MA2214 Combinatorics and Graphs I

AY2021/22 Semester 1

Chapter 1 – Permutations and Combinations

- *r*-permutations of *n* distinct objects: $P_r^n = \frac{n!}{(n-r)!}$
- *r*-circular permutations of *n* distinct objects: $Q_r^n = \frac{n!}{(n-r)!} \cdot \frac{1}{r}$ •
- *r*-combinations of *n* distinct objects: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ •
- r-permutations of n distinct objects with repetition allowed: n^r •
- *r*-permutations of $M = \{r_1 \cdot a_1, r_2 \cdot a_2, \dots, r_n \cdot a_n\}$: $P(r:r_1,r_2,...,r_n) = \frac{r!}{r_1!r_2!...r_n!}$
- Number of *r*-element multi-subsets of $M = \{\infty \cdot a_1, \infty \cdot$ $a_2, \ldots, \infty \cdot a_n$ }: $H_r^n = \binom{r+n-1}{r}$
 - Number of non-negative solutions of $x_1 + x_2 + \dots + x_n = r$: $H^n_r = \binom{r+n-1}{r}$
- Identities:

 - $\circ \binom{n}{r} = \binom{n}{n-r}$ $\circ \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$

$$(r) (r-1) (r-1)$$

$$\binom{r}{r} = \frac{r}{r} \binom{r-1}{r-1}$$

 $\circ \binom{n}{r} = \frac{n-r+1}{r} \binom{n}{r-1}$ $\circ \binom{n}{r} \binom{m}{r-r} \binom{n-r}{r-r}$

$$\circ \binom{n}{m}\binom{m}{r} = \binom{n}{r}\binom{n-r}{m-r}$$

• Number of shortest routes from X(0,0) to Y(m,n): $\binom{m+n}{n}$

Chapter 2 - Binomial and Multinomial Coefficients

- (Binomial Theorem) $(x + y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$
 - $\circ \quad \sum_{r=0}^n \binom{n}{r} = 2^n$
 - $\circ \quad \sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$
 - $\circ \quad \sum_{r=1}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$
 - $\sum_{r=1}^{n} r^{2} \binom{n}{r} = n(n+1)2^{n-2}$
 - (Vandermonde's Identity) $\sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i} = \binom{m+n}{r}$ $(n)^2$ (2n)

•
$$\sum_{r=0}^{n} \binom{n}{r} = \binom{2n}{n}$$

- Pascal's Triangle ٠
- (Chu Shih-Chieh Identity) (i) $\binom{r}{r} + \binom{r+1}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}$ (ii) $\binom{r}{0} + \binom{r+1}{1} + \dots + \binom{r+k}{k} = \binom{r+k+1}{k}$ • (Multinomial Theorem) $(x_1 + x_2 + \dots + x_m)^n = \sum_{n_1+n_2+\dots+n_m=n} \binom{n}{n_1, n_2, \dots, n_m} x_1^{n_1} x_2^{n_2} \dots x_m^{n_m}$

Chapter 3 – Pigeonhole Principle

- (*Pigeonhole Principle*) Let k and n be any two positive integers. If at least kn + 1 objects are distributed among nboxes, then one of the boxes must contain at least k + 1objects. In particular, if at least n + 1 objects are to be put into n boxes, then one of the boxes must contain at least two obiects.
- (Generalised Pigeonhole Principle) Let $n, k_1, k_2, ..., k_n \in \mathbb{N}$. If $k_1 + k_2 + \dots + k_n - (n-1)$ or more objects are put into n boxes, then either
 - the first box contains at least k_1 objects; OR
 - the second box contains at least k_2 objects; OR
 - 0
 - the *n*-th box contains at least k_n objects.
- (Ramsey Number) Let R(p,q) denote the smallest natural number n such that for any colouring of the edges of an n-

clique by 2 colours, blue and red, there exists either a "blue pclique" or a "red q-clique".

