MA2108 Mathematical Analysis I

AY2021/22 Semester 1

CHAPTER 1 - PRELIMINARIES

1.1. Sets and Functions

1.1.9. (Definition) Let $f: A \rightarrow B$ be a function from A to B.
a. The function f is said to be injective if whenever $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
b. The function f is said to be surjective if $f(A)=B$.
c. If f is both injective and surjective, then f is said to be bijective.
1.1.11. (Definition) Let $f: A \rightarrow B$ be a bijection of A onto B. Then the inverse function $f^{-1}: B \rightarrow A$ is defined such that $f^{-1}(f(x))=x, \forall x \in A$ and $f\left(f^{-1}(y)\right)=y, \forall y \in B$.

1.2. Mathematical Induction

1.2.1. (Well-Ordering Property of \mathbb{N}) Every non-empty subset S of \mathbb{N} has a least element, i.e. there exists $m \in S$ such that $m \leq k$ for all $k \in S$.

1.3. Finite and Infinite Sets

1.3.8. (Theorem) The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.
1.3.11. (Theorem) The set \mathbb{Q} of all rational numbers is denumerable.

CHAPTER 2 - THE REAL NUMBERS

2.1. The Algebraic and Order Properties of \mathbb{R}

2.1.1. (Axioms of the Algebraic Properties of \mathbb{R})
(A1) (Commutative Property of Addition) $\forall a, b \in \mathbb{R}\{a+b=b+a\}$.
(A2) (Associative Property of Addition) $\forall a, b, c \in \mathbb{R}\{(a+b)+c=a+(b+c)\}$.
(A3) (Existence of Additive Identity) $\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R}\{0+a=a+0=a\}$.
(A4) (Existence of Additive Inverse) $\forall a \in \mathbb{R}, \exists(-a) \in \mathbb{R}\{a+(-a)=(-a)+a=0\}$.
(M1) (Commutative Property of Multiplication) $\forall a, b \in \mathbb{R}\{a \cdot b=b \cdot a\}$.
(M2) (Associative Property of Multiplication) $\forall a, b, c \in \mathbb{R}\{(a \cdot b) \cdot c=a \cdot(b \cdot c)\}$.
(M3) (Existence of Multiplicative Identity) $\exists 1 \in \mathbb{R}, \forall a \in \mathbb{R}\{1 \cdot a=a \cdot 1=a\}$.
(M4) (Existence of Multiplicative Inverse) $\forall a \neq 0 \in \mathbb{R}, \exists \frac{1}{a} \in \mathbb{R}\left\{a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1\right\}$.
(D) (Distributive Property of Multiplication over Addition)

$$
\forall a, b, c \in \mathbb{R}\{a \cdot(b+c)=a \cdot b+a \cdot c \text { and }(b+c) \cdot a=b \cdot a+c \cdot a\} .
$$

2.1.4. (Theorem) There does not exist a rational number r such that $r^{2}=2$.

Proof

Assume $\exists r \in \mathbb{Q}\left\{r^{2}=2\right\}$.
Then $p, q \in \mathbb{Z}^{+}\left\{\left(r=\frac{p}{q}\right) \wedge(\operatorname{gcd}(p, q)=1)\right\}$.
Since $r^{2}=2, p^{2}=2 q^{2}$.
Hence p is even, let $p=2 k$ where $k \in \mathbb{Z}^{+}$.
Then $p^{2}=4 k^{2}, q^{2}=2 k^{2}$.
Hence q is even, which means 2 is a common factor of p and q.
This contradicts the assumption that $\operatorname{gcd}(p, q)=1$, hence the assumption is false.
Hence there does not exist a rational number r such that $r^{2}=2$.

2.1.5. (Axioms of the Order Properties of \mathbb{R}) Assuming $a, b \in \mathbb{R}$:

(a) If a and b are positive, then $a+b$ is positive.
(b) If a and b are positive, then $a b$ is positive.
(c) (The Trichotomy Property) Exactly one of the following properties holds: a is positive, $a=0$, or $-a$ is positive.
2.1.6. (Definition) Assuming $a, b \in \mathbb{R}$:
(a) If $a-b$ is positive, then we write $a>b$ or $b<a$.
(b) If $a-b$ is positive or 0 , then we write $a \geq b$ or $b \leq a$.
2.1.7. (Theorem) Assuming $a, b, c \in \mathbb{R}$:
(a) $(a<b) \wedge(b<c) \Rightarrow(a<c)$.
(b) $(a<b) \Rightarrow(a+c<b+c)$.
(c) $(a<b) \wedge(c>0) \Rightarrow a c<b c$ and $(a<b) \wedge(c<0) \Rightarrow a c>b c$.
2.1.8. (Theorem)
(a) $\forall a \in \mathbb{R} \backslash\{0\}\left\{a^{2}>0\right\}$.
(b) $1>0$.
(c) $\forall a \in \mathbb{N} \backslash\{0\}\{a>0\}$.

Proof

(a) Since $a \in \mathbb{R} \backslash\{0\}$, by The Trichotomy Property, $a>0$ or $-a>0$.

If $a>0$, then $a^{2}=a \cdot a>0$. (By Axioms 2.1.5b)
If $a<0$, then $a^{2}=(-a) \cdot(-a)>0$. (By Axioms 2.1.5b)
(b) Since $1=1^{2}, 1>0$. (By Theorem 2.1.8a)
2.1.9. (Theorem) If $a \in \mathbb{R}$ satisfies $\forall \epsilon>0\{0 \leq a<\epsilon\}$, then $a=0$.

