenever 0 < |𝑥 − 2| < 𝛿, we have 𝑥 ∈ (√4 − 𝜖, √4 + 𝜖) and hence |𝑥 − 4| < 𝜖. 
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4.1.5. (Theorem of uniqueness of limit) If 𝑓: 𝐴 → ℝ and if 𝑐 is a cluster point of 𝐴, then 𝑓 
can have only one limit at 𝑐. 

 

4.1.8. (Sequential Criterion of Limits) Let 𝑓: 𝐴 → ℝ and 𝑎 be a cluster point of 𝐴. The 
following statements are equivalent: 

1. lim
→

𝑓(𝑥) = 𝐿. 

2. For every sequence (𝑥 ) in 𝐴 that converges to 𝑎 such that 𝑥 ≠ 𝑎 for all 𝑛, the 
sequence (𝑓(𝑥 )) converges to 𝐿. 

 

4.2. Limit Theorems 

4.2.1. (Definition) Let 𝑓: 𝐴 → ℝ and 𝑐 be a cluster point of 𝐴. We say that 𝑓 is bounded on 
a neighbourhood of 𝑐 if there exists 𝑉 (𝑐) and a constant 𝑀 > 0 such that |𝑓(𝑥)| ≤ 𝑀 for 
all 𝑥 ∈ 𝐴 ∩ 𝑉 (𝑐).  

 

4.2.2. (Theorem) If 𝑓: 𝐴 → ℝ has a limit at a cluster point 𝑐, then 𝑓 is bounded on some 
neighbourhood of 𝑐. 

 

4.2.3. (Theorem) Suppose that lim
→

𝑓(𝑥) = 𝐿 and lim
→

𝑔(𝑥) = 𝑀. Let 𝑏 ∈ ℝ. 

a. lim
→

(𝑓 ± 𝑔)(𝑥) = 𝐿 ± 𝑀; 

b. lim
→

(𝑓𝑔)(𝑥) = 𝐿𝑀, lim
→

(𝑏𝑓)(𝑥) = 𝑏𝐿; 

c. If ℎ(𝑥) ≠ 0 for all 𝑥 ∈ 𝐴 and lim
→

ℎ(𝑥) = 𝐻 ≠ 0, then lim
→

( )(𝑥) = . 

 

4.2.6. (Theorem) If 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝐴 and both lim
→

𝑓(𝑥) and lim
→

𝑔(𝑥) exist, then 

lim
→

𝑓(𝑥) ≤ lim
→

𝑔(𝑥). 

 

4.2.7. (Squeeze Theorem) Suppose that 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ 𝐴 and lim
→

𝑓(𝑥) =

lim
→

ℎ(𝑥) = 𝐿, then lim
→

𝑔(𝑥) = 𝐿. 

 

4.2.9. (Theorem) If lim
→

𝑓(𝑥) > 0, then there exists 𝑉 (𝑐) of 𝑐 such that 𝑓(𝑥) > 0 for all 

𝑥 ∈ 𝐴 ∩ 𝑉 (𝑐), 𝑥 ≠ 𝑐. 

 

4.3. Some Extensions of the Limit Concept 

4.3.1. (Definition) Let 𝑐 be a cluster point of 𝐴 ∩ (𝑐, ∞). We say that 𝐿 is the right-hand 
limit of 𝑓 at 𝑐 if for any 𝜖 > 0, ∃𝛿 > 0 such that 0 < 𝑥 − 𝑐 < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖. In this 
case we write lim

→
𝑓(𝑥) = 𝐿. 
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Let 𝑐 be a cluster point of 𝐴 ∩ (𝑐, ∞). We say that 𝐿 is the left-hand limit of 𝑓 at 𝑐 if for 
any 𝜖 > 0, ∃𝛿 > 0 such that 0 < 𝑐 − 𝑥 < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜖. In this case we write 
lim
→

𝑓(𝑥) = 𝐿. 

 

4.3.3. (Theorem) lim
→

𝑓(𝑥) = 𝐿 exists if and only if both lim
→

𝑓(𝑥) and lim
→

𝑓(𝑥) exist and 

lim
→

𝑓(𝑥) = lim
→

𝑓(𝑥) = 𝐿. 

