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CHAPTER 1 - PRELIMINARIES

1.1. Sets and Functions

1.1.9. (Definition) Let f: A — B be a function from A to B.
a. The function f is said to be injective if whenever x; # x,, then f(x;) # f(xy).
b. The function f is said to be surjective if f(A) = B.
c. If f is both injective and surjective, then f is said to be bijective.

1.1.11. (Definition) Let f: A — B be a bijection of A onto B. Then the inverse function
f~1:B - Ais defined such that f~(f(x)) = x,Vx € A and f(f~1(y)) = y,Vy € B.

1.2. Mathematical Induction

1.2.1. (Well-Ordering Property of N) Every non-empty subset S of N has a least element,
1.e. there exists m € S such that m < k forall k € S.

1.3. Finite and Infinite Sets

1.3.8. (Theorem) The set N X N is countably infinite.

1.3.11. (Theorem) The set Q of all rational numbers is denumerable.

CHAPTER 2 - THE REAL NUMBERS

2.1. The Algebraic and Order Properties of R

2.1.1. (Axioms of the Algebraic Properties of R)
(A1) (Commutative Property of Addition) Va,b € R{a+ b = b + a}.
(A2) (Associative Property of Addition)Va,b,c € R{(a+b) +c=a+ (b +c)}.
(A3) (Existence of Additive Identity) 30 € R,Va € R{0 +a =a+ 0 =a}.
(A4) (Existence of Additive Inverse) Va € R,3(—a) € R{a + (—a) = (—a) + a = 0}.
(M1) (Commutative Property of Multiplication) Va,b € R{a-b = b - a}.
(M2) (Associative Property of Multiplication) Va,b,c € R{(a-b) -c =a-(b-c)}.
(M3) (Existence of Multiplicative Identity) 31 € R,Va € R{l1-a=a-1=a}.
(M4) (Existence of Multiplicative Inverse) Va # 0 € R, EI% €ER{a- % = % -a=1}.
(D) (Distributive Property of Multiplication over Addition)
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Va,b,ce R{a-(b+c)=a-b+a-cand(b+c)-a=b-a+c-a}.

2.1.4. (Theorem) There does not exist a rational number » such that r2 =

Proo

Assume 3r € Q {r? = 2}.

Thenp,q € Z* {(r = 5) A (ged(p, q) = 1)}.

Since 12 = 2, p? = 2¢°.

Hence p is even, let p = 2k where k € Z*.

Then p? = 4k?, q% = 2k>.

Hence q is even, which means 2 is a common factor of p and q.

This contradicts the assumption that gcd(p, q) = 1, hence the assumption is false.
Hence there does not exist a rational number 7 such that r? =

2.1.5. (Axioms of the Order Properties of R) Assuming a, b € R:
(a) If a and b are positive, then a + b is positive.
(b) If a and b are positive, then ab is positive.
(¢) (The Trichotomy Property) Exactly one of the following properties holds:
a is positive, a = 0, or —a is positive.

2.1.6. (Definition) Assuming a, b € R:
(a) If a — b 1s positive, then we writea > b or b < a.
(b) If a — b is positive or 0, then we writea = b or b < a.

2.1.7. (Theorem) Assuming a, b, ¢ € R:
@(@a<b)A(b<c)=(a<c).
b)(a<b)=>(a+c<b+0).
(c)(@a<b)A(c>0)=>ac <bcand (a <b)A(c<0)=ac>bc.

2.1.8. (Theorem)
(a) Va € R\{0} {a® > 0}.
(b) 1> 0.
(c) Ya € N\{0} {a > 0}.

Proof
(a) Since a € R\{0}, by The Trichotomy Property, a > 0 or —a > 0.

Ifa > 0, then a? = a - a > 0. (By Axioms 2.1.5b)
Ifa < 0, then a? = (—a) - (—a) > 0. (By Axioms 2.1.5b)
(b) Since 1 = 12,1 > 0. (By Theorem 2.1.8a)

2.1.9. (Theorem) If a € R satisfies Ve > 0 {0 < a < €}, then a = 0.