Proof
Suppose $a>0$.

Choose $\epsilon=\frac{a}{2}$, then $0<\epsilon<a$, leading to a contradiction.
Hence $a=0$.
2.1.10. (Theorem) If $a b>0$, then either $a>0, b>0$ or $a<0, b<0$.
2.1.11. (Corollary) If $a b<0$, then either $a>0, b<0$ or $a<0, b>0$.

2.2. Absolute Value and the Real Line

2.2.1. (Definition) Suppose $a \in \mathbb{R}$. The absolute value of a is defined by

$$
|a|=\left\{\begin{array}{cl}
a & (a>0) \\
0 & (a=0) . \\
-a & (a<0)
\end{array}\right.
$$

2.2.2. (Theorem of Properties of Absolute Value)

(a) $\forall a, b \in \mathbb{R}\{|a b|=|a||b|\}$.
(b) $\forall a \in \mathbb{R}\left\{|a|^{2}=a^{2}\right\}$.
(c) If $c \geq 0$, then $|a| \leq c \Rightarrow-c \leq a \leq c$.
(d) $\forall a \in \mathbb{R}\{-|a| \leq a \leq|a|\}$.

2.2.3. (Theorem of Triangle Inequality) $\forall a, b \in \mathbb{R}\{|a+b| \leq|a|+|b|\}$.

2.2.4. (Corollary)

(a) $\forall a, b \in \mathbb{R}\{| | a|-|b|| \leq|a-b|\}$.
(b) $\forall a, b \in \mathbb{R}\{|a-b| \leq|a|+|b|\}$.
2.2.5. (Corollary) $\forall a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\left\{\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|\right\}$.
2.2.7. (Definition) Let $a \in \mathbb{R}$ and $\epsilon>0$. Then the ϵ-neighbourhood of a is the set $V_{\epsilon}(a):=$ $\{x \in \mathbb{R}:|x-a|<\epsilon\}$.

2.2.8. (Theorem) Let $a \in \mathbb{R}$. If x belongs to $V_{\epsilon}(a)$ for every $\epsilon>0$, then $x=a$.

2.3. The Completeness Property of \mathbb{R}

2.3.1. (Definition) Let S be a non-empty subset of \mathbb{R}.
(a) A number u is called an upper bound of S if $\forall s \in S\{s \leq u\}$. If such u exists, S is bounded above.
(b) A number w is called a lower bound of S if $\forall s \in S\{w \leq s\}$. If such w exists, S is bounded below.
(c) A set is bounded if it is both bounded above and bounded below, otherwise it is unbounded.
2.3.2. (Definition) Let S be a non-empty subset of \mathbb{R}.
(a) A number u is called a supremum of S if it satisfies the following conditions:
(1) u is an upper bound of S;
(2) If v is an upper bound of S, then $u \leq v$.
(b) A number w is called a infimum of S if it satisfies the following conditions:
(1) w is a lower bound of S;
(2) If v is a lower bound of S, then $w \geq v$.
2.3.3. (Lemma / Equivalent Definition) Let S be a non-empty subset of \mathbb{R}.
(a) A number u is called a supremum of S if it satisfies the following conditions:
(1) u is an upper bound of S;
(2) If $v<u$, then $\exists s^{\prime} \in S\left\{v<s^{\prime}\right\}$.
(b) A number w is called a infimum of S if it satisfies the following conditions:
(1) w is a lower bound of S;
(2) If $v>w$, then $\exists s^{\prime} \in S\left\{v>s^{\prime}\right\}$.
2.3.4. (Lemma) Let u be an upper bound of $S \subset \mathbb{R}$. Then $u=\sup S$ if and only if $\forall \epsilon>$ $0, \exists S_{\epsilon} \in S\left\{u-\epsilon<S_{\epsilon}\right\}$.
2.3.6. (Axioms of Supremum Property of \mathbb{R}) Every non-empty subset of \mathbb{R} that has an upper bound has a supremum.
(Axioms of Infimum Property of \mathbb{R}) Every non-empty subset of \mathbb{R} that has a lower bound has an infimum.

2.4. Applications of the Supremum Property

2.4.3. (Archimedean Property) If $x \in \mathbb{R}$, then $\exists n_{x} \in \mathbb{N}\left\{x \leq n_{x}\right\}$.

Proof

Suppose $\exists x \in \mathbb{R}, \forall n \in \mathbb{N}\{x>n\}$.
Then x is an upper bound of \mathbb{N}.
By Supremum Property, \mathbb{N} has a supremum u.
Since $u=\sup \mathbb{N}, \exists n \in \mathbb{N}\{u-1<n\}$. (By Lemma 2.3.3a)
Then $u<n+1$.
Since $n+1 \in \mathbb{N}, u$ is not an upper bound, and therefore not a supremum.
Therefore, $\forall x \in \mathbb{R}, \exists n \in \mathbb{N}\{x>n\}$.
2.4.4. (Corollary) $\operatorname{Let} S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, then $\inf S=0$.
2.4.5. (Corollary) $\forall \epsilon>0, \exists n \in \mathbb{N}\left\{\frac{1}{n}<\epsilon\right\}$.
2.4.6. (Corollary) If $x>0$, then $\exists n \in \mathbb{N}\{n-1<x<n\}$.
2.4.7. (Theorem) There exists a unique positive real number b such that $b^{2}=2$.