 

 

CHAPTER 5 – CONTINUOUS FUNCTIONS 

5.1. Continuous Functions 

5.1.1. (𝜖-𝛿 Definition of Continuity) Let 𝐴 ⊂ ℝ, let 𝑓: 𝐴 → ℝ and let 𝑐 ∈ 𝐴. We say that 𝑓 
is continuous at 𝑐 if given any number 𝜖 > 0, there exists 𝛿 > 0 such that if 𝑥 is any point 
of 𝐴 satisfying |𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑐)| < 𝜖. 
 
Equivalently, if 𝑐 is a cluster point, 𝑓(𝑥) is continuous at 𝑐 if and only if 𝑓(𝑐) = lim

→
𝑓(𝑥). 

 

5.1.2. (Equivalent Definition of Continuity) Let 𝐴 ⊂ ℝ, 𝑓: 𝐴 → ℝ and 𝑐 ∈ 𝐴. We say that 𝑓 
is continuous at 𝑐 if given any 𝜖-neighbourhood 𝑉 (𝑓(𝑐)) of 𝑓(𝑐), there exists a 𝛿-
neighbourhood 𝑉 (𝑐) of 𝑐 such that if 𝑥 is any point of 𝐴 ∩ 𝑉 (𝑐), then 𝑓(𝑥) belongs to 

𝑉 (𝑓(𝑐)), that is 𝑓 𝐴 ∩ 𝑉 (𝑐) ⊆ 𝑉 (𝑓(𝑐)). 

 
If 𝑓 fails to be continuous at 𝑐, then we say that 𝑓 is discontinuous at 𝑐. 
If 𝑓 is continuous at every point in 𝐴, then we say that 𝑓 is continuous on 𝐴. 

 

5.1.3. (Sequential Criterion for Continuity) 𝑓 is continuous at 𝑥 = 𝑎 if and only if for 
every sequence (𝑥 ) in the domain of 𝑓 such that 𝑥 → 𝑎, we have 𝑓(𝑥 ) → 𝑓(𝑎). 

 

5.1.4. (Discontinuity Criterion) 𝑓 is discontinuous at 𝑥 = 𝑎 if and only if there exists a 
sequence (𝑥 ) in the domain of 𝑓 such that 𝑥 → 𝑎, but 𝑓(𝑥 ) ↛ 𝑓(𝑎). 

 

5.2. Combinations of Continuous Functions 

5.2.1. (Theorem) Suppose that 𝑓 and 𝑔 are continuous at 𝑥 = 𝑐, then 
a. 𝑓 ± 𝑔, 𝑓 ⋅ 𝑔 and 𝑏𝑓 are also continuous at 𝑥 = 𝑐, where 𝑏 is a constant. 
b. If 𝑔(𝑐) ≠ 0, then 𝑓/𝑔 is also continuous at 𝑥 = 𝑐. 

 

5.2.2. (Theorem) Suppose that 𝑓 and 𝑔 are continuous on 𝐴, then 
a. 𝑓 ± 𝑔, 𝑓 ⋅ 𝑔 and 𝑏𝑓 are also continuous on 𝐴, where 𝑏 is a constant. 



Properties of Tian Xiao 

14 
 

b. If 𝑔(𝑐) ≠ 0, then 𝑓/𝑔 is also continuous on 𝐴. 

 

5.2.6. (Theorem) Let 𝑓: 𝐴 → ℝ, 𝑔: 𝐵 → ℝ and 𝑓(𝐴) ⊆ 𝐵. If 𝑓 is continuous at 𝑐, and 𝑔 is 
continuous at 𝑏 = 𝑓(𝑐), then 𝑔 ∘ 𝑓 is continuous at 𝑐. 

 

5.2.7. (Theorem) Let 𝑓: 𝐴−> ℝ, 𝑔: 𝐵 → ℝ and 𝑓(𝐴) ⊆ 𝐵. If 𝑓 is continuous on 𝐴 and 𝑔 is 
continuous on 𝐵, then 𝑔 ∘ 𝑓 is continuous on 𝐴. 

 

5.3. Continuous Functions on Intervals 

5.3.1. (Definition) A function 𝑓: 𝐴 → ℝ is said to be bounded on 𝐴 if there exists 𝑀 > 0 
such that |𝑓(𝑥)| ≤ 𝑀, ∀𝑥 ∈ 𝐴. 