Proof
Suppose a > 0.
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Choose € = %, then 0 < € < a, leading to a contradiction.

Hence a = 0.

2.1.10. (Theorem) If ab > 0, then eithera > 0,b > 0ora < 0,b < 0.

2.1.11. (Corollary) If ab < 0, then eithera > 0,b < 0ora < 0,b > 0.

2.2. Absolute Value and the Real Line

2.2.1. (Definition) Suppose a € R. The absolute value of a is defined by

a (@>0)
la] =< 0 (a=0).
—a (a<0)

2.2.2. (Theorem of Properties of Absolute Value)
(a) Va,b € R {|ab| = |a||bl}.
(b) Va € R {|a|?> = a?}.
(c)Ifc=0,then|al]<c=-c<a<c.
(dVaeR{—|a] <a<|al}

2.2.3. (Theorem of Triangle Inequality) Va,b € R {|la + b| < |a| + |b|}.

2.2.4. (Corollary)
(a)Va,b € R {|la] — |b|| < la— b]}.
(b)Va,b € R{|la — b| < |a| + |b|}.

2.2.5. (Corollary) Va4, ay, ...,a, € R{la; + a; + -+ a,| < |laq| + |ay| + -+ |a, |}

2.2.7. (Definition) Let a € R and € > 0. Then the e-neighbourhood of a is the set V. (a) =
{x eER:|x—al <e€}

~

A \
a—e€ a /a+e

2.2.8. (Theorem) Let a € R. If x belongs to V.(a) for every € > 0, then x = a.

2.3. The Completeness Property of R

2.3.1. (Definition) Let S be a non-empty subset of R.
(a) A number u is called an upper bound of S if Vs € S {s < u}. If such u exists, S is
bounded above.
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(b) A number w is called a lower bound of S if Vs € § {w < s}. If such w exists, S is
bounded below.

(c) A set is bounded if it is both bounded above and bounded below, otherwise it is
unbounded.

2.3.2. (Definition) Let S be a non-empty subset of R.
(a) A number u is called a supremum of S if it satisfies the following conditions:
(1) u is an upper bound of S;
(2) If v is an upper bound of S, then u < v.
(b) A number w is called a infimum of S if it satisfies the following conditions:
(1) w is a lower bound of S;
(2) If v is a lower bound of S, then w > v.

2.3.3. (Lemma / Equivalent Definition) Let S be a non-empty subset of R.
(a) A number u is called a supremum of S if it satisfies the following conditions:
(1) u is an upper bound of S;
2)Ifv <u,then3s’' € S {v < s'}.
(b) A number w is called a infimum of § if it satisfies the following conditions:
(1) w is a lower bound of S;
2)Ifv>w,then3s' € S {v > s'}.

2.3.4. (Lemma) Let u be an upper bound of S € R. Then u = sup S if and only if Ve >
0,3S. € S{u—e<S.}

2.3.6. (Axioms of Supremum Property of R) Every non-empty subset of R that has an upper
bound has a supremum.

(Axioms of Infimum Property of R) Every non-empty subset of R that has a lower
bound has an infimum.

2.4. Applications of the Supremum Property

2.4.3. (Archimedean Property) If x € R, then 3n, € N {x < n, }.

Proof

Suppose 3x € R,Vn € N {x > n}.

Then x is an upper bound of N.

By Supremum Property, N has a supremum u.

Since u = sup N, 3n € N {u — 1 < n}. (By Lemma 2.3.3a)

Thenu <n+ 1.

Since n + 1 € N, u is not an upper bound, and therefore not a supremum.
Therefore, Vx € R,3n € N {x > n}.

2.4.4. (Corollary) Let S = {--: n € N}, then inf$ = 0.
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2.4.5. (Corollary) ¥e > 0,3n € N {- < e},

2.4.6. (Corollary) If x > 0,thenan e N{n — 1 < x < n}.