Proof

1. Existence
1.1. Existence of $\sup S$, where $S=\left\{x \in \mathbb{R}:(x>0) \wedge\left(x^{2}<2\right)\right\}$
1.1.1. Since $1 \in S, S \neq \emptyset$.
1.1.2. Suppose $x>2$, then $x^{2}>4$, hence $x \notin S$.
1.1.3. Hence $(x \in S) \Rightarrow(x \leq 2)$.
1.1.4. Hence 2 is an upper bound of S, S is bounded above.
1.1.5. By Supremum Property, $\sup S$ exists.
1.2. Existence of positive real number b such that $b^{2}=2$
1.2.1. Let $b=\sup S$.
1.2.2. Suppose $b^{2}<2$.
1.2.2.1. Then $\frac{2 b+1}{2-b^{2}}>0$.
1.2.2.2. By Archimedean Property, $\exists n \in \mathbb{N}\left\{\frac{2 b+1}{2-b^{2}} \leq n\right\}$.
1.2.2.3. $\left(b+\frac{1}{n}\right)^{2}=b^{2}+\frac{2 b}{n}+\frac{1}{n^{2}} \leq b^{2}+\frac{2 b+1}{n} \leq b^{2}+2-b^{2}=2$.
1.2.2.4. Hence $b+\frac{1}{n} \in S$.
1.2.2.5. Since $b+\frac{1}{n}>b$, this contradicts 1.2.1. Hence 1.2.2 is false.
1.2.3. Suppose $b^{2}>2$.
1.2.3.1. Then $\frac{2 b}{b^{2}-2}>0$.
1.2.3.2. By Archimedean Property, $\exists n \in \mathbb{N}\left\{\frac{2 b}{b^{2}-2} \leq n\right\}$.
1.2.3.3. $\left(b-\frac{1}{n}\right)^{2}=b^{2}-\frac{2 b}{n}+\frac{1}{n^{2}}>b^{2}-\frac{2 b}{n} \geq b^{2}-b^{2}+2=2$.
1.2.3.4. Hence $\forall x \in S\left\{x^{2}<2<\left(b-\frac{1}{n}\right)^{2}\right\}$.
1.2.3.5. Hence $b-\frac{1}{n}$ is an upper bound of S.
1.2.3.6. Since $b-\frac{1}{n}<b$, this contradicts 1.2.1. Hence 1.2.3 is false.
1.2.4. Hence $b^{2}=2$. Such b exists.
2. Uniqueness
2.1. Suppose $a^{2}=2$.
2.2. Suppose $a<\sup S$.
2.2.1. $a^{2}-2=a^{2}-(\sup S)^{2}=(a+\sup S)(a-\sup S)<0$.
2.2.2. Hence $a^{2}<2$. This contradicts 2.1, hence 2.2 is false.
2.3. Suppose $a>\sup S$.

$$
\text { 2.3.1. } a^{2}-2=a^{2}-(\sup S)^{2}=(a+\sup S)(a-\sup S)>0 .
$$

2.3.2. Hence $a^{2}>2$. This contradicts 2.1, hence 2.3 is false.

2.4. Hence $a=\sup S$. This proves its uniqueness.

```
2.4.8. (The Density Theorem of \mathbb{Q})\forallx,y\in\mathbb{R}{(x<y)\wedge(\existsr\in\mathbb{Q}{x<r<y})}.
```

```
2.4.9. (The Density Theorem of Irrational Numbers) }\forallx,y\in\mathbb{R}{(x<y)
(\existsr\in\mathbb{R\\mathbb{Q {}}<<<r<y})}.
```


2.5. Intervals

2.5.1. (Theorem of Nested Interval Property) If $I_{n}=\left[a_{n}, b_{n}\right], n \in \mathbb{N}$ is a nested sequence of close bounded intervals, then $\exists \xi \in \mathbb{R}, \forall n \in \mathbb{N}\left\{\xi \in I_{n}\right\}$.
2.5.2. (Theorem) If $I_{n}=\left[a_{n}, b_{n}\right], n \in \mathbb{N}$ is a nested sequence of close bounded intervals such that $\inf \left\{b_{n}-a_{n}: n \in \mathbb{N}\right\}=0$, then the number ξ contained in all intervals is unique.

CHAPTER 3 - SEQUENCES AND SERIES

3.1. Sequences and Their Limits

3.1.1. (Definition) A sequence in \mathbb{R} is a real-valued function $X: \mathbb{N} \rightarrow \mathbb{R}$. The numbers $X(n), n=1,2,3, \ldots$ are called terms of the sequence.
3.1.3. (Definition) A sequence $X=\left(x_{n}\right)$ in \mathbb{R} is said to be convergent to $x \in \mathbb{R}$, or x is said to be a limit of $\left(x_{n}\right)$ if $\forall \epsilon>0, \exists K=K(\epsilon) \in \mathbb{N}\left\{\forall n \geq K(\epsilon)\left\{\left|x_{n}-x\right|<\epsilon\right\}\right\}$. If such limit exists, X is convergent; otherwise, it is divergent.
3.1.4. (Theorem) If $\left(x_{n}\right)$ converges, then it has only one limit.
3.1.5. (Theorem) Let $X=\left(x_{n}\right)$ be sequence of real numbers and $x \in \mathbb{R}$, then the following statements are equivalent:
(a) X converges to x.
(b) $\forall \epsilon>0, \exists K \in \mathbb{N}\left\{\forall n \geq K\left\{\left|x_{n}-x\right|<\epsilon\right\}\right\}$.
(c) $\forall \epsilon>0, \exists K \in \mathbb{N}\left\{\forall n \geq K\left\{x-\epsilon<x_{n}<x+\epsilon\right\}\right\}$.
(d) For every ϵ-neighbourhood $V_{\epsilon}(x)$ of x, there exists a natural number K such that $\forall n \geq K\left\{x_{n} \in V_{\epsilon}(x)\right\}$.

