MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx Morse-Kelley Set Rules 1. Everything is a class. 2. Every set is a class; every class is a collection of sets; a class is a set if and only if it is a member of some class. 3. Every collection of sets is a class. 4. If A is a class and x is a set, then $A \cap x$ is a set. 5. The image of a set under a function is a set. 6. If A and B are sets, then so are $\{A, B\}$, $\cup A$ and $\mathcal{P}(A)$. 7. (Axiom of Choice) If $\langle A_i : i \in I \rangle$ is any sequence of sets such that $\forall i \in I \ [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset.$ 8. (Axiom of Infinity) ℕ is a set. 9. (Axiom of Extensibility) $A = B \Leftrightarrow \forall x \ [x \in A \Leftrightarrow x \in B]$. Basics **D1.11.** $x \triangle y = x \setminus y \cup y \setminus x$. **T5.7.** (*Cantor*) For any set $X, X \not\leq \mathcal{P}(X)$. **D5.12.** (Schröder-Bernstein) $A \leq B \land B \leq A \Rightarrow A \approx B$. **D6.4.** < is a partial order on X if (1) $\forall x \in X \ [x \not< x];$ (2) $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow (x < z)].$ **D6.5.** A partial order $\langle X, \langle \rangle$ is called a linear order if $\forall x, y \in X$ [(x = $y) \lor (x < y) \lor (y < x)].$ **D6.13.** A linear order $\langle X, \langle \rangle$ is called a well order if every non-empty subset of X has a minimal element. **D6.16.** Let $\langle X, \langle \rangle$ be a linear order. For any $x \in X$ define $\operatorname{pred}_{\langle X, < \rangle}(x) = \{ x' \in X : x' < x \}.$ **D6.33.** If $\langle X, \triangleleft \rangle$ and $\langle Y, \prec \rangle$ are linear orders, then a function $f: X \to Y$ is an *isomorphism* between $\langle X, \triangleleft \rangle$ and $\langle Y, \prec \rangle$ if the following hold: (1) f is 1-1 and onto:

(2) $\forall x, y \in X \ [x \triangleleft y \Leftrightarrow f(x) \prec f(y)].$

L6.34. $\langle X, \triangleleft \rangle$ and $\langle Y, \prec \rangle$ are linear orders. Suppose $f : X \to Y$ is an *onto* function such that $\forall x, y \in X \ [x \triangleleft y \Rightarrow f(x) \prec f(y)]$. Then f is an isomorphism.

D6.35. $\langle X, \langle \rangle$ and $\langle Y, \prec \rangle$ are linear orders. A function $f : X \to Y$ is called an *embedding* if $\forall x, x' \in X [x < x' \leftrightarrow f(x) \prec f(x')]$ and f is 1-1. If there exists such embedding, $\langle X, \langle \rangle \hookrightarrow \langle Y, \prec \rangle$.

D6.42. A linear order $\langle X, \triangleleft \rangle$ has type omega if X is infinite and for every $x \in X$, pred_(X, \triangleleft)(x) is finite.

T7.14. $2^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}} \approx \mathcal{P}(\mathbb{N}^{\mathbb{N}}) \approx \mathcal{P}(\mathbb{N}) \approx \mathcal{P}(\mathbb{Q}) \approx \mathbb{R}.$

D8.4. Suppose $\langle X, \langle \rangle$ is a finite partial order and $A \subseteq X$.