2.4.7. (Theorem) There exists a unique positive real number b such that b? = 2.

Proo
1. Existence
1.1. Existence of sup S, where S = {x € R: (x > 0) A (x? < 2)}
1.1.1.Since 1 € S, S + Q.
1.1.2. Suppose x > 2, then x2 > 4, hence x & S.
1.1.3. Hence (x € S) = (x < 2).
1.1.4. Hence 2 is an upper bound of S, S is bounded above.
1.1.5. By Supremum Property, sup S exists.
1.2. Existence of positive real number b such that b? = 2
1.2.1. Let b = sup S.
1.2.2. Suppose b? < 2.

2b+1
1.2.2.1. Then b7

1.2.2.2. By Archimedean Property, 3n € N {

> 0.

<n

2b+1 }
2-p2 — )

2
12.23. (b+%) =b2+%+%Sb2+2bT+1£b2+2—b2=2.

1.2.2.4. Hence b + % €Ss.

1.2.2.5. Since b + % > b, this contradicts 1.2.1. Hence 1.2.2 is false.
1.2.3. Suppose b? > 2.

1.2.3.1. Then -2
b2-2

1.2.3.2. By Archimedean Property, 3n € N {bZiZ < n}.

> 0.

2
1233.(b—2) =p? =24+ > p? -2 > p2—p2+2=2
n n n n
2 1)?
1.2.3.4. Hence Vx € S {x <2<(b—;) .

1.2.3.5. Hence b — % is an upper bound of S.

1.2.3.6. Since b — % < b, this contradicts 1.2.1. Hence 1.2.3 is false.

1.2.4. Hence b? = 2. Such b exists.
2. Uniqueness
2.1. Suppose a? = 2.
2.2. Suppose a < supS.
22.1.a2-2=a? - (supS)? = (a+supS)(a—supS) < 0.
2.2.2. Hence a? < 2. This contradicts 2.1, hence 2.2 is false.
2.3. Suppose a > sup S.
23.1.a? -2 =a%*—-(supS)? = (a+supS)(a—supS) > 0.

5
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2.3.2. Hence a? > 2. This contradicts 2.1, hence 2.3 is false.
2.4. Hence a = sup S. This proves its uniqueness.

2.4.8. (The Density Theorem of Q) Vx,y E R{{(x <y)A@AreQ{x<r<yph}

2.4.9. (The Density Theorem of Irrational Numbers) Vx,y € R{(x < y) A
AreR\Q{x<r<yh}

2.5. Intervals

2.5.1. (Theorem of Nested Interval Property) If I, = [a,, b,],n € N is a nested sequence
of close bounded intervals, then 3¢ € R,Vn € N {£ € [,,}.

2.5.2. (Theorem) If I,, = [a,, b,],n € N is a nested sequence of close bounded intervals
such that inf{b,, — a,, : n € N} = 0, then the number ¢ contained in all intervals is unique.

CHAPTER 3 - SEQUENCES AND SERIES

3.1. Sequences and Their Limits

3.1.1. (Definition) A sequence in R is a real-valued function X: N = R. The numbers
X(n),n = 1,2,3, ... are called terms of the sequence.

3.1.3. (Definition) A sequence X = (x,) in R is said to be convergent to x € R, or x is said
to be a limit of (x,,) if Ve > 0,3K = K(¢) € N {Vn > K(e) {lx, — x| < E}}. If such limit
exists, X is convergent; otherwise, it is divergent.

3.1.4. (Theorem) If (x,,) converges, then it has only one limit.

3.1.5. (Theorem) Let X = (x,,) be sequence of real numbers and x € R, then the following
statements are equivalent:
(a) X converges to x.
(b) Ve > 0,3K € N {Vn > K {|x, — x| < 6}}.
(c)Ve > 0,3K e N{Vvn > K {x —e < x, < x + €}}.
(d) For every e-neighbourhood V_(x) of x, there exists a natural number K such that
vn > K {x, € V.(x)}.