3.2. Limit Theorems

3.2.1. (Definition) A sequence $X=\left(x_{n}\right)$ of real numbers is said to be bounded if there exists a real number $M>0$ such that $\left|x_{n}\right|<M$ for all $n \in \mathbb{N}$.

3.2.2. (Theorem) A convergent sequence of real numbers is bounded.
3.2.3. (Theorem) If $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y$ and $c \in \mathbb{R}$, then
(a) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=x+y$.
(b) $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=x-y$.
(c) $\lim _{n \rightarrow \infty}\left(x_{n} \cdot y_{n}\right)=x \cdot y$.
(d) $\lim _{n \rightarrow \infty} c\left(x_{n}\right)=c x$.
(e) $\lim _{n \rightarrow \infty}\left(x_{n} / y_{n}\right)=x / y$, provided $\forall n \in \mathbb{N}\left\{y_{n} \neq 0\right\}$ and $y \neq 0$.
3.2.4. (Theorem) If $\forall n \in \mathbb{N}\left\{x_{n}>0\right\}$ and $\left(x_{n}\right)$ converges, then $\lim _{n \rightarrow \infty} x_{n} \geq 0$.

3.2.5. (Theorem) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent and $\forall n \in \mathbb{N}\left\{x_{n} \geq y_{n}\right\}$, then $\lim _{n \rightarrow \infty} x_{n} \geq$ $\lim _{n \rightarrow \infty} y_{n}$.

```
3.2.6. (Theorem) If \(a, b \in \mathbb{R}\) and \(\forall n \in \mathbb{N}\left\{a \leq x_{n} \leq b\right\}\) and \(\left(x_{n}\right)\) is convergent, then \(a \leq\)
\(\lim _{n \rightarrow \infty} x_{n} \leq b\).
```

3.2.7. (Squeeze Theorem) Suppose that $X=\left(x_{n}\right), Y=\left(y_{n}\right), Z=\left(z_{n}\right)$ are sequences of real numbers such that $\forall n \in \mathbb{N}\left\{x_{n} \leq y_{n} \leq z_{n}\right\}$ and that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=a$, then Y is convergent and $\lim _{n \rightarrow \infty} y_{n}=a$.

3.3. Monotone Sequences

3.3.1. (Definition) We say the sequence $\left(x_{n}\right)$ is increasing if $x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{n} \leq$ $x_{n+1} \leq \cdots$.

We say the sequence $\left(x_{n}\right)$ is decreasing if $x_{1} \geq x_{2} \geq x_{3} \geq \cdots \geq x_{n} \geq x_{n+1} \geq \cdots$.

We say the sequence $\left(x_{n}\right)$ is monotone if it is either increasing or decreasing.
3.3.2. (Monotone Convergence Theorem) Let $\left(x_{n}\right)$ be a monotone sequence of real numbers. Then $\left(x_{n}\right)$ is convergent if and only if $\left(x_{n}\right)$ is bounded.

Particularly, if $\left(x_{n}\right)$ is bounded and increasing, $\lim _{x \rightarrow \infty} x_{n}=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
If $\left(x_{n}\right)$ is bounded and decreasing, $\lim _{x \rightarrow \infty} x_{n}=\inf \left\{x_{n}: n \in \mathbb{N}\right\}$.

3.4 Subsequences and the Bolzano-Weierstrass Theorem

3.4.1. (Definition) Let $X=\left(x_{n}\right)$ be a sequence of real numbers and let $n_{1}<n_{2}<\cdots<$ $n_{k}<\cdots$ be a strictly increasing sequence of natural numbers. Then the sequence $X^{\prime}=$ $\left(x_{n_{k}}\right)$ given by $\left(x_{n_{1}}, x_{n_{2}}, \ldots, x_{n_{k}}, \ldots\right)$ is a subsequence of X.
3.4.2. (Theorem) If $\left(x_{n}\right)$ converges to x, then any subsequence $\left(x_{n_{k}}\right)$ also converges to x.
3.4.5. (Theorem) If $\left(x_{n}\right)$ has either of the following properties, then $\left(x_{n}\right)$ is divergent:
(a) $\left(x_{n}\right)$ has two convergent subsequences whose limits are not equal.
(b) $\left(x_{n}\right)$ is unbounded.
3.4.7. (Theorem) Every sequence has a monotone subsequence.
3.4.8. (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent subsequence.

3.5. The Cauchy Criterion

3.5.1. (Definition) A sequence $\left(x_{n}\right)$ is said to be a Cauchy sequence if $\forall \epsilon>0, \exists H=$ $\left.H(\epsilon) \in \mathbb{N} \forall n, m \geq H\left\{\left|x_{n}-x_{m}\right|<\epsilon\right\}\right\}$.

3.5.4. (Lemma) A Cauchy sequence of real number is bounded.

3.5.5. (Theorem) A sequence of real number is convergent if and only if it is a Cauchy sequence.
3.5.7. (Definition) A sequence $X=\left(x_{n}\right)$ is said to be contractive if and only if $\forall n \in$ $\mathbb{N}, \exists 0<C<1\left\{\left|x_{n+2}-x_{n+1}\right| \leq C\left|x_{n+1}-x_{n}\right|\right\}$. The number C is called the constant of the contractive sequence.

