MA2214 Combinatorics and Graphs I AY2021/22 Semester 1

Chapter 1 - Permutations and Combinations

- r-permutations of n distinct objects: $P_{r}^{n}=\frac{n!}{(n-r)!}$
- r-circular permutations of n distinct objects: $Q_{r}^{n}=\frac{n!}{(n-r)!} \cdot \frac{1}{r}$
- r-combinations of n distinct objects: $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- r-permutations of n distinct objects with repetition allowed: n^{r}
- r-permutations of $M=\left\{r_{1} \cdot a_{1}, r_{2} \cdot a_{2}, \ldots, r_{n} \cdot a_{n}\right\}$:
$P\left(r: r_{1}, r_{2}, \ldots, r_{n}\right)=\frac{r!}{r_{1}!r_{2}!\ldots r_{n}!}$
- Number of r-element multi-subsets of $M=\left\{\infty \cdot a_{1}, \infty\right.$.
$\left.a_{2}, \ldots, \infty \cdot a_{n}\right\}: H_{r}^{n}=\binom{r+n-1}{r}$
- Number of non-negative solutions of $x_{1}+x_{2}+\cdots+x_{n}=r$: $H_{r}^{n}=\binom{r+n-1}{r}$
- Identities:
- $\binom{n}{r}=\binom{n}{n-r}$
- $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$
- $\binom{n}{r}=\frac{n}{r}\binom{n-1}{r-1}$
- $\binom{n}{r}=\frac{n-r+1}{r}\binom{n}{r-1}$
- $\binom{n}{m}\binom{m}{r}=\binom{n}{r}\binom{n-r}{m-r}$
- Number of shortest routes from $X(0,0)$ to $Y(m, n):\binom{m+n}{n}$

Chapter 2 - Binomial and Multinomial Coefficients

- (Binomial Theorem) $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r}$
- $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$
- $\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}=0$
- $\sum_{r=1}^{n} r\binom{n}{r}=n \cdot 2^{n-1}$
- $\sum_{r=1}^{n} r^{2}\binom{n}{r}=n(n+1) 2^{n-2}$
- (Vandermonde's Identity) $\sum_{i=0}^{r}\binom{m}{i}\binom{n}{r-i}=\binom{m+n}{r}$

$$
\text { - } \quad \sum_{r=0}^{n}\binom{n}{r}^{2}=\binom{2 n}{n}
$$

- Pascal's Triangle
- (Chu Shih-Chieh Identity)
(i) $\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1}$
(ii) $\binom{r}{0}+\binom{r+1}{1}+\cdots+\binom{r+k}{k}=\binom{r+k+1}{k}$
- (Multinomial Theorem) $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=$
$\sum_{n_{1}+n_{2}+\cdots+n_{m}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{m}} x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{m}^{n_{m}}$

Chapter 3 - Pigeonhole Principle

- (Pigeonhole Principle) Let k and n be any two positive integers. If at least $k n+1$ objects are distributed among n boxes, then one of the boxes must contain at least $k+1$ objects. In particular, if at least $n+1$ objects are to be put into n boxes, then one of the boxes must contain at least two objects.
- (Generalised Pigeonhole Principle) Let $n, k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}$. If $k_{1}+k_{2}+\cdots+k_{n}-(n-1)$ or more objects are put into n boxes, then either
- the first box contains at least k_{1} objects; OR
- the second box contains at least k_{2} objects; OR
- ...
- the n-th box contains at least k_{n} objects.
- (Ramsey Number) Let $R(p, q)$ denote the smallest natural number n such that for any colouring of the edges of an n -
clique by 2 colours, blue and red, there exists either a "blue p clique" or a "red q-clique".
- $R(p, q)=R(q, p)$
- $R(1, q)=1$
- $R(2, q)=q$
- $R(3,3)=6$
- (Theorem 23.1) $R(p, q) \leq R(p-1, q)+R(p, q-1)$
- (Theorem 23.2) If $R(p-1, q)$ and $R(p, q-1)$ are even, then $R(p, q) \leq R(p-1, q)+R(p, q-1)-1$