3.2. Limit Theorems
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3.2.1. (Definition) A sequence X = (x,) of real numbers is said to be bounded if there
exists a real number M > 0 such that |x,,| < M forall n € N.

3.2.2. (Theorem) A convergent sequence of real numbers is bounded.

3.2.3. (Theorem) If%i_r}glo Xp = X, Tlll_{{)lo v, =y and ¢ € R, then
(@) lim (x, +yn) =x +y.
(b) lim Cxp — yn) =x —y.
(¢) lim G - yp) =2 - y.
(d) 711_r)£1o c(x,) = cx.

(e) lim (x,/y,,) = x/y, provided Vn € N {y,, # 0} and y # 0.
n—>0oo

3.2.4. (Theorem) If ¥n € N {x,, > 0} and (x,) converges, then lim x,, > 0.
n—-oo

3.2.5. (Theorem) If (x;) and (y,) are convergent and Vn € N {x,, > y,,}, then lim x,, >
n—-oo

lim y,.

n—-oo

3.2.6. (Theorem) If a,b € Rand Vn € N {a < x,, < b} and (x,,) is convergent, then a <
lim x,, < b.

n—-oo

3.2.7. (Squeeze Theorem) Suppose that X = (x,),Y = (y,),Z = (z,) are sequences of real
numbers such that Vn € N {x,, <y, < z,} and that lim x,, = lim z, = a, thenY is

n—-0oo n—oo

convergent and lim y, = a.
n—->0oo

3.3. Monotone Sequences

3.3.1. (Definition) We say the sequence (x;,) is increasing if x; < x, < x3 < -+ < x, <
xn+1 S cee,
We say the sequence (x,,) is decreasing if x; = X, = X3 = = 2 X, = Xpqq = .

We say the sequence (x,) is monotone if it is either increasing or decreasing.

3.3.2. (Monotone Convergence Theorem) Let (x,) be a monotone sequence of real
numbers. Then (x,,) is convergent if and only if (x,,) is bounded.

Particularly, if (x;,) is bounded and increasing, lim x,, = sup{x,, : n € N}.
X—00

If (x,,) is bounded and decreasing, lim x,, = inf{x,, : n € N}.
X—00
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3.4 Subsequences and the Bolzano-Weierstrass Theorem

3.4.1. (Definition) Let X = (x,,) be a sequence of real numbers and let n; < n, < - <
n, < --- be a strictly increasing sequence of natural numbers. Then the sequence X' =
(xn,) given by (X, , Xp,, -, Xp,, --- ) 18 a subsequence of X.

3.4.2. (Theorem) If (xy,) converges to x, then any subsequence (x, ) also converges to x.

3.4.5. (Theorem) If (x,,) has either of the following properties, then (x,) is divergent:
(a) (x,,) has two convergent subsequences whose limits are not equal.
(b) (x;,) is unbounded.

3.4.7. (Theorem) Every sequence has a monotone subsequence.

3.4.8. (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent
subsequence.

3.5. The Cauchy Criterion

3.5.1. (Definition) A sequence (x,) is said to be a Cauchy sequence if Ve > 0,3H =
H(e) e Nvn,m = H {|x,, — xp,| < €}}.

H(e)

H | 0 .
ST

-10

3.5.4. (Lemma) A Cauchy sequence of real number is bounded.

3.5.5. (Theorem) A sequence of real number is convergent if and only if it is a Cauchy
sequence.

3.5.7. (Definition) A sequence X = (x,,) is said to be contractive if and only if Vn €
N,30 < C < 1{|xp42 — Xps1l < Clxps1 — x|} The number C is called the constant of
the contractive sequence.

3.5.8. (Theorem) Every contractive sequence is a Cauchy sequence and hence is

convergent.

3.6. Properly Divergent Sequences
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3.6.1. (Definition) Let (x,,) be a sequence of real numbers. We say that (x,,) tends to +oo
(lim x, = +) if Va € R, 3K = K(a) € R{Vn = K(a) {x, > a}}.
n—->oo

We say that (x,,) tends to —oo (il_r)?o X, =—)ifYBERIK =K(B) ER {Vn >
K(apB) {x, < B}}.

