MA2214 Combinatorics and Graphs I

AY2021/22 Semester 1

Chapter 1 - Permutations and Combinations

- *r*-permutations of *n* distinct objects: $P_r^n = \frac{n!}{(n-r)!}$
- *r*-circular permutations of *n* distinct objects: $Q_r^n = \frac{n!}{(n-r)!} \cdot \frac{1}{r}$ •
- *r*-combinations of *n* distinct objects: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- r-permutations of n distinct objects with repetition allowed: n^r •
- *r*-permutations of $M = \{r_1 \cdot a_1, r_2 \cdot a_2, \dots, r_n \cdot a_n\}$: $P(r:r_1,r_2,...,r_n) = \frac{r!}{r_1!r_2!...r_n!}$
- Number of *r*-element multi-subsets of $M = \{\infty \cdot a_1, \infty \cdot a_1, \infty \}$ $a_2, \ldots, \infty \cdot a_n$ }: $H_r^n = \binom{r+n-1}{r}$
 - Number of non-negative solutions of $x_1 + x_2 + \dots + x_n = r$: $H_r^n = \binom{r+n-1}{r}$
- Identities:
 - $\circ \binom{n}{r} = \binom{n}{n-r}$

$$\circ \quad \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

$$\binom{n}{2} = \frac{n}{2} \binom{n-1}{2}$$

$$\binom{r}{r} \binom{r}{r-1}$$

$$\circ \quad \binom{r}{r} = \frac{r}{r} \binom{r-1}{r-1}$$
$$\circ \quad \binom{n}{r} \binom{m}{r-1} \binom{n-r}{r}$$

$$\circ \binom{n}{m}\binom{n}{r} = \binom{n}{r}\binom{n}{m-r}$$

Number of shortest routes from X(0,0) to Y(m,n): $\binom{m+n}{n}$

Chapter 2 - Binomial and Multinomial Coefficients

- (Binomial Theorem) $(x + y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$
 - $\circ \quad \sum_{r=0}^n \binom{n}{r} = 2^n$
 - $\circ \quad \sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$
 - $\circ \quad \sum_{r=1}^{n} r\binom{n}{r} = n \cdot 2^{n-1}$
 - $\sum_{r=1}^{n} r^{2} \binom{n}{r} = n(n+1)2^{n-2}$
 - (Vandermonde's Identity) $\sum_{i=0}^{r} \binom{m}{i} \binom{n}{r-i} = \binom{m+n}{r}$ $(n)^2 - (2n)$

•
$$\sum_{r=0}^{n} \binom{n}{r} = \binom{2n}{n}$$

- Pascal's Triangle ٠
 - (Chu Shih-Chieh Identity) (i) $\binom{r}{r} + \binom{r+1}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}$ (ii) $\binom{r}{0} + \binom{r+1}{1} + \dots + \binom{r+1}{k} = \binom{r+1}{k}$ (Multinomial Theorem) $(x_1 + x_2 + \dots + x_m)^n = \sum_{n_1+n_2+\dots+n_m=n} \binom{n}{n_1, n_2, \dots, n_m} x_1^{n_1} x_2^{n_2} \dots x_m^{n_m}$

Chapter 3 – Pigeonhole Principle

- (Pigeonhole Principle) Let k and n be any two positive integers. If at least kn + 1 objects are distributed among nboxes, then one of the boxes must contain at least k + 1objects. In particular, if at least n + 1 objects are to be put into n boxes, then one of the boxes must contain at least two objects.
- (Generalised Pigeonhole Principle) Let $n, k_1, k_2, \dots, k_n \in \mathbb{N}$. If $k_1 + k_2 + \dots + k_n - (n-1)$ or more objects are put into n boxes, then either
 - the first box contains at least k_1 objects; OR
 - the second box contains at least k_2 objects; OR
 - 0
 - the *n*-th box contains at least k_n objects.
- (Ramsey Number) Let R(p,q) denote the smallest natural number n such that for any colouring of the edges of an n-

clique by 2 colours, blue and red, there exists either a "blue pclique" or a "red q-clique".