- 0 R(p,q) = R(q,p)
- R(1,q) = 10

0

- R(2,q) = qR(3,3) = 6
- (Theorem 23.1) $R(p,q) \le R(p-1,q) + R(p,q-1)$ 0
- (Theorem 23.2) If R(p-1,q) and R(p,q-1) are even, then $R(p,q) \le R(p-1,q) + R(p,q-1) - 1$

Chapter 4 – Principle of Inclusion and Exclusion

- (Principle of Inclusion and Exclusion) |A₁ ∪ A₂ ∪ ... ∪ A_q| = $\sum_{i=1}^{q} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots +$ $(-1)^{q+1} | A_1 \cap A_2 \cap ... \cap A_q |$
- (Generalised Principle of Inclusion and Exclusion) Number of elements of S that possesses exactly m of the q properties:

$$E(m) = \sum_{k=m}^{q} (-1)^{k-m} {\binom{k}{m}} \omega(k), \text{ where } \omega(k) =$$

- $\sum \omega(p_{i1}p_{i2}\dots p_{ik})$ • Number of elements without any properties: $E(0) = \omega(0) - \omega(0)$ $\omega(1) + \dots + (-1)^q \omega(q)$
- (Stirling Number) Number of ways to distribute r distinct objects into n identical boxes so that no box is empty: $S(r,n) = \frac{1}{2} \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} (n)$ $k)^r$

$$S(r,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n - 1)^{k} (n -$$

$$\circ S(0,0) = 1$$

- $\circ S(r,0) = S(0,n) = 0$
- $\circ S(r,n) > 0$ if $r \ge n \ge 1$ \circ S(r,n) = 0 if $n > r \ge 1$
- $\circ S(r, 1) = 1$
- $\circ S(r,r) = 1$
- \circ $S(r,r-1) = \binom{r}{2}$
- $\circ S(r, r-2) = \binom{r}{3} + 3\binom{r}{4}$
- S(r,n) = S(r-1,n-1) + nS(r-1,n)
- Number of partitions of $\{1, 2, ..., r\}$: $\sum_{n=1}^{r} S(r, n)$
- (*Theorem 27.1*) Number of surjective mappings from \mathbb{N}_r to 0 \mathbb{N}_{n} : $F(r,n) = n! S(r,n) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)^{r}$
- (Theorem 28.2) Number of r-permutations of n distinct objects
 - with k fixed points: $D(r, n, k) = \frac{\binom{k}{k}}{(n-r)!} \sum_{i=0}^{r-k} (-1)^i \binom{r-k}{i} (n-r)^{i-1} \sum_{i=0}^{r-k} (n-r)^{i-1$ (k-i)!
 - Number of derangements of \mathbb{N}_n : $D_n = D(n, n, 0) =$ $n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$
- Number of integers between 1 and *n* which are coprime to *n*: $\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right)$

Distribution Problems	
r distinct objects	n distinct boxes
 Each box can hold at most one object: Pⁿ_r 	
• Each box can hold any number of objects: <i>n^r</i>	
 Each box can hold any number of objects and the 	
orderings of objects inside each box count: $n(n + 1) \dots (n + 1)$	
(r-1))	
r identical objects	n distinct boxes
 Each box can hold at most one object: ⁿ/_r 	
• Each box can hold any number of objects: H_r^n	
• Each box holds at least one object: $\binom{r-1}{r-n}$	
r distinct objects	n identical boxes
• Each box holds at least one object: <i>S</i> (<i>r</i> , <i>n</i>)	
r identical objects	n identical boxes

Cheatsheet **Chapter 5 – Generating Functions**

Generalised binomial expansion: $(1 \pm x)^{\alpha} = \sum_{r=0}^{\infty} {\alpha \choose r} (\pm x)^{r}$

$$\circ \frac{1}{1-x} = 1 + x + x^{2} + x^{3} + \cdots$$

$$\circ \frac{1}{(1-x)^{2}} = 1 + 2x + 3x^{2} + 4x^{3} + \cdots$$

$$\circ (1-x)^{-n} = 1 + \binom{1+n-1}{1}x + \binom{2+n-1}{2}x^{2} + \cdots + \binom{r+n-1}{x}x^{r} + \cdots$$