We say that (x,,) is properly divergent if either lim x,, = 400 or lim x,, = —oo.

n—-oo n—-oo

3.6.2. (Theorem) Let (x,,) and (y,,) be two sequences of real numbers and suppose that
vn € N {x, < y,}, then:
(a) If lim x,, = 400, then lim y, = +co.
n—-oo n—oo

(b) If lim y,, = —oo, then lim x,, = —oo.
n—-oo

n—-oo

3.6.3. (Theorem) If (x;,) is an unbounded increasing sequence, then lim x,, = +oo.
n—-oo

If (x,) is an unbounded decreasing sequence, then lim x,, = —oo.
n—->oo

3.7. Introduction to Infinite Series

3.7.1. (Definition) Let X = (x,) be a sequence of real numbers, then the infinite series
generated by X is the sequence S = () defined by:
S1=%
S, =81+ x;

Sk = Sk-1 + Xk

The numbers x,, are called the terms of the series and the numbers s, are called the partial
sums of the series.

If lim s, exists, we say that S is convergent and lim s, is called the sum or value of the

n—-oo n—-oo

series; otherwise, S is divergent.

Convergence Tests

3.7.3. (Theorem of the n-th term test) If the series Y, x,, converges, then lim x,, = 0. Or

n—-oo

equivalently, if lim x, # 0, the series ), x,, diverges.
n—-oo

3.7.4. (Theorem of Cauchy-criterion test) The series ), x,, converges if and only if Ve >
0,3M = M(e) e N{vm >n > M(€) {Isy — Snl = |Xn41 + Xni2 + - + Xl < €3}
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3.7.5. (Theorem of partial sum bounded test for series with non-negative terms) Suppose
vn € N {x,, = 0}. Then the series ), x,, converges if and only if the sequence (s,) of
partial sums is bounded.

3.7.7. (Comparison Test) Let (x,,), (¥,) be real sequences and suppose that for some K €
N, we have Vn > K {0 < x,, < y,,}. Then:

(a) The convergence of ). vy, implies the convergence of ). x,,.

(b) The divergence of Y, x,, implies the divergence of ). y,,.

3.7.8. (Limit Comparison Test) Let (x,,), () be strictly positive sequences and suppose

that the following limit exists:
. xn
r = lim —
n—oo yn

(a) If r > 0, then ), x,, is convergent if and only if ), y,, is convergent.
(b) If r = 0 and if }; y,, is convergent, then }; x,, is convergent.

CHAPTER 9 — INFINITE SERIES

9.1. Absolute Convergence

9.1.1. (Definition) The series Y. x,, is absolutely convergent if the series Y:|x,,| is
convergent.

A series is said to be conditionally convergent if it is convergent but it is not absolutely
convergent.

9.1.2. (Theorem) If a series Yo X, is absolutely convergent, then it is convergent.

9.2. Tests for Absolute Convergence

9.2.1. (Limit Comparison Test II) Suppose that (x,,), (3,,) are non-zero sequences and
suppose that the following limits exists:
X
r:= lim (M
n-o |yn|

a. Ifr > 0, then Y x,, is absolutely convergent if and only if ), y,, ia absolutely
convergent.
b. Ifr = 0, then if ) y, is absolutely convergent, then ). x,, is absolutely convergent.

9.2.2. (Root Test) Let (x,,) be a sequence.

1
a. Ifthere existr € Rwith 0 < r < 1 and K € N such that |x,,|» < r forn = K, then
the series ), x,, is absolutely convergent.

10
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1
b. If'there exists K € N such that |x,|» = 1 for n = K, then the series ). x,, is
divergent.

1
9.2.3. (Corollary of another version of root test) Suppose that the limit  := lim |x,,|»
n—-oo

exists. Then Y x,, is absolutely convergent when r < 1 and is divergent when r > 1.