Upper bound $x: \forall a \in A \ [a \leq x].$

Lower bound $x: \forall a \in A \ [x \leq a].$

Supremum $u: \forall x \in \{\text{upper bounds}\} [u \leq x].$

Infimum $u: \forall x \in \{\text{lower bounds}\} [x \leq u].$

Ordinals

D10.1. A set x is called *transitive* if $\forall y \ [y \in x \Rightarrow y \subseteq x]$. **D10.2.** A set α is an *ordinal* if it is transitive and well-ordered by \in . Let \in_{α} denote $\{\langle \beta, \gamma \rangle \in \alpha \times \alpha : \beta \in \gamma\}$, then α is an ordinal if α is transitive and $\langle \alpha, \in_{\alpha} \rangle$ is a well order. **F10.3.** \mathbb{N} is an ordinal. Every $n \in \mathbb{N}$ is also an ordinal. **T10.4.** Let x be an ordinal, then: $\forall y \in x \ [y \text{ is an ordinal } \land y = pred_{(x, \in)}(y)];$ y is any ordinal $\land \langle x, \in \rangle$ is isomorphic to $\langle y, \in \rangle \Rightarrow x = y$; y is any ordinal $\Rightarrow x \in y \lor x = y \lor y \in x$; y, z are any ordinals $\implies x \in y \land y \in z \Rightarrow x \in z;$ $\exists y \in \mathbf{C} \exists z \in \mathbf{C} \ [y \in z \lor y = z], \text{ where } \mathbf{C} \text{ is a non-empty}$ class of ordinals. **D10.5. ORD** = { α : α is an ordinal}. **T10.6.** (Burali-Forti) **ORD** is not a set. L10.7. Every transitive set if ordinals is an ordinal. **T10.8.** Let $\langle X, \langle \rangle$ be a well-ordered set. Then there exists a unique ordinal α such that $\langle X, \langle \rangle$ is isomorphic to $\langle \alpha, \in_{\alpha} \rangle$. **D10.11.** If $\langle X, \langle \rangle$ is any well-ordered set, then $\operatorname{otp}(X) = \operatorname{otp}(\langle X, \langle \rangle)$. which is called the *order type* of $\langle X, \langle \rangle$, is the unique ordinal α such that $\langle X, \langle \rangle$ is isomorphic to $\langle \alpha, \in_{\alpha} \rangle$. **L10.13.** $\alpha \leq \beta \Leftrightarrow \alpha \subseteq \beta$. $\begin{cases} \text{If } A \text{ is a non-empty set of ordinals, then } \min(A) = \bigcap A; \\ \text{If } A \text{ is any set of ordinals, then } \sup_{\mathbf{ORD}}(A) = \bigcup A. \end{cases}$ L10.14. $S(\alpha)$ is an ordinal; **L10.15.** For any α , $\langle \alpha < S(\alpha) \rangle$; $\forall \beta \ [\beta < S(\alpha) \Leftrightarrow \beta \le \alpha].$ α is a successor ordinal if $\exists \beta \ [\alpha = S(\beta)];$ D10.16. α is a *limit ordinal* if $\alpha \neq 0 \land \alpha$ is not a successor ordinal. **L10.17.** An ordinal α is a natural number if and only if $\forall \beta \leq \alpha \ [\beta = 0 \lor \beta \text{ is a successor ordinal}].$ **Conv.** ω denotes the set of natural numbers ($\omega = \mathbb{N}$). **E10.27.** $X \subseteq \alpha \Rightarrow \operatorname{otp}(\langle X, \in \rangle) < \alpha$. **E10.28.** $\alpha > 0$ is a limit ordinal if and only if $\bigcup \alpha = \alpha$.

Induction and Recursion

T10.19. Let $P(\alpha)$ be some property. If $\forall \alpha \in \mathbf{ORD} \ [\forall \beta < \alpha \ [P(\beta)] \Rightarrow P(\alpha)]$, then $\forall \alpha \in \mathbf{ORD} \ [P(\alpha)]$.

D10.20. Let **FOD** denote the class of all functions whose domain is some ordinal, i.e.

FOD = { σ : σ is a function $\land \exists \alpha \in \mathbf{ORD} [\operatorname{dom}(\sigma) = \alpha]$ }.

An ordinal extender is a function $\mathbf{E} : \mathbf{FOD} \to \mathbf{V}$. **T10.21.** $\exists !\mathbf{F} : \mathbf{ORD} \to \mathbf{V} \ [\forall \alpha \in \mathbf{ORD} \ [\mathbf{F}(\alpha) = \mathbf{E}(\mathbf{F} \upharpoonright \alpha)]]$. **E10.26.** A class **C** is trans-finitely inductive if (1) $0 \in \mathbf{C}$ (2) $\forall x \in \mathbf{C} [S(x) \in \mathbf{C}]$ (3) $\forall X \subseteq \mathbf{C} [\bigcup X \in C]$. Then **ORD** is the smallest trans-finitely inductive class.

Ordinal Addition

 $\begin{array}{l} \textbf{D11.1. Let } \langle X, <_X \rangle \text{ and } \langle Y, <_Y \rangle \text{ be well orders. Define } X \oplus Y \text{ to be } \\ \text{the set } (\{0\} \times X) \cup (\{1\} \times Y). \text{ Define } <_{X \oplus Y} \text{ by the following clauses:} \\ \begin{cases} \forall x, x' \in X \ [\langle 0, x \rangle <_{X \oplus Y} \ \langle 0, x' \rangle \Leftrightarrow x <_X x']; \\ \forall y, y' \in Y \ [\langle 1, y \rangle <_{X \oplus Y} \ \langle 1, y' \rangle \Leftrightarrow y <_Y y']; \\ \textbf{D11.2. } \alpha + \beta = \text{otp}(\langle \alpha \oplus \beta, <_{\alpha \oplus \beta} \rangle). \\ \textbf{L11.4. Let } \langle X, <_X \rangle, \ \langle Y, <_Y \rangle, \ \langle Z, <_Z \rangle \text{ be well orders. Suppose that} \\ A, B \subseteq Z. \text{ Assume that } A \cup B = Z \text{ and } \forall a \in A \ \forall b \in B \ [a <_Z b]. \\ \text{Then if } \langle A, <_Z \rangle \text{ is isomorphic to } \langle X, <_X \rangle \text{ and } \langle B, <_Z \rangle \text{ is isomorphic to } \langle X, + \gamma \rangle. \\ \end{cases} \\ \textbf{L11.5.} \begin{cases} \alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma; \\ \alpha + 0 = \alpha; \\ \alpha + 1 = S(\alpha); \\ \alpha + S(\beta) = S(\alpha + \beta); \\ \beta \text{ is a limit ordinal } \Rightarrow \alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}. \\ \textbf{E11.13. } \alpha < \beta \Rightarrow (\gamma + \alpha < \gamma + \beta) \land (\alpha + \gamma \leq \beta + \gamma). \end{cases} \end{cases}$

E11.14. If $\alpha \geq \omega$, then $1 + \alpha = \alpha$.