Chapter 4 - Principle of Inclusion and Exclusion

- (Principle of Inclusion and Exclusion) $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{q}\right|=$ $\sum_{i=1}^{q}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+$ $(-1)^{q+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{q}\right|$
- (Generalised Principle of Inclusion and Exclusion) Number of elements of S that possesses exactly m of the q properties:
$E(m)=\sum_{k=m}^{q}(-1)^{k-m}\binom{k}{m} \omega(k)$, where $\omega(k)=$
$\sum \omega\left(p_{i 1} p_{i 2} \ldots p_{i k}\right)$
- Number of elements without any properties: $E(0)=\omega(0)-$ $\omega(1)+\cdots+(-1)^{q} \omega(q)$
- (Stirling Number) Number of ways to distribute r distinct objects into n identical boxes so that no box is empty:
$S(r, n)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{r}$
- $S(0,0)=1$
- $S(r, 0)=S(0, n)=0$
- $S(r, n)>0$ if $r \geq n \geq 1$
- $S(r, n)=0$ if $n>r \geq 1$
- $S(r, 1)=1$
- $S(r, r)=1$
- $S(r, r-1)=\binom{r}{2}$
- $S(r, r-2)=\binom{r}{3}+3\binom{r}{4}$
- $S(r, n)=S(r-1, n-1)+n S(r-1, n)$
- Number of partitions of $\{1,2, \ldots, r\}$: $\sum_{n=1}^{r} S(r, n)$
- (Theorem 27.1) Number of surjective mappings from \mathbb{N}_{r} to

$$
\mathbb{N}_{n}: F(r, n)=n!S(r, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{r}
$$

- (Theorem 28.2) Number of r-permutations of n distinct objects with k fixed points: $D(r, n, k)=\frac{\binom{r}{k}}{(n-r)!} \sum_{i=0}^{r-k}(-1)^{i}\binom{r-k}{i}(n-$ $k-i)$!
- Number of derangements of $\mathbb{N}_{n}: D_{n}=D(n, n, 0)=$ $n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$
- Number of integers between 1 and n which are coprime to n : $\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)$

Distribution Problems	
r distinct objects	n distinct boxes
- Each box can hold at most one object: P_{r}^{n} - Each box can hold any number of objects: n^{r} - Each box can hold any number of objects and the orderings of objects inside each box count: $n(n+1) \ldots(n+$ $(r-1)$)	
r identical objects	n distinct boxes
- Each box can hold at most one object: $\binom{n}{r}$ - Each box can hold any number of objects: H_{r}^{n} - Each box holds at least one object: $\binom{r-1}{r-n}$	
r distinct objects	\boldsymbol{n} identical boxes
- Each box holds at least one object: $S(r, n)$	
r identical objects	\boldsymbol{n} identical boxes

Chapter 5 - Generating Functions

- Generalised binomial expansion: $(1 \pm x)^{\alpha}=\sum_{r=0}^{\infty}\binom{\alpha}{r}(\pm x)^{r}$
- $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$
- $\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots$
- $(1-x)^{-n}=1+\binom{1+n-1}{1} x+\binom{2+n-1}{2} x^{2}+\cdots+$

$$
\binom{r+n-1}{r} x^{r}+\cdots
$$

- Ordinary generating function of $\left(a_{r}\right)=\left\{a_{0}, a_{1}, \ldots, a_{r}, \ldots\right\}$:
$A(x)=\sum_{r=0}^{\infty} a_{r} x^{r}=a_{0}+a_{1} x+\cdots+a_{r} x^{r}+\cdots$
- Generating function of $\left(a_{r}\right)=\{0,0, \ldots, 0,1,0, \ldots\}$, where $a_{n}=$ 1: $A(x)=x^{n}$
- Generating function of $\left(a_{r}\right)=\left\{\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}, 0,0, \ldots\right\}$: $A(x)=(1+x)^{n}$
- Generating function of $\left(a_{r}\right)=\{1,1, \ldots\}: A(x)=\frac{1}{1-x}$
- Generating function of $\left(a_{r}\right)=\left\{1, k, k^{2}, \ldots\right\}: A(x)=\frac{1}{1-k x}$
- Generating function of $\left(a_{r}\right)=\{1,2,3, \ldots\}: A(x)=\frac{1}{(1-x)^{2}}$
- Generating function of $\left(a_{r}\right)=$

$$
\left\{\binom{n-1}{0},\binom{1+n-1}{1},\binom{2+n-1}{2}, \ldots\right\}: A(x)=(1-x)^{-n}
$$