9.2.4. (Ratio Test) Let (x,) be a sequence of nonzero real numbers.

a. Ifthere existr with 0 < r < 1 and K € N such that <r forn > K, then

Xn+1

Xn

Y. x,, is absolutely convergent.

b. Ifthere exists K € N such that

Intil > 1 forn > K, then ¥, X, 1s divergent.

Xn

9.2.5. (Corollary of another version of ratio test) Let (x,) be a sequence of nonzero real

Xn+1

numbers and suppose that the limit r := lim exists. Then Y. x,, is absolutely

n—-oo Xn

convergent when r < 1 and is divergent when r > 1.

CHAPTER 4 - LIMITS

4.1. Limits of Functions

4.1.1. (Definition) Let A be a subset of R. A point c is called a cluster point of A if for

every & > 0 there exists at least one point x € A such that 0 < |x — ¢| < §, i.e.
(Vs(e)\{c}) N A # @ forany & > 0.

4.1.2. (Theorem of alternative definition of cluster points) A real number c is a cluster
point of A if and only if there exists a sequence (a,) in A such thatlima,, = cand a, # ¢
foralln € N.

4.1.4. (Definition) Let A € R and c be a cluster point of A. For a function f: A = R, a real
number L is said to be a limit of f at ¢ if for any given € > 0, there existsa § = §(€) > 0
such thatifx € Aand 0 < |x — c| < 6, then |f(x) — L| < €, that is,

x €AN (VS (o){ch) = f(x) € Ve(L)
In this case, we write }Cl_r}g f(x)=L.

Example

Prove lim x? = 4.
x-2

For any € > 0 we choose 0 < § < min{2 — V4 —¢,V4 + € — 2}.
Then whenever 0 < |x — 2| < &, we have x € (V4 — €,v/4 + €) and hence |x? — 4| < e.

11
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4.1.5. (Theorem of uniqueness of limit) If f: A — R and if ¢ is a cluster point of A, then f
can have only one limit at c.

4.1.8. (Sequential Criterion of Limits) Let f: A = R and a be a cluster point of A. The
following statements are equivalent:
1. lim f(x) = L.

xX—a
2. For every sequence (x,,) in A that converges to a such that x,, # a for all n, the
sequence (f(x,)) converges to L.

4.2. Limit Theorems

4.2.1. (Definition) Let f: A = R and c be a cluster point of A. We say that f is bounded on
a neighbourhood of c if there exists Vg(c) and a constant M > 0 such that |f(x)| < M for
all x € A N Vg(c).

4.2.2. (Theorem) If f: A — R has a limit at a cluster point c, then f is bounded on some
neighbourhood of c.

4.2.3. (Theorem) Suppose that }Cl_r)rg f(x) =L and }Cl_r)ré g(x) =M.Leth € R.
a. lim(f + g9)(x) =L+ M;
b lim(fg)(x) = LM, lim(bf)(x) = bL;
c. Ifh(x) # 0 forall x € A and lim h(x) = H # 0, then }Ci_r)ré(g)(x) = %

X—C

4.2.6. (Theorem) If f(x) < g(x) for all x € A and both lim f(x) and lim g(x) exist, then
X—=C X—C

lim f(x) < lim g(x).
X—C X—C

4.2.7. (Squeeze Theorem) Suppose that f(x) < g(x) < h(x) forall x € A and lim f(x) =
X—C

lim h(x) = L, then lim g(x) = L.

X—C X—C

4.2.9. (Theorem) If lim f (x) > 0, then there exists Vs(c) of ¢ such that f(x) > 0 for all
X—C
x € ANVs(c), x # c.

4.3. Some Extensions of the Limit Concept

4.3.1. (Definition) Let c be a cluster point of A N (¢, ). We say that L is the right-hand
limit of f at ¢ if forany € > 0,35 > Osuchthat 0 <x —c < = |f(x) — L| < €. In this
case we write lim f(x) = L.