> 3.5.8. (Theorem) Every contractive sequence is a Cauchy sequence and hence is convergent.

3.6. Properly Divergent Sequences

3.6.1. (Definition) Let $\left(x_{n}\right)$ be a sequence of real numbers. We say that $\left(x_{n}\right)$ tends to $+\infty$ $\left(\lim _{n \rightarrow \infty} x_{n}=+\infty\right)$ if $\forall \alpha \in \mathbb{R}, \exists K=K(\alpha) \in \mathbb{R}\left\{\forall n \geq K(\alpha)\left\{x_{n}>\alpha\right\}\right\}$.

We say that $\left(x_{n}\right)$ tends to $-\infty\left(\lim _{n \rightarrow \infty} x_{n}=-\infty\right)$ if $\forall \beta \in \mathbb{R}, \exists K=K(\beta) \in \mathbb{R}\{\forall n \geq$ $\left.K(\alpha \beta)\left\{x_{n}<\beta\right\}\right\}$.

We say that $\left(x_{n}\right)$ is properly divergent if either $\lim _{n \rightarrow \infty} x_{n}=+\infty$ or $\lim _{n \rightarrow \infty} x_{n}=-\infty$.
3.6.2. (Theorem) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences of real numbers and suppose that $\forall n \in \mathbb{N}\left\{x_{n} \leq y_{n}\right\}$, then:
(a) If $\lim _{n \rightarrow \infty} x_{n}=+\infty$, then $\lim _{n \rightarrow \infty} y_{n}=+\infty$.
(b) If $\lim _{n \rightarrow \infty} y_{n}=-\infty$, then $\lim _{n \rightarrow \infty} x_{n}=-\infty$.
3.6.3. (Theorem) If (x_{n}) is an unbounded increasing sequence, then $\lim _{n \rightarrow \infty} x_{n}=+\infty$. If $\left(x_{n}\right)$ is an unbounded decreasing sequence, then $\lim _{n \rightarrow \infty} x_{n}=-\infty$.

3.7. Introduction to Infinite Series

3.7.1. (Definition) Let $X=\left(x_{n}\right)$ be a sequence of real numbers, then the infinite series generated by X is the sequence $S=\left(s_{k}\right)$ defined by:

$$
\begin{gathered}
s_{1}=x_{1} \\
s_{2}=s_{1}+x_{2} \\
\ldots \\
s_{k}=s_{k-1}+x_{k}
\end{gathered}
$$

...
The numbers x_{n} are called the terms of the series and the numbers s_{k} are called the partial sums of the series.

If $\lim _{n \rightarrow \infty} s_{n}$ exists, we say that S is convergent and $\lim _{n \rightarrow \infty} s_{n}$ is called the sum or value of the series; otherwise, S is divergent.

Convergence Tests

3.7.3. (Theorem of the n-th term test) If the series $\sum x_{n}$ converges, then $\lim _{n \rightarrow \infty} x_{n}=0$. Or equivalently, if $\lim _{n \rightarrow \infty} x_{n} \neq 0$, the series $\sum x_{n}$ diverges.

> 3.7.4. (Theorem of Cauchy-criterion test) The series $\sum x_{n}$ converges if and only if $\forall \epsilon>$ $0, \exists M=M(\epsilon) \in \mathbb{N}\left\{\forall m>n>M(\epsilon)\left\{\left|s_{m}-s_{n}\right|=\left|x_{n+1}+x_{n+2}+\cdots+x_{m}\right|<\epsilon\right\}\right\}$.

3.7.5. (Theorem of partial sum bounded test for series with non-negative terms) Suppose $\forall n \in \mathbb{N}\left\{x_{n} \geq 0\right\}$. Then the series $\sum x_{n}$ converges if and only if the sequence $\left(s_{n}\right)$ of partial sums is bounded.

3.7.7. (Comparison Test) Let $\left(x_{n}\right)$, $\left(y_{n}\right)$ be real sequences and suppose that for some $K \in$ \mathbb{N}, we have $\forall n \geq K\left\{0 \leq x_{n} \leq y_{n}\right\}$. Then:
(a) The convergence of $\sum y_{n}$ implies the convergence of $\sum x_{n}$.
(b) The divergence of $\sum x_{n}$ implies the divergence of $\sum y_{n}$.
3.7.8. (Limit Comparison Test) Let $\left(x_{n}\right),\left(y_{n}\right)$ be strictly positive sequences and suppose that the following limit exists:

$$
r=\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}
$$

(a) If $r>0$, then $\sum x_{n}$ is convergent if and only if $\sum y_{n}$ is convergent.
(b) If $r=0$ and if $\sum y_{n}$ is convergent, then $\sum x_{n}$ is convergent.

CHAPTER 9 - INFINITE SERIES

9.1. Absolute Convergence

9.1.1. (Definition) The series $\sum x_{n}$ is absolutely convergent if the series $\sum\left|x_{n}\right|$ is convergent.

A series is said to be conditionally convergent if it is convergent but it is not absolutely convergent.
9.1.2. (Theorem) If a series $\sum_{n=1}^{\infty} x_{n}$ is absolutely convergent, then it is convergent.