- Ordinary generating function of $(a_r) = \{a_0, a_1, \dots, a_r, \dots\}$: • $A(x) = \sum_{r=0}^{\infty} a_r x^r = a_0 + a_1 x + \dots + a_r x^r + \dots$
 - Generating function of $(a_r) = \{0, 0, \dots, 0, 1, 0, \dots\}$, where $a_n =$ 1: $A(x) = x^n$
 - Generating function of $(a_r) = \{\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}, 0, 0, \dots\}$: 0 $A(x) = (1+x)^n$
 - Generating function of $(a_r) = \{1, 1, ...\}$: $A(x) = \frac{1}{1-x}$
 - Generating function of $(a_r) = \{1, k, k^2, ...\}$: $A(x) = \frac{1}{1-kx}$ 0
 - 0 Generating function of $(a_r) = \{1, 2, 3, ...\}$: $A(x) = \frac{1}{(1-x)^2}$
 - Generating function of $(a_r) =$ $\{\binom{n-1}{0}, \binom{1+n-1}{1}, \binom{2+n-1}{2}, \ldots\}: A(x) = (1-x)^{-n}$
 - (Theorem 31.1) Power series operations: $A(x) + B(x) = c_0 + c_1 x + c_2 x^2 + \cdots$, where $c_r = a_r + b_r$ $A(x)B(x) = d_0 + d_1x + d_2x^2 + \cdots$, where $d_r = a_0b_r + a_1b_{r-1} + d_1x + d_2x^2 + \cdots$
 - $\cdots + a_r b_0$
 - Generating function of (c_r) , where $c_r = \alpha a_r + \beta b_r$: C(x) =0 $\alpha A(x) + \beta B(x)$
 - Generating function of (c_r) , where $c_r = a_0 b_r + a_1 b_{r-1} + a_1 b_{r-1}$ 0 $\cdots + a_r b_0$: C(x) = A(x)B(x)
 - 0 Generating function of (c_r) , where $c_r = a_0 a_r + a_1 a_{r-1} + a_$ $\dots + a_r a_0 : C(x) = A^2(x)$
 - Generating function of $(c_r) = \{0, 0, \dots, 0, a_0, a_1, \dots\}$, where 0 there are *m* 0s: $C(x) = x^m A(x)$
 - Generating function of (c_r) , where $c_r = k^r a_r$: C(x) = A(kx)0
 - Generating function of $(c_r) = \{a_0, a_1 a_0, a_2 a_1, ...\}$: C(x) = (1 - x)A(x)
 - Generating function of $(c_r) = \{a_0, a_0 + a_1, a_0 + a_1 + a_2, ...\}$: $C(x) = \frac{A(x)}{1-x}$
 - Generating function of $(c_r) = \{a_1, 2a_2, 3a_3, ...\}$: C(x) = A'(x)0
 - Generating function of $(c_r) = \{0, a_1, 2a_2, ...\}$: C(x) = xA'(x)
 - Generating function of $(c_r) = \{0, a_0, \frac{a_1}{2}, \frac{a_2}{3}, ...\}$: C(x) = $\int_0^x A(t) dt$
- OGF of *r*-combinations from the multiset $M = \{n_1 \cdot b_1, n_2 \cdot b_2, n_2 \cdot$ $b_2, ..., n_k \cdot b_k$ }: $\prod_{i=1}^k (\sum_{j=0}^{n_i} x^j)$
 - \circ Number of partitions of *r* into parts of size 1, 2 or 3: $(1 + x + x^{2} + \cdots)(1 + x^{2} + (x^{2})^{2} + \cdots)(1 + x^{3} + (x^{3})^{2} + \cdots)$
 - Number of partitions of r into distinct parts of arbitrary size: $(1+x)(1+x^2)(1+x^3) \dots$

Note that
$$1 + x = \frac{1 - x^2}{1 - x}$$
.

 \circ Number of partitions of *r* into odd parts:

$$(1 + x + x^2 + \cdots)(1 + x^3 + (x^3)^2 + \cdots)$$
..