- (Theorem 31.1) Power series operations:
$A(x)+B(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$, where $c_{r}=a_{r}+b_{r}$
$A(x) B(x)=d_{0}+d_{1} x+d_{2} x^{2}+\cdots$, where $d_{r}=a_{0} b_{r}+a_{1} b_{r-1}+$
$\cdots+a_{r} b_{0}$
- Generating function of $\left(c_{r}\right)$, where $c_{r}=\alpha a_{r}+\beta b_{r}: C(x)=$ $\alpha A(x)+\beta B(x)$
- Generating function of $\left(c_{r}\right)$, where $c_{r}=a_{0} b_{r}+a_{1} b_{r-1}+$ $\cdots+a_{r} b_{0}: C(x)=A(x) B(x)$
- Generating function of $\left(c_{r}\right)$, where $c_{r}=a_{0} a_{r}+a_{1} a_{r-1}+$ $\cdots+a_{r} a_{0}: C(x)=A^{2}(x)$
- Generating function of $\left(c_{r}\right)=\left\{0,0, \ldots 0, a_{0}, a_{1}, \ldots\right\}$, where there are $m 0 \mathrm{~s}: C(x)=x^{m} A(x)$
- Generating function of $\left(c_{r}\right)$, where $c_{r}=k^{r} a_{r}: C(x)=A(k x)$
- Generating function of $\left(c_{r}\right)=\left\{a_{0}, a_{1}-a_{0}, a_{2}-a_{1}, \ldots\right\}$: $C(x)=(1-x) A(x)$
- Generating function of $\left(c_{r}\right)=\left\{a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots\right\}$:

$$
C(x)=\frac{A(x)}{1-x}
$$

- Generating function of $\left(c_{r}\right)=\left\{a_{1}, 2 a_{2}, 3 a_{3}, \ldots\right\}: C(x)=A^{\prime}(x)$
- Generating function of $\left(c_{r}\right)=\left\{0, a_{1}, 2 a_{2}, \ldots\right\}: C(x)=x A^{\prime}(x)$
- Generating function of $\left(c_{r}\right)=\left\{0, a_{0}, \frac{a_{1}}{2}, \frac{a_{2}}{3}, \ldots\right\}: C(x)=$ $\int_{0}^{x} A(t) d t$
- OGF of r-combinations from the multiset $M=\left\{n_{1} \cdot b_{1}, n_{2}\right.$. $\left.b_{2}, \ldots, n_{k} \cdot b_{k}\right\}: \prod_{i=1}^{k}\left(\sum_{j=0}^{n_{i}} x^{j}\right)$
- Number of partitions of r into parts of size 1, 2 or 3: $\left(1+x+x^{2}+\cdots\right)\left(1+x^{2}+\left(x^{2}\right)^{2}+\cdots\right)\left(1+x^{3}+\left(x^{3}\right)^{2}+\cdots\right)$ - Number of partitions of r into distinct parts of arbitrary size:

$$
(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) \ldots
$$

Note that $1+x=\frac{1-x^{2}}{1-x}$.

- Number of partitions of r into odd parts:

$$
\left(1+x+x^{2}+\cdots\right)\left(1+x^{3}+\left(x^{3}\right)^{2}+\cdots\right) \ldots
$$

