MA2214 Combinatorics and Graphs I AY2021/22 Semester 1

Chapter 1 - Permutations and Combinations

- r-permutations of n distinct objects: $P_{r}^{n}=\frac{n!}{(n-r)!}$
- r-circular permutations of n distinct objects: $Q_{r}^{n}=\frac{n!}{(n-r)!} \cdot \frac{1}{r}$
- r-combinations of n distinct objects: $\binom{n}{r}=\frac{n!}{r!(n-r)!}$
- r-permutations of n distinct objects with repetition allowed: n^{r}
- r-permutations of $M=\left\{r_{1} \cdot a_{1}, r_{2} \cdot a_{2}, \ldots, r_{n} \cdot a_{n}\right\}$:
$P\left(r: r_{1}, r_{2}, \ldots, r_{n}\right)=\frac{r!}{r_{1}!r_{2}!\ldots r_{n}!}$
- Number of r-element multi-subsets of $M=\left\{\infty \cdot a_{1}, \infty\right.$.
$\left.a_{2}, \ldots, \infty \cdot a_{n}\right\}: H_{r}^{n}=\binom{r+n-1}{r}$
- Number of non-negative solutions of $x_{1}+x_{2}+\cdots+x_{n}=r$: $H_{r}^{n}=\binom{r+n-1}{r}$
- Identities:
- $\binom{n}{r}=\binom{n}{n-r}$
- $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$
- $\binom{n}{r}=\frac{n}{r}\binom{n-1}{r-1}$
- $\binom{n}{r}=\frac{n-r+1}{r}\binom{n}{r-1}$
- $\binom{n}{m}\binom{m}{r}=\binom{n}{r}\binom{n-r}{m-r}$
- Number of shortest routes from $X(0,0)$ to $Y(m, n):\binom{m+n}{n}$

Chapter 2 - Binomial and Multinomial Coefficients

- (Binomial Theorem) $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r}$
- $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$
- $\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}=0$
- $\sum_{r=1}^{n} r\binom{n}{r}=n \cdot 2^{n-1}$
- $\sum_{r=1}^{n} r^{2}\binom{n}{r}=n(n+1) 2^{n-2}$
- (Vandermonde's Identity) $\sum_{i=0}^{r}\binom{m}{i}\binom{n}{r-i}=\binom{m+n}{r}$

$$
\text { - } \quad \sum_{r=0}^{n}\binom{n}{r}^{2}=\binom{2 n}{n}
$$

- Pascal's Triangle
- (Chu Shih-Chieh Identity)
(i) $\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n}{r}=\binom{n+1}{r+1}$
(ii) $\binom{r}{0}+\binom{r+1}{1}+\cdots+\binom{r+k}{k}=\binom{r+k+1}{k}$
- (Multinomial Theorem) $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=$
$\sum_{n_{1}+n_{2}+\cdots+n_{m}=n}\binom{n}{n_{1}, n_{2}, \ldots, n_{m}} x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{m}^{n_{m}}$

Chapter 3 - Pigeonhole Principle

- (Pigeonhole Principle) Let k and n be any two positive integers. If at least $k n+1$ objects are distributed among n boxes, then one of the boxes must contain at least $k+1$ objects. In particular, if at least $n+1$ objects are to be put into n boxes, then one of the boxes must contain at least two objects.
- (Generalised Pigeonhole Principle) Let $n, k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}$. If $k_{1}+k_{2}+\cdots+k_{n}-(n-1)$ or more objects are put into n boxes, then either
- the first box contains at least k_{1} objects; OR
- the second box contains at least k_{2} objects; OR
- the n-th box contains at least k_{n} objects.
- (Ramsey Number) Let $R(p, q)$ denote the smallest natural number n such that for any colouring of the edges of an n -
clique by 2 colours, blue and red, there exists either a "blue p clique" or a "red q-clique".
- $R(p, q)=R(q, p)$
- $R(1, q)=1$
- $R(2, q)=q$
- $R(3,3)=6$
- (Theorem 23.1) $R(p, q) \leq R(p-1, q)+R(p, q-1)$
- (Theorem 23.2) If $R(p-1, q)$ and $R(p, q-1)$ are even, then $R(p, q) \leq R(p-1, q)+R(p, q-1)-1$

Chapter 4 - Principle of Inclusion and Exclusion

- (Principle of Inclusion and Exclusion) $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{q}\right|=$ $\sum_{i=1}^{q}\left|A_{i}\right|-\sum_{i<j}\left|A_{i} \cap A_{j}\right|+\sum_{i<j<k}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+$ $(-1)^{q+1}\left|A_{1} \cap A_{2} \cap \ldots \cap A_{q}\right|$
- (Generalised Principle of Inclusion and Exclusion) Number of elements of S that possesses exactly m of the q properties:
$E(m)=\sum_{k=m}^{q}(-1)^{k-m}\binom{k}{m} \omega(k)$, where $\omega(k)=$
$\sum \omega\left(p_{i 1} p_{i 2} \ldots p_{i k}\right)$
- Number of elements without any properties: $E(0)=\omega(0)-$ $\omega(1)+\cdots+(-1)^{q} \omega(q)$
- (Stirling Number) Number of ways to distribute r distinct objects into n identical boxes so that no box is empty:
$S(r, n)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{r}$
- $S(0,0)=1$
- $S(r, 0)=S(0, n)=0$
- $S(r, n)>0$ if $r \geq n \geq 1$
- $S(r, n)=0$ if $n>r \geq 1$
- $S(r, 1)=1$
- $S(r, r)=1$
- $S(r, r-1)=\binom{r}{2}$
- $S(r, r-2)=\binom{r}{3}+3\binom{r}{4}$
- $S(r, n)=S(r-1, n-1)+n S(r-1, n)$
- Number of partitions of $\{1,2, \ldots, r\}$: $\sum_{n=1}^{r} S(r, n)$
- (Theorem 27.1) Number of surjective mappings from \mathbb{N}_{r} to $\mathbb{N}_{n}: F(r, n)=n!S(r, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{r}$
- (Theorem 28.2) Number of r-permutations of n distinct objects with k fixed points: $D(r, n, k)=\frac{\binom{r}{k}}{(n-r)!} \sum_{i=0}^{r-k}(-1)^{i}\binom{r-k}{i}(n-$ $k-i)$!
- Number of derangements of $\mathbb{N}_{n}: D_{n}=D(n, n, 0)=$ $n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$
- Number of integers between 1 and n which are coprime to n :
$\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)$

Distribution Problems	
r distinct objects	n distinct boxes
- Each box can hold at most one object: P_{r}^{n} - Each box can hold any number of objects: n^{r} - Each box can hold any number of objects and the orderings of objects inside each box count: $n(n+1) \ldots(n+$ $(r-1)$)	
r identical objects	\boldsymbol{n} distinct boxes
- Each box can hold at most one object: $\binom{n}{r}$ - Each box can hold any number of objects: H_{r}^{n} - Each box holds at least one object: $\binom{r-1}{r-n}$	
r distinct objects	n identical boxes
- Each box holds at least one object: $S(r, n)$	
r identical objects	\boldsymbol{n} identical boxes