X—C

12
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Let ¢ be a cluster point of A N (¢, ). We say that L is the left-hand limit of f at c if for
any € > 0,36 > Osuchthat 0 < c—x < § = |f(x) — L| < €. In this case we write

Jim /00 =L

4.3.3. (Theorem) lim f (x) = L exists if and only if both lim f(x) and lim f(x) exist and
X—C X—C X—C

lim f(x) = lim f(x) = L.

x—ct X—>C~

CHAPTER 5 - CONTINUOUS FUNCTIONS

5.1. Continuous Functions

5.1.1. (e-6 Definition of Continuity) Let A € R, let f: A - R and let ¢ € A. We say that f
is continuous at c if given any number € > 0, there exists § > 0 such that if x is any point
of A satisfying |x — c| < 8, then |f(x) — f(c)| < €.

Equivalently, if ¢ is a cluster point, f(x) is continuous at ¢ if and only if f(c) = lim f(x).
X—C

5.1.2. (Equivalent Definition of Continuity) Let A C R, f:A - Rand c € A. We say that
is continuous at ¢ if given any e-neighbourhood V.(f (c)) of f(c), there exists a §-
neighbourhood Vg(c) of ¢ such that if x is any point of A N Vg(c), then f(x) belongs to

Ve(f(c)), that is f(A N Vs(c)) € Ve(f(c)).

If f fails to be continuous at ¢, then we say that f is discontinuous at c.
If f is continuous at every point in A, then we say that f is continuous on A.

5.1.3. (Sequential Criterion for Continuity) f is continuous at x = a if and only if for
every sequence (x,) in the domain of f such that x,, = a, we have f(x,,) = f(a).

5.1.4. (Discontinuity Criterion) f is discontinuous at x = a if and only if there exists a
sequence (x,) in the domain of f such that x,, = a, but f(x,) » f(a).

5.2. Combinations of Continuous Functions

5.2.1. (Theorem) Suppose that f and g are continuous at x = c, then
a. fxg,f gandbf arealso continuous at x = ¢, where b is a constant.
b. If g(c) # 0, then f/g is also continuous at x = c.

5.2.2. (Theorem) Suppose that f and g are continuous on A, then
a. f+g,fgandbf arealso continuous on A, where b is a constant.

13
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b. If g(c) # 0, then f/g is also continuous on A.

5.2.6. (Theorem) Let f: A - R, g: B - Rand f(A) € B. If f is continuous at ¢, and g is
continuous at b = f(c), then g o f is continuous at c.

5.2.7. (Theorem) Let f:A—> R, g: B = Rand f(A) € B. If f is continuous on 4 and g is
continuous on B, then g o f is continuous on A.

5.3. Continuous Functions on Intervals

5.3.1. (Definition) A function f: A = R is said to be bounded on A if there exists M > 0
such that |f(x)| < M, Vvx € A.

5.3.2. (Boundness Theorem) If f is continuous on [a, b], then f is bounded on [a, b].

5.3.3. (Definition 5.3.3) We say that f has an absolute maximum on 4 if there exists x* €
A such that f(x*) = f(x),Vx € A. So, in this case, f(x*) = sup f(4A) = max f(4).

We say that f has an absolute minimum on A if there exists x* € A such that f(x*) <
f(x),Vx € A. So, in this case, f(x*) = inf f(4A) = min f(A).

5.3.4. (Maximum-Minimum Theorem) If f is continuous on [a, b], then f has an absolute
maximum and an absolute minimum on [a, b].

5.3.5. (Location of Roots Theorem) If f is continuous on [a, b] and f(a)f(b) < 0, then
there exists a point ¢ in (a, b) such that f(c) = 0.

5.3.7. (Intermediate Value Theorem) Let I be an interval, f be continuous on I, and a,b €
I with f(a) < f(b). For any k € [f(a), f(b)], there exists a point c in I such that f(c) =
k.

5.3.10. (Closed Interval Theorem) If f is continuous on [a, b], then f([a, b]) =
{f(x) :: x € [a,b]} = [m, M], where m = inf f([a, b]) and M = sup f([a, b]).