- o (Euler) Number of partitions of r into distinct parts is equal to number of partitions of r into odd parts.
- Exponential generating function of $(a_r) = \{a_0, a_1, \dots, a_r, \dots\}$: $\begin{array}{l} A(x) = \sum_{r=0}^{\infty} a_r \frac{x^r}{r!} = a_0 + a_1 \frac{x}{1!} + a_2 \frac{x^2}{2!} + \cdots \\ \circ \quad \text{Generating function of } (a_r) = \{1, 1, \ldots\} \colon e^x \end{array}$

 - Generating function of $(a_r) = \{0!, 1!, 2!, ...\}$: $\frac{1}{1-x}$ 0
 - Generating function of $(a_r) = \{0, k, k^2, ...\}$: e^{kx} 0
 - Generating function of $(a_r) = \{P_0^n, P_1^n, P_2^n, ...\}$: $(1 + x)^n$ 0
 - EGF of *r*-permutations from the multiset $M = \{n_1 \cdot b_1, n_2 \cdot b_3, n_3 \cdot b_3, n_3 \cdot b_3, n_3 \cdot b_3, n_2 \cdot b_3, n_3 \cdot$
 - $b_2, \ldots, n_k \cdot b_k$ }: $\prod_{i=1}^k (\sum_{j=0}^{n_i} \frac{x^j}{j!})$
 - \circ EGF of *r*-permutations of *p* blue identical balls and *q* red identical balls: $(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^p}{p!})(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^q}{q!})$
- Exponential operations

•

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots$$

$$\circ e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^r x^r}{r!} + \circ \frac{1}{2} (e^x + e^{-x}) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \circ \frac{1}{2} (e^x - e^{-x}) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

Chapter 6 – Recurrence Relations

Solution to linear homogenous recurrence relations: If $\alpha 1, \alpha 2, ..., \alpha_k$ are the distinct characteristic roots such that α_i is of multiplicity m_i , then the general solution is given by

$$a_n = \sum_{i=1}^{k} (A_{11} + A_{12}n + \dots + A_{1,m_i}n^{m_i-1})(\alpha_i)^n$$

- Complex roots
 - $\alpha = a + ib = r(\cos \theta + i \sin \theta)$ where $r = \sqrt{a^2 + b^2}$ and $\theta =$ $\tan^{-1}\left|\frac{b}{a}\right|$.
 - (De Moivre's Theorem) $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

Chapter 7 – Basic Concepts of Graphs

- Order: Number of vertices •
- Size: Number of edges
- Neighbourhood ($N(v_i)$): Set of all neighbours of v_i
- Closed neighbourbood ($N[v_i]$): Set of all neighbours union v_i
- (Handshaking Lemma) Sum of order of every vertex in any graph is even.
- Maximum size of a graph of order $n: \binom{n}{2}$
- Sum of degree of vertices: 2e
- Subgraph: *H* is a subgraph of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq$ E(G).
- Spanning subgraph: *H* is a subgraph of *G* and V(H) = V(G).
- Induced subgraph: $E(H) = \{uv \in E(G) \mid u \in V(H), v \in V(H)\}$
- Subgraph via deletion: When a set of edge is deleted, the subgraph is always a spanning graph; when a set of vertices is deleted, the subgraph is always an induced graph.
- (*Theorem*) Let G be a graph.
 - If $A \subseteq V(G)$, then G A = [V(G) A].
 - \circ Let *H* be a subgraph of *G*. *H* is an induced subgraph of *G* if and only if H = G - (V(G) - V(H)).
- Walk: Vertices and edges need not be distinct.
- A walk is open if source is distinct from destination, otherwise closed.
- Trail: Vertices need not be distinct while edges are distinct.
- Path (P_n) : Vertices are distinct, hence edges are distinct.
- Circuit: A closed trail of length at least 2
- Cycle (C_n) : A closed path of length at least 2
- (*Theorem*) If a graph contains a u-v walk of length k, then it contains a u-v path of length at most k.
- Complement: $V(G) = V(\overline{G})$ and $\forall u, v, uv \in E(G) \Leftrightarrow uv \notin E(\overline{G})$
- (*Theorem*) If G is disconnected, then \overline{G} is connected.
- Distance between u and v: Length of shortest u-v path
- Eccentricity: $e_G(u) = \max_{v \in V(G)} \{d(u, v)\}$
- Diameter: diam(G) = $\max_{u \in V(G)} e(u) = \max_{u, v \in V(G)} \{d(u, v)\}$
- Radius: $rad(G) = \min_{u \in V(G)} e(u)$, where such *u* is a central vertex. The centre of G is the subgraph of G induced by the set of central vertices.
- (Triangle Inequality) $d(u, v) \le d(u, w) + d(w, v)$
- (*Theorem*) For any connected graph G, $rad(G) \le diam(G) \le$ 2rad(G)
- v is a cut vertex in G if and only if G v is connected.
- Isomorphism: Two graphs are isomorphic if there exists a bijection $f: V(G) \to V(H)$ such that $uv \in E(G) \Leftrightarrow f(u)f(v) \in$ E(H).
- (*Theorem*) $G \cong H$ if and only if $\overline{G} \cong \overline{H}$.
- If $G \cong H$, then:
 - G and H must have the same order and size;
 - $\delta(G) = \delta(H)$ and $\Delta(G) = \Delta(H)$;
 - G and H must have the same degree sequence.