- $\circ \quad R(p,q) = R(q,p)$
- $\circ R(1,q) = 1$

$$\circ R(2,q) =$$

- $\circ R(3,3) = 6$
- (Theorem 23.1) $R(p,q) \le R(p-1,q) + R(p,q-1)$ 0
- (*Theorem 23.2*) If R(p-1,q) and R(p,q-1) are even, then $R(p,q) \le R(p-1,q) + R(p,q-1) - 1$

Chapter 4 – Principle of Inclusion and Exclusion

- (Principle of Inclusion and Exclusion) $|A_1 \cup A_2 \cup ... \cup A_q| =$ $\sum_{i=1}^{q} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots +$ $(-1)^{q+1} | A_1 \cap A_2 \cap ... \cap A_q |$
- (Generalised Principle of Inclusion and Exclusion) Number of elements of S that possesses exactly m of the q properties:

$$E(m) = \sum_{k=m}^{q} (-1)^{k-m} {\binom{n}{m}} \omega(k), \text{ where } \omega(k) =$$

- $\sum \omega(p_{i1}p_{i2}\dots p_{ik})$ • Number of elements without any properties: $E(0) = \omega(0) - \omega(0)$ $\omega(1) + \dots + (-1)^q \omega(q)$
- (Stirling Number) Number of ways to distribute r distinct objects into n identical boxes so that no box is empty: $S(r,n) = \frac{1}{2} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^r$

$$S(r,n) = \frac{1}{n!} \sum_{k=0}^{n} (-1)^{k} {k \choose k} (n)$$

$$\circ S(0,0) = 1$$

- $\circ S(r,0) = S(0,n) = 0$ $\circ S(r,n) > 0$ if $r \ge n \ge 1$
- \circ S(r,n) = 0 if $n > r \ge 1$
- $\circ S(r, 1) = 1$
- $\circ S(r,r) = 1$
- \circ $S(r,r-1) = \binom{r}{2}$
- $\circ S(r, r-2) = \binom{r}{3} + 3\binom{r}{4}$
- S(r,n) = S(r-1,n-1) + nS(r-1,n)
- Number of partitions of $\{1, 2, ..., r\}$: $\sum_{n=1}^{r} S(r, n)$
- (*Theorem 27.1*) Number of surjective mappings from \mathbb{N}_r to 0 \mathbb{N}_{n} : $F(r,n) = n! S(r,n) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)^{r}$
- (Theorem 28.2) Number of r-permutations of n distinct objects
 - with k fixed points: $D(r, n, k) = \frac{\binom{k}{k}}{(n-r)!} \sum_{i=0}^{r-k} (-1)^i \binom{r-k}{i} (n-r)^{i-1} \sum_{i=0}^{r-k} (n-r)^{i-1$ (k-i)!
 - Number of derangements of \mathbb{N}_n : $D_n = D(n, n, 0) =$ $n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$
- Number of integers between 1 and n which are coprime to n: $\varphi(n) = n \left(1 - \frac{1}{n_1}\right) \left(1 - \frac{1}{n_2}\right) \dots \left(1 - \frac{1}{n_k}\right)$

Distribution Problems	
r distinct objects	n distinct boxes
 Each box can hold at most one object: Pⁿ_r 	
• Each box can hold any number of objects: <i>n</i> ^{<i>r</i>}	
 Each box can hold any number of objects and the orderings of objects inside each box count: n(n + 1) (n + (r - 1)) 	
r identical objects	n distinct boxes
 Each box can hold at most one object: ⁿ _r) 	
• Each box can hold any number of objects: H_r^n	
• Each box holds at least one object: $\binom{r-1}{r-n}$	
r distinct objects	n identical boxes
• Each box holds at least one object: <i>S</i> (<i>r</i> , <i>n</i>)	
r identical objects	n identical boxes