9.2. Tests for Absolute Convergence

9.2.1. (Limit Comparison Test II) Suppose that $\left(x_{n}\right),\left(y_{n}\right)$ are non-zero sequences and suppose that the following limits exists:

$$
r:=\lim _{n \rightarrow \infty}\left(\frac{\left|x_{n}\right|}{\left|y_{n}\right|}\right)
$$

a. If $r>0$, then $\sum x_{n}$ is absolutely convergent if and only if $\sum y_{n}$ ia absolutely convergent.
b. If $r=0$, then if $\sum y_{n}$ is absolutely convergent, then $\sum x_{n}$ is absolutely convergent.
9.2.2. (Root Test) Let (x_{n}) be a sequence.
a. If there exist $r \in \mathbb{R}$ with $0 \leq r<1$ and $K \in \mathbb{N}$ such that $\left|x_{n}\right|^{\frac{1}{n}} \leq r$ for $n \geq K$, then the series $\sum x_{n}$ is absolutely convergent.
b. If there exists $K \in \mathbb{N}$ such that $\left|x_{n}\right|^{\frac{1}{n}} \geq 1$ for $n \geq K$, then the series $\sum x_{n}$ is divergent.
9.2.3. (Corollary of another version of root test) Suppose that the limit $r:=\lim _{n \rightarrow \infty}\left|x_{n}\right|^{\frac{1}{n}}$ exists. Then $\sum x_{n}$ is absolutely convergent when $r<1$ and is divergent when $r>1$.
9.2.4. (Ratio Test) Let (x_{n}) be a sequence of nonzero real numbers.
a. If there exist r with $0<r<1$ and $K \in \mathbb{N}$ such that $\left|\frac{x_{n+1}}{x_{n}}\right| \leq r$ for $n \geq K$, then $\sum x_{n}$ is absolutely convergent.
b. If there exists $K \in \mathbb{N}$ such that $\left|\frac{x_{n+1}}{x_{n}}\right| \geq 1$ for $n \geq K$, then $\sum x_{n}$ is divergent.
9.2.5. (Corollary of another version of ratio test) Let $\left(x_{n}\right)$ be a sequence of nonzero real numbers and suppose that the limit $r:=\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|$ exists. Then $\sum x_{n}$ is absolutely convergent when $r<1$ and is divergent when $r>1$.

CHAPTER 4 - LIMITS

4.1. Limits of Functions

4.1.1. (Definition) Let A be a subset of \mathbb{R}. A point c is called a cluster point of A if for every $\delta>0$ there exists at least one point $x \in A$ such that $0<|x-c|<\delta$, i.e. $\left(V_{\delta}(c) \backslash\{c\}\right) \cap A \neq \emptyset$ for any $\delta>0$.
4.1.2. (Theorem of alternative definition of cluster points) A real number c is a cluster point of A if and only if there exists a sequence $\left(a_{n}\right)$ in A such that $\lim a_{n}=c$ and $a_{n} \neq c$ for all $n \in \mathbb{N}$.

```
4.1.4. (Definition) Let \(A \subseteq \mathbb{R}\) and \(c\) be a cluster point of \(A\). For a function \(f: A \rightarrow \mathbb{R}\), a real number \(L\) is said to be a limit of \(f\) at \(c\) if for any given \(\epsilon>0\), there exists a \(\delta=\delta(\epsilon)>0\) such that if \(x \in A\) and \(0<|x-c|<\delta\), then \(|f(x)-L|<\epsilon\), that is, \(x \in A \cap\left(V_{-} \delta(c)\{c\}\right) \Rightarrow f(x) \in V_{\epsilon}(L)\)
In this case, we write \(\lim _{x \rightarrow c} f(x)=L\).
```


Example

Prove $\lim _{x \rightarrow 2} x^{2}=4$.
For any $\epsilon>0$ we choose $0<\delta<\min \{2-\sqrt{4-\epsilon}, \sqrt{4+\epsilon}-2\}$.
Then whenever $0<|x-2|<\delta$, we have $x \in(\sqrt{4-\epsilon}, \sqrt{4+\epsilon})$ and hence $\left|x^{2}-4\right|<\epsilon$.
4.1.5. (Theorem of uniqueness of limit) If $f: A \rightarrow \mathbb{R}$ and if c is a cluster point of A, then f can have only one limit at c.
4.1.8. (Sequential Criterion of Limits) Let $f: A \rightarrow \mathbb{R}$ and a be a cluster point of A. The following statements are equivalent:

1. $\lim _{x \rightarrow a} f(x)=L$.
2. For every sequence $\left(x_{n}\right)$ in A that converges to a such that $x_{n} \neq a$ for all n, the sequence $\left(f\left(x_{n}\right)\right)$ converges to L.

4.2. Limit Theorems

4.2.1. (Definition) Let $f: A \rightarrow \mathbb{R}$ and c be a cluster point of A. We say that f is bounded on a neighbourhood of c if there exists $V_{\delta}(c)$ and a constant $M>0$ such that $|f(x)| \leq M$ for all $x \in A \cap V_{\delta}(c)$.
4.2.2. (Theorem) If $f: A \rightarrow \mathbb{R}$ has a limit at a cluster point c, then f is bounded on some neighbourhood of c.
4.2.3. (Theorem) Suppose that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Let $b \in \mathbb{R}$.
a. $\lim _{x \rightarrow c}(f \pm g)(x)=L \pm M$;
b. $\lim _{x \rightarrow c}(f g)(x)=L M, \lim _{x \rightarrow c}(b f)(x)=b L$;
c. If $h(x) \neq 0$ for all $x \in A$ and $\lim _{x \rightarrow c} h(x)=H \neq 0$, then $\lim _{x \rightarrow c}\left(\frac{f}{h}\right)(x)=\frac{L}{H}$.
4.2.6. (Theorem) If $f(x) \leq g(x)$ for all $x \in A$ and both $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist, then $\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x)$.
4.2.7. (Squeeze Theorem) Suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \in A$ and $\lim _{x \rightarrow c} f(x)=$ $\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.
4.2.9. (Theorem) If $\lim _{x \rightarrow c} f(x)>0$, then there exists $V_{\delta}(c)$ of c such that $f(x)>0$ for all $x \in A \cap V_{\delta}(c), x \neq c$.