Cheatsheet

- (*Theorem*) Let d = (d₁, d₂, ..., d_n) be a non-increasing degree sequence. Denote d* = (d₂ 1, d₃ 1, ..., d_{d1+1} -
 - 1, d_{d_1+2} , ..., d_n). Then *d* is graphic if and only of d^* is graphic.
- Self-complementary: $G \cong \overline{G}$, the order n = 4k or 4k + 1.
- Adjacency matrix (A): row set of vertices; column set of vertices
 - A is symmetric.
 - Entries in A are either 0 or 1.
 - Sum of entries in the *i*-th row is $d(v_i)$.
 - The *i*-*j* entry of A^k is the number of different v_i - v_j walks of length k in G.
- Incidence matrix (M): row set of vertices; column set of edges
 - $\circ~$ Each column contains exactly 2 1s.
 - Sum of entries in the *i*-th row is $d(v_i)$.

Chapter 8 – Bipartite Graphs and Trees

- Bipartite graph: A graph G is bipartite if its vertex set V(G) can be partitioned into two disjoint subsets V₁ and V₂ such that each edge of G joins a vertex of V₁ to a vertex of V₂.
- Sum of degree of vertices in each partition is equal.
- Complete bipartite graph $(K_{p,q})$
- Join: $V(G_1 + G_2) = V(G_1) \cup V(G_2)$; $E(G_1 + G_2) = E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\}$
- (*Lemma*) Every closed walk of odd length *p* in a graph always contains an odd cycle.
- (*Theorem*) A graph is bipartite if and only if it contains no odd cycles.
- Tree: A connected graph is a tree if it contains no cycles.
 Every two distinct vertices are joined by a unique path.
 - \circ size = order 1

- Forest: Each component is a tree.
- (*Theorem*) Let *T* be a tree and $\Delta(T) = k$. For i = 1, 2, ..., k, let n_i be number of vertices in *T* of degree *i*. Then $n_1 = 2 + n_3 + 2n_4 + \cdots + (k-2)n_k$.
- Number of non-isomorphic trees: 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, ...
- Spanning tree: A spanning subgraph that is a tree.
- Finding spanning tree: DFS, BFS
- (*Theorem*) A graph is connected if and only if it contains a spanning tree.
- (Corollary) If a graph is connected, then $e(G) \ge n 1$.
- Goe: The multigraph of order n 1 obtained from G by deleting all edges joining u and v, and by identifying u and v.
- Number of spanning trees: τ(G) = τ(G e) + τ(Goe)
 Cycles: τ(C_n) = n
 - G_1 and G_2 connected via a cut vertex/bridge: $\tau(G) = \tau(G_1)\tau(G_2)$
 - Two cycles sharing one common edge: (p + q 2) + (p 1)(q 1)
 - Duplicate one edge of $C_n: 2n-1$
 - Two cycles sharing one common edge which is duplicated: (p + q 2) + 2(p 1)(q 1)
- (*Matrix Tree Theorem*) Let *G* be a multigraph with *V*(*G*) = {*v*₁, *v*₂, ..., *v*_n}. Let *A* be the adjacency matrix of *G* and *C* be the *n* × *n* diagonal matrix defined by

$$c_{ij} = \begin{cases} d(v_i) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

- Then $\tau(G)$ is equal to the cofactor of any entry in C A.
- (*Theorem*) For $n \ge 2$, $\tau(K_n) = n^{n-2}$.
- Finding minimum spanning tree: Kruskal's and Prim's
- Computing distance: Dijkstra's