- (Euler) Number of partitions of r into distinct parts is equal to number of partitions of r into odd parts.
- Exponential generating function of $\left(a_{r}\right)=\left\{a_{0}, a_{1}, \ldots, a_{r}, \ldots\right\}$:
$A(x)=\sum_{r=0}^{\infty} a_{r} \frac{x^{r}}{r!}=a_{0}+a_{1} \frac{x}{1!}+a_{2} \frac{x^{2}}{2!}+\cdots$
- Generating function of $\left(a_{r}\right)=\{1,1, \ldots\}: e^{x}$
- Generating function of $\left(a_{r}\right)=\{0!, 1!, 2!, \ldots\}: \frac{1}{1-x}$
- Generating function of $\left(a_{r}\right)=\left\{0, k, k^{2}, \ldots\right\}: e^{k x}$
- Generating function of $\left(a_{r}\right)=\left\{P_{0}^{n}, P_{1}^{n}, P_{2}^{n}, \ldots\right\}:(1+x)^{n}$
- EGF of r-permutations from the multiset $M=\left\{n_{1} \cdot b_{1}, n_{2}\right.$.
$\left.b_{2}, \ldots, n_{k} \cdot b_{k}\right\}: \prod_{i=1}^{k}\left(\sum_{j=0}^{n_{i}} \frac{x^{j}}{j!}\right)$
- EGF of r-permutations of p blue identical balls and q red identical balls: $\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{p}}{p!}\right)\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{q}}{q!}\right)$
- Exponential operations
- $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{r}}{r!}+\cdots$
- $e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{r} x^{r}}{r!}+\cdots$
- $\frac{1}{2}\left(e^{x}+e^{-x}\right)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots$
- $\frac{1}{2}\left(e^{x}-e^{-x}\right)=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots$

Chapter 6 - Recurrence Relations

- Solution to linear homogenous recurrence relations

If $\alpha 1, \alpha 2, \ldots, \alpha_{k}$ are the distinct characteristic roots such that α_{i} is of multiplicity m_{i}, then the general solution is given by

$$
a_{n}=\sum_{i=1}^{k}\left(A_{11}+A_{12} n+\cdots+A_{1, m_{i}} n^{m_{i}-1}\right)\left(\alpha_{i}\right)^{n}
$$

- Complex roots
- $\alpha=a+i b=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=$ $\tan ^{-1}\left|\frac{b}{a}\right|$.
- (De Moivre's Theorem) $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$

Chapter 7 - Basic Concepts of Graphs

- Order: Number of vertices
- Size: Number of edges
- Neighbourhood $\left(N\left(v_{i}\right)\right)$: Set of all neighbours of v_{i}
- Closed neighbourbood ($N\left[v_{i}\right]$): Set of all neighbours union v_{i}
- (Handshaking Lemma) Sum of order of every vertex in any graph is even.
- Maximum size of a graph of order $n:\binom{n}{2}$
- Sum of degree of vertices: $2 e$
- Subgraph: H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$.
- Spanning subgraph: H is a subgraph of G and $V(H)=V(G)$.
- Induced subgraph: $E(H)=\{u v \in E(G) \mid u \in V(H), v \in V(H)\}$
- Subgraph via deletion: When a set of edge is deleted, the subgraph is always a spanning graph; when a set of vertices is deleted, the subgraph is always an induced graph.
- (Theorem) Let G be a graph.
- If $A \subseteq V(G)$, then $G-A=[V(G)-A]$.
- Let H be a subgraph of G. H is an induced subgraph of G if and only if $H=G-(V(G)-V(H))$.
- Walk: Vertices and edges need not be distinct.
- A walk is open if source is distinct from destination, otherwise closed.
- Trail: Vertices need not be distinct while edges are distinct.
- Path $\left(P_{n}\right)$: Vertices are distinct, hence edges are distinct.
- Circuit: A closed trail of length at least 2
- Cycle $\left(C_{n}\right)$: A closed path of length at least 2
- (Theorem) If a graph contains a $u-v$ walk of length k, then it contains a $u-v$ path of length at most k.
- Complement: $V(G)=V(\bar{G})$ and $\forall u, v, u v \in E(G) \Leftrightarrow u v \notin E(\bar{G})$
- (Theorem) If G is disconnected, then \bar{G} is connected.
- Distance between u and v : Length of shortest $u-v$ path
- Eccentricity: $e_{G}(u)=\max _{v \in V(G)}\{d(u, v)\}$
- Diameter: $\operatorname{diam}(G)=\max _{u \in V(G)} e(u)=\max _{u, v \in V(G)}\{d(u, v)\}$
- Radius: $\operatorname{rad}(G)=\min _{u \in V(G)} e(u)$, where such u is a central vertex.

The centre of G is the subgraph of G induced by the set of central vertices.