4.3. Some Extensions of the Limit Concept

4.3.1. (Definition) Let c be a cluster point of $A \cap(c, \infty)$. We say that L is the right-hand limit of f at c if for any $\epsilon>0, \exists \delta>0$ such that $0<x-c<\delta \Rightarrow|f(x)-L|<\epsilon$. In this case we write $\lim _{x \rightarrow c^{+}} f(x)=L$.

Let c be a cluster point of $A \cap(c, \infty)$. We say that L is the left-hand limit of f at c if for any $\epsilon>0, \exists \delta>0$ such that $0<c-x<\delta \Rightarrow|f(x)-L|<\epsilon$. In this case we write $\lim _{x \rightarrow c^{-}} f(x)=L$.
4.3.3. (Theorem) $\lim _{x \rightarrow c} f(x)=L$ exists if and only if both $\lim _{x \rightarrow c^{+}} f(x)$ and $\lim _{x \rightarrow c^{-}} f(x)$ exist and $\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=L$.

CHAPTER 5 - CONTINUOUS FUNCTIONS

5.1. Continuous Functions

5.1.1. (ϵ - δ Definition of Continuity) Let $A \subset \mathbb{R}$, let $f: A \rightarrow \mathbb{R}$ and let $c \in A$. We say that f is continuous at c if given any number $\epsilon>0$, there exists $\delta>0$ such that if x is any point of A satisfying $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Equivalently, if c is a cluster point, $f(x)$ is continuous at c if and only if $f(c)=\lim _{x \rightarrow c} f(x)$.
5.1.2. (Equivalent Definition of Continuity) Let $A \subset \mathbb{R}, f: A \rightarrow \mathbb{R}$ and $c \in A$. We say that f is continuous at c if given any ϵ-neighbourhood $V_{\epsilon}(f(c))$ of $f(c)$, there exists a δ neighbourhood $V_{\delta}(c)$ of c such that if x is any point of $A \cap V_{\delta}(c)$, then $f(x)$ belongs to $V_{\epsilon}(f(c))$, that is $f\left(A \cap V_{\delta}(c)\right) \subseteq V_{\epsilon}(f(c))$.

If f fails to be continuous at c, then we say that f is discontinuous at c.
If f is continuous at every point in A, then we say that f is continuous on A.
5.1.3. (Sequential Criterion for Continuity) f is continuous at $x=a$ if and only if for every sequence $\left(x_{n}\right)$ in the domain of f such that $x_{n} \rightarrow a$, we have $f\left(x_{n}\right) \rightarrow f(a)$.
5.1.4. (Discontinuity Criterion) f is discontinuous at $x=a$ if and only if there exists a sequence $\left(x_{n}\right)$ in the domain of f such that $x_{n} \rightarrow a$, but $f\left(x_{n}\right) \leftrightarrow f(a)$.

5.2. Combinations of Continuous Functions

5.2.1. (Theorem) Suppose that f and g are continuous at $x=c$, then
a. $f \pm g, f \cdot g$ and $b f$ are also continuous at $x=c$, where b is a constant.
b. If $g(c) \neq 0$, then f / g is also continuous at $x=c$.
5.2.2. (Theorem) Suppose that f and g are continuous on A, then
a. $f \pm g, f \cdot g$ and $b f$ are also continuous on A, where b is a constant.
b. If $g(c) \neq 0$, then f / g is also continuous on A.
5.2.6. (Theorem) Let $f: A \rightarrow \mathbb{R}, g: B \rightarrow \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at c, and g is continuous at $b=f(c)$, then $g \circ f$ is continuous at c.
5.2.7. (Theorem) Let $f: A \rightarrow>\mathbb{R}, g: B \rightarrow \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous on A and g is continuous on B, then $g \circ f$ is continuous on A.

5.3. Continuous Functions on Intervals

5.3.1. (Definition) A function $f: A \rightarrow \mathbb{R}$ is said to be bounded on A if there exists $M>0$ such that $|f(x)| \leq M, \forall x \in A$.
5.3.2. (Boundness Theorem) If f is continuous on $[a, b]$, then f is bounded on $[a, b]$.
5.3.3. (Definition 5.3.3) We say that f has an absolute maximum on A if there exists $x^{*} \in$ A such that $f\left(x^{*}\right) \geq f(x), \forall x \in A$. So, in this case, $f\left(x^{*}\right)=\sup f(A)=\max f(A)$.

We say that f has an absolute minimum on A if there exists $x^{*} \in A$ such that $f\left(x^{*}\right) \leq$ $f(x), \forall x \in A$. So, in this case, $f\left(x^{*}\right)=\inf f(A)=\min f(A)$.
5.3.4. (Maximum-Minimum Theorem) If f is continuous on $[a, b]$, then f has an absolute maximum and an absolute minimum on $[a, b]$.
5.3.5. (Location of Roots Theorem) If f is continuous on $[a, b]$ and $f(a) f(b)<0$, then there exists a point c in (a, b) such that $f(c)=0$.
5.3.7. (Intermediate Value Theorem) Let I be an interval, f be continuous on I, and $a, b \in$ I with $f(a) \leq f(b)$. For any $k \in[f(a), f(b)]$, there exists a point c in I such that $f(c)=$ k.
5.3.10. (Closed Interval Theorem) If f is continuous on $[a, b]$, then $f([a, b]):=$ $\{f(x):: x \in[a, b]\}=[m, M]$, where $m=\inf f([a, b])$ and $M=\sup f([a, b])$.