 

5.3.2. (Boundness Theorem) If 𝑓 is continuous on [𝑎, 𝑏], then 𝑓 is bounded on [𝑎, 𝑏]. 

 

5.3.3. (Definition 5.3.3) We say that 𝑓 has an absolute maximum on 𝐴 if there exists 𝑥∗ ∈

𝐴 such that 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 ∈ 𝐴. So, in this case, 𝑓(𝑥∗) = sup 𝑓(𝐴) = max 𝑓(𝐴). 
 
We say that 𝑓 has an absolute minimum on 𝐴 if there exists 𝑥∗ ∈ 𝐴 such that 𝑓(𝑥∗) ≤

𝑓(𝑥), ∀𝑥 ∈ 𝐴. So, in this case, 𝑓(𝑥∗) = inf 𝑓(𝐴) = min 𝑓(𝐴). 

 

5.3.4. (Maximum-Minimum Theorem) If 𝑓 is continuous on [𝑎, 𝑏], then 𝑓 has an absolute 
maximum and an absolute minimum on [𝑎, 𝑏]. 

 

5.3.5. (Location of Roots Theorem) If 𝑓 is continuous on [𝑎, 𝑏] and 𝑓(𝑎)𝑓(𝑏) < 0, then 
there exists a point 𝑐 in (𝑎, 𝑏) such that 𝑓(𝑐) = 0. 

 

5.3.7. (Intermediate Value Theorem) Let 𝐼 be an interval, 𝑓 be continuous on 𝐼, and 𝑎, 𝑏 ∈

𝐼 with 𝑓(𝑎) ≤ 𝑓(𝑏). For any 𝑘 ∈ [𝑓(𝑎), 𝑓(𝑏)], there exists a point 𝑐 in 𝐼 such that 𝑓(𝑐) =

𝑘.  

 

5.3.10. (Closed Interval Theorem) If 𝑓 is continuous on [𝑎, 𝑏], then 𝑓([𝑎, 𝑏]) ≔

{𝑓(𝑥) ∷ 𝑥 ∈ [𝑎, 𝑏]} = [𝑚, 𝑀], where 𝑚 = inf 𝑓([𝑎, 𝑏]) and 𝑀 = sup 𝑓([𝑎, 𝑏]). 

 

5.4. Uniform Continuity 

5.4.1. (Definition) Let 𝐴 ⊂ ℝ, 𝑓: 𝐴 → ℝ. We say that 𝑓 is uniformly continuous on 𝐴 if for 
each 𝜖 > 0, there exists a 𝛿(𝜖) > 0 such that ∀𝑥, 𝑦 ∈ 𝐴, |𝑥 − 𝑦| < 𝛿(𝜖) ⇒

|𝑓(𝑥) − 𝑓(𝑦)| < 𝜖. 
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5.4.2. (Sequential Criterion for Uniform Continuity) The function 𝑓: 𝐴 → ℝ is uniformly 
continuous on 𝐴 if and only if for any two sequences (𝑥 ), (𝑦 ) in 𝐴 such that 
lim
→

𝑥 − 𝑦 = 0, we have lim
→

𝑓(𝑥 ) − 𝑓(𝑦 ) = 0. 

 

5.4.2. (Nonuniform Continuity Criteria) The following statements are equivalent: 
1. 𝑓 is not uniformly continuous on 𝐴. 
2. ∃𝜖 > 0 𝑠. 𝑡. ∀𝛿 > 0, ∃𝑥 , 𝑦  𝑠. 𝑡. |𝑥 − 𝑦 | < 𝛿 and |𝑓(𝑥 ) − 𝑓(𝑦 )| ≥ 𝜖 . 
3. ∃𝜖 > 0, (𝑥 ), (𝑦 ) 𝑠. 𝑡. lim

→
𝑥 − 𝑦 = 0 and |𝑓(𝑥 ) − 𝑓(𝑦 )| ≥ 𝜖 .  

 

5.4.3. (Uniform Continuity Theorem) If 𝑓 is continuous on a closed bounded interval [𝑎, 𝑏], 
then it is uniformly continuous on [𝑎, 𝑏]. 

 

5.4.4. (Lipschitz Condition) A function 𝑓: 𝐴 → ℝ is said to be Lipschitz function on 𝐴 if 
there exists a 𝐾 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐾|𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ 𝐴. 