- (Triangle Inequality) $d(u, v) \leq d(u, w)+d(w, v)$
- (Theorem) For any connected $\operatorname{graph} G, \operatorname{rad}(G) \leq \operatorname{diam}(G) \leq$ $2 \operatorname{rad}(G)$
- v is a cut vertex in G if and only if $G-v$ is connected.
- Isomorphism: Two graphs are isomorphic if there exists a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G) \Leftrightarrow f(u) f(v) \in$ $E(H)$.
- (Theorem) $G \cong H$ if and only if $\bar{G} \cong \bar{H}$.
- If $G \cong H$, then:
- G and H must have the same order and size;
- $\delta(G)=\delta(H)$ and $\Delta(G)=\Delta(H)$;
- G and H must have the same degree sequence.
- (Theorem) Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing degree sequence. Denote $d^{*}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-\right.$
$1, d_{d_{1}+2}, \ldots, d_{n}$). Then d is graphic if and only of d^{*} is graphic.
- Self-complementary: $G \cong \bar{G}$, the order $n=4 k$ or $4 k+1$.
- Adjacency matrix (A) : row - set of vertices; column - set of vertices
- A is symmetric.
- Entries in A are either 0 or 1 .
- Sum of entries in the i-th row is $d\left(v_{i}\right)$.
- The $i-j$ entry of A^{k} is the number of different $v_{i}-v_{j}$ walks of length k in G.
- Incidence matrix (M) : row - set of vertices; column - set of edges
- Each column contains exactly 21 s .
- Sum of entries in the i-th row is $d\left(v_{i}\right)$.

Chapter 8 - Bipartite Graphs and Trees

- Bipartite graph: A graph G is bipartite if its vertex set $V(G)$ can be partitioned into two disjoint subsets V_{1} and V_{2} such that each edge of G joins a vertex of V_{1} to a vertex of V_{2}.
- Sum of degree of vertices in each partition is equal.
- Complete bipartite graph $\left(K_{p, q}\right)$
- Join: $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right) ; E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup$ $E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$
- (Lemma) Every closed walk of odd length p in a graph always contains an odd cycle.
- (Theorem) A graph is bipartite if and only if it contains no odd cycles.
- Tree: A connected graph is a tree if it contains no cycles.
- Every two distinct vertices are joined by a unique path.
- size $=$ order -1
- Forest: Each component is a tree.
- (Theorem) Let T be a tree and $\Delta(T)=k$. For $i=1,2, \ldots, k$, let n_{i} be number of vertices in T of degree i. Then $n_{1}=2+n_{3}+$ $2 n_{4}+\cdots+(k-2) n_{k}$.
- Number of non-isomorphic trees: 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, ...
- Spanning tree: A spanning subgraph that is a tree.
- Finding spanning tree: DFS, BFS
- (Theorem) A graph is connected if and only if it contains a spanning tree.
- (Corollary) If a graph is connected, then $e(G) \geq n-1$.
- Goe: The multigraph of order $n-1$ obtained from G by deleting all edges joining u and v, and by identifying u and v.
- Number of spanning trees: $\tau(G)=\tau(G-e)+\tau(G o e)$
- Cycles: $\tau\left(C_{n}\right)=n$
- G_{1} and G_{2} connected via a cut vertex/bridge: $\tau(G)=$ $\tau\left(G_{1}\right) \tau\left(G_{2}\right)$
- Two cycles sharing one common edge: $(p+q-2)+(p-$ 1) $(q-1)$
- Duplicate one edge of $C_{n}: 2 n-1$
- Two cycles sharing one common edge which is duplicated: $(p+q-2)+2(p-1)(q-1)$
- (Matrix Tree Theorem) Let G be a multigraph with $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let A be the adjacency matrix of G and C be the $n \times n$ diagonal matrix defined by

$$
c_{i j}=\left\{\begin{array}{cl}
d\left(v_{i}\right) & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
$$

Then $\tau(G)$ is equal to the cofactor of any entry in $C-A$.

- (Theorem) For $n \geq 2, \tau\left(K_{n}\right)=n^{n-2}$.
- Finding minimum spanning tree: Kruskal's and Prim's
- Computing distance: Dijkstra's