5.4. Uniform Continuity

5.4.1. (Definition) Let $A \subset \mathbb{R}, f: A \rightarrow \mathbb{R}$. We say that f is uniformly continuous on A if for each $\epsilon>0$, there exists a $\delta(\epsilon)>0$ such that $\forall x, y \in A,|x-y|<\delta(\epsilon) \Rightarrow$ $|f(x)-f(y)|<\epsilon$.

5.4.2. (Sequential Criterion for Uniform Continuity) The function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A if and only if for any two sequences $\left(x_{n}\right),\left(y_{n}\right)$ in A such that $\lim _{n \rightarrow \infty} x_{n}-y_{n}=0$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)-f\left(y_{n}\right)=0$.

5.4.2. (Nonuniform Continuity Criteria) The following statements are equivalent:

1. f is not uniformly continuous on A.
2. $\exists \epsilon_{0}>0$ s.t. $\forall \delta>0, \exists x_{\delta}, y_{\delta}$ s.t. $\left|x_{\delta}-y_{\delta}\right|<\delta$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$.
3. $\exists \epsilon_{0}>0,\left(x_{n}\right),\left(y_{n}\right)$ s.t. $\lim _{n \rightarrow \infty} x_{n}-y_{n}=0$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$.
5.4.3. (Uniform Continuity Theorem) If f is continuous on a closed bounded interval $[a, b]$, then it is uniformly continuous on $[a, b]$.
5.4.4. (Lipschitz Condition) A function $f: A \rightarrow \mathbb{R}$ is said to be Lipschitz function on A if there exists a $K>0$ such that $|f(x)-f(y)| \leq K|x-y|, \forall x, y \in A$.
5.4.5. (Theorem) If $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.
5.4.7. (Theorem of uniformly continuous functions preserve Cauchy sequence) If $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A and $\left(x_{n}\right)$ is a Cauchy sequence in A, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
5.4.8. (Continuous Extension Theorem) A function f is uniformly continuous on the interval (a, b) if and only if it can be defined at the endpoints a and b such that the extended function is continuous on $[a, b]$.

5.6. Monotone and Inverse Functions

5.6.1. (Definition) The function $f: A \rightarrow \mathbb{R}$ is said to be increasing on A if whenever $x_{1}, x_{2} \in$ $A, x_{1} \leq x_{2}$, then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. The function f is said to be strictly increasing if whenever $x_{1}, x_{2} \in A, x_{1}<x_{2}$, then $f\left(x_{1}\right)<f\left(x_{2}\right)$.

The function $f: A \rightarrow \mathbb{R}$ is said to be decreasing on A if whenever $x_{1}, x_{2} \in A, x_{1} \geq x_{2}$, then $f\left(x_{1}\right) \geq f\left(x_{2}\right)$. The function f is said to be strictly decreasing if whenever $x_{1}, x_{2} \in A$, $x_{1}>x_{2}$, then $f\left(x_{1}\right)>f\left(x_{2}\right)$.

If a function is either increasing or decreasing on A, we say that it is monotone on A. If f is either strictly increasing or strictly decreasing on A, we say that f is strictly monotone on A.
5.6.1. (Theorem of one-sides limits for monotone functions exist) Let $I \subset \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be increasing on I. Suppose that $c \in I$ is not an endpoint of I. Then
(i) $\lim _{x \rightarrow c-} f(x)=\sup \{f(x):: x \in I, x<c\}$.
(ii) $\lim _{x \rightarrow c+} f(x)=\inf \{f(x):: x \in I, x>c\}$.
5.6.2. (Corollary) The following statements are equivalent:
a. f is continuous at c.
b. $\lim _{x \rightarrow c-} f(x)=f(c)=\lim _{x \rightarrow c+} f(x)$.
c. $\sup \{f(x):: x \in I, x<c\}=f(c)=\inf \{f(x):: x \in I, x>c\}$.
5.6.3. (Definition) If $f: I \rightarrow \mathbb{R}$ is increasing on I and if c is not an endpoint of I, we define the jump of f at c to be $j_{f}(c):=\lim _{x \rightarrow c+} f(x)-\lim _{x \rightarrow c-} f(x)=\inf \{f(x):: x \in I, x>c\}-$ $\sup \{f(x):: x \in I, x<c\}$.

```
5.6.3. (Theorem) Let \(f: I \rightarrow \mathbb{R}\) be increasing on \(I\). Then \(f\) is continuous at \(c\) if and only if \(j_{f}(c)=0\).
```

5.6.4. (Theorem) Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be monotone on I. Then the set of points $D \subseteq I$ at which f is discontinuous is a countable set.
5.6.5. (Continuous Inverse Theorem) Let $I \subset \mathbb{R}$ be an interval and $f: I \rightarrow \mathbb{R}$ be strictly monotone and continuous. Then the inverse function f^{-1} is also strictly monotone and continuous on J.

REFERENCES

1. Bartle, R. G. \& Sherbert, D. R. Introduction to Real Analysis. (Wiley, 2011).
2. MA2108 Lecture Notes by Professor An Xinliang.