 

5.4.5. (Theorem) If 𝑓: 𝐴 → ℝ is a Lipschitz function, then 𝑓 is uniformly continuous on 𝐴. 

 

5.4.7. (Theorem of uniformly continuous functions preserve Cauchy sequence) If 𝑓: 𝐴 → ℝ 
is uniformly continuous on 𝐴 and (𝑥 ) is a Cauchy sequence in 𝐴, then (𝑓(𝑥 )) is a 
Cauchy sequence. 

 

5.4.8. (Continuous Extension Theorem) A function 𝑓 is uniformly continuous on the 
interval (𝑎, 𝑏) if and only if it can be defined at the endpoints 𝑎 and 𝑏 such that the 
extended function is continuous on [𝑎, 𝑏]. 

 

5.6. Monotone and Inverse Functions 

5.6.1. (Definition) The function 𝑓: 𝐴 → ℝ is said to be increasing on 𝐴 if whenever 𝑥 , 𝑥 ∈

𝐴, 𝑥 ≤ 𝑥 , then 𝑓(𝑥 ) ≤ 𝑓(𝑥 ). The function 𝑓 is said to be strictly increasing if 
whenever 𝑥 , 𝑥 ∈ 𝐴, 𝑥 < 𝑥 , then 𝑓(𝑥 ) < 𝑓(𝑥 ). 
 
The function 𝑓: 𝐴 → ℝ is said to be decreasing on 𝐴 if whenever 𝑥 , 𝑥 ∈ 𝐴, 𝑥 ≥ 𝑥 , then 
𝑓(𝑥 ) ≥ 𝑓(𝑥 ). The function 𝑓 is said to be strictly decreasing if whenever 𝑥 , 𝑥 ∈ 𝐴, 
𝑥 > 𝑥 , then 𝑓(𝑥 ) > 𝑓(𝑥 ). 
 
If a function is either increasing or decreasing on 𝐴, we say that it is monotone on 𝐴. If 𝑓 is 
either strictly increasing or strictly decreasing on 𝐴, we say that 𝑓 is strictly monotone on 
𝐴. 

 

5.6.1. (Theorem of one-sides limits for monotone functions exist) Let 𝐼 ⊂ ℝ be an interval 
and let 𝑓: 𝐼 → ℝ be increasing on 𝐼. Suppose that 𝑐 ∈ 𝐼 is not an endpoint of 𝐼. Then 
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(i) lim
→

𝑓(𝑥) = sup{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 < 𝑐}. 

(ii) lim
→

𝑓(𝑥) = inf{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 > 𝑐}. 

 

5.6.2. (Corollary) The following statements are equivalent: 
a. 𝑓 is continuous at 𝑐. 
b. lim

→
𝑓(𝑥) = 𝑓(𝑐) = lim

→
𝑓(𝑥). 

c. sup{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 < 𝑐} = 𝑓(𝑐) = inf{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 > 𝑐}. 

 

5.6.3. (Definition) If 𝑓: 𝐼 → ℝ is increasing on 𝐼 and if 𝑐 is not an endpoint of 𝐼, we define 
the jump of 𝑓 at 𝑐 to be 𝑗 (𝑐) ≔ lim

→
𝑓(𝑥) − lim

→
𝑓(𝑥) = inf{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 > 𝑐} −

sup{𝑓(𝑥) ∷ 𝑥 ∈ 𝐼, 𝑥 < 𝑐}. 

 

5.6.3. (Theorem) Let 𝑓: 𝐼 → ℝ be increasing on 𝐼. Then 𝑓 is continuous at 𝑐 if and only if 
𝑗 (𝑐) = 0. 

 

5.6.4. (Theorem) Let 𝐼 ⊆ ℝ be an interval and let 𝑓: 𝐼 → ℝ be monotone on 𝐼. Then the set 
of points 𝐷 ⊆ 𝐼 at which 𝑓 is discontinuous is a countable set. 

 

5.6.5. (Continuous Inverse Theorem) Let 𝐼 ⊂ ℝ be an interval and 𝑓: 𝐼 → ℝ be strictly 
monotone and continuous. Then the inverse function 𝑓  is also strictly monotone and 
continuous on 𝐽. 
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