5.4. Uniform Continuity

5.4.1. (Definition) Let A c R, f: A — R. We say that f is uniformly continuous on 4 if for
each € > 0, there exists a §(€) > 0 such that Vx,y € 4, |[x — y| < 6(e) =

If(x) - fO) <e

14
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5.4.2. (Sequential Criterion for Uniform Continuity) The function f: A — R is uniformly
continuous on 4 if and only if for any two sequences (x,), (1,) in A4 such that
lim x, —y, = 0, we have lim f(x,) — f(y,) = 0.

n—-oo

n—-oo

5.4.2. (Nonuniform Continuity Criteria) The following statements are equivalent:
1. f is not uniformly continuous on A.
2. 3€y>0s.t.V6 > 0,3x5, Vs s.t. |xs — ys| < 8 and |f(x5) — f(ys)]| = €.

3. deo > 0, (xn); (yn) S-t-rlli_glo Xn = IYn = 0 and |f(x5) _f(yS)I = €.

5.4.3. (Uniform Continuity Theorem) If f is continuous on a closed bounded interval [a, b],
then it is uniformly continuous on [a, b].

5.4.4. (Lipschitz Condition) A function f: A — R is said to be Lipschitz function on A if
there exists a K > 0 such that |[f(x) — f(y)| < K|x — y|,Vx,y € A.

5.4.5. (Theorem) If f: A = R is a Lipschitz function, then f is uniformly continuous on A.

5.4.7. (Theorem of uniformly continuous functions preserve Cauchy sequence) If f: A - R
is uniformly continuous on A4 and (x,) is a Cauchy sequence in A, then (f(x,)) is a
Cauchy sequence.

5.4.8. (Continuous Extension Theorem) A function f is uniformly continuous on the
interval (a, b) if and only if it can be defined at the endpoints a and b such that the
extended function is continuous on [a, b].

5.6. Monotone and Inverse Functions

5.6.1. (Definition) The function f: A — R is said to be increasing on A if whenever x4, x, €
A, x; < x5, then f(x;) < f(x;). The function f is said to be strictly increasing if
whenever x4, x, € A, x; < X5, then f(x;) < f(x3).

The function f: A — R is said to be decreasing on A if whenever x4, x, € A, x; = X,, then
f(x1) = f(x;). The function f is said to be strictly decreasing if whenever x4, x, € A,

X1 > Xy, then f(x1) > f(xy).

If a function is either increasing or decreasing on A, we say that it is monotone on A. If f is

either strictly increasing or strictly decreasing on A, we say that f is strictly monotone on
A.

5.6.1. (Theorem of one-sides limits for monotone functions exist) Let I C R be an interval
and let f: I = R be increasing on I. Suppose that ¢ € I is not an endpoint of I. Then
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(1) xll,r?_ f(x) =sup{f(x) sx€l,x <c}
(ii) xlirgrf(x) =inf{f(x) :x € [, x > c}.

5.6.2. (Corollary) The following statements are equivalent:
a. f is continuous at c.

b Jim £GO = £(©) = lim f(x)
c. sup{f(x)=x€el,x<c}=f(c)=inf{f(x):=x€l,x>c}.

5.6.3. (Definition) If f: 1 — R is increasing on [ and if ¢ is not an endpoint of I, we define
the jump of f at ¢ to be j¢(c) = 1im+f(x) — lim f(x) =inf{f(x) :x €, x > c} —
X—C X—C—

sup{f(x) = x €l,x < c}.

5.6.3. (Theorem) Let f: 1 — R be increasing on /. Then f is continuous at c¢ if and only if
jr(c) =0.

5.6.4. (Theorem) Let I € R be an interval and let f: I — R be monotone on I. Then the set
of points D € [ at which f is discontinuous is a countable set.

5.6.5. (Continuous Inverse Theorem) Let I € R be an interval and f: I — R be strictly
monotone and continuous. Then the inverse function £~ is also strictly monotone and
continuous on J.
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