Ordinal Multiplication

D11.7. $\alpha \cdot \beta = \operatorname{otp}(\langle \beta \times \alpha, <_{\alpha \cdot \beta} \rangle)$. $<_{\alpha \cdot \beta}$ is dictionary order. **L11.8.** Suppose $A \subseteq \gamma$ and $\langle A, \in \rangle$ is isomorphic to $\langle \beta, \in \rangle$. Then $\langle A \times \alpha, <_{\alpha \times \gamma} \rangle$ is isomorphic to $\langle \beta \times \alpha, <_{\alpha \times \beta} \rangle$.

 $\mathbf{L11.9.} \begin{cases}
\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma; \\
\alpha \cdot 0 = 0; \\
\alpha \cdot 1 = \alpha; \\
\beta \text{ is a limit ordinal} \Rightarrow \alpha \cdot \beta = \sup\{\alpha \cdot \xi : \xi < \beta\}; \\
\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma.
\end{cases}$ $\mathbf{E11.12.} \quad \forall \alpha > 0 \ [\alpha \cdot \omega > \alpha].$ $\mathbf{E11.15.} \quad \text{If } \gamma > 0, \text{ then } \alpha < \beta \Rightarrow (\gamma \cdot \alpha < \gamma \cdot \beta) \land (\alpha \cdot \gamma \le \beta \cdot \gamma).$ $\mathbf{E11.16.} \quad 0 < \alpha < \beta \longrightarrow \exists! \delta, \xi \ [\xi < \alpha \land \alpha \cdot \delta + \xi = \beta].$

Ordinal Exponentiation

D11.10. For a fixed α , define α^{β} recursively on β using the following clauses:

 $\begin{cases} \alpha = 0 \Rightarrow^0 = 0; \alpha > 0 \Rightarrow \alpha^0 = 1; \\ \alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha; \\ \beta \text{ is a limit ordinal} \Rightarrow \alpha^{\beta} = \sup\{\alpha^{\xi} : \xi < \beta\}. \end{cases}$

Cardinals

D12.1. A set X is said to be *well-orderable* if there exists a relation $\langle \subseteq X \times X$ such that $\langle X, < \rangle$ is a well order. **D12.2.** The cardinality of X is $|X| = \min\{\alpha \in \mathbf{ORD} : \alpha \approx X\}$. **D12.3.** α is a cardinal if $|\alpha| = \alpha$. **F12.4.** ω is a cardinal. If $n \in \omega$, n is a cardinal. **L12.5.** If $|\alpha| < \beta < \alpha$. then $|\beta| = |\alpha|$. **L12.6.** X is finite $\Leftrightarrow |X| < \omega$; X is countable $\Leftrightarrow |X| \leq \omega$. **D12.7.** Let κ and λ be cardinals. Both $(\{0\} \times \kappa) \cup (\{1\} \times \lambda)$ and $\kappa \times \lambda$ **T12.34.** (König) $\aleph_{\omega} \aleph_{0} > \aleph_{\omega}$.

are well-orderable. Define $\begin{cases} \kappa \boxplus \lambda = |(\{0\} \times \kappa) \cup (\{1\} \times \lambda)|;\\ \kappa \boxtimes \lambda = |\kappa \times \lambda|. \end{cases}$

L12.8. Every infinite cardinal is a limit cardinal.

T12.9. If κ is an infinite cardinal, then $\kappa \boxtimes \kappa = \kappa$.

C12.10. Let κ and λ be infinite cardinals. $\kappa \boxplus \lambda = \kappa \boxtimes \lambda = \max\{\kappa, \lambda\}$. **T12.11.** For every set X there is a cardinal α such that there is no 1-1 function $f : \alpha \to X$.

L12.15. Let A be any set of cardinals. Then $\bigcup A$ is a cardinal.

D12.16. For each $\alpha \in \mathbf{ORD}$, α^+ is the least cardinal strictly greater than α .

L12.17. Suppose F : ORD \rightarrow ORD is a function such that $\forall \alpha, \beta \in \mathbf{ORD} \ [\alpha < \beta \Rightarrow \mathbf{F}(\alpha) < \mathbf{F}(\beta)].$ Then $\forall \beta \in \mathbf{ORD} \ [\beta \leq \mathbf{F}(\beta)].$ **D12.18.** Define a sequence $\langle \omega_{\alpha} : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

 $\omega_0 = \omega;$ $\begin{cases} \omega_{S(\alpha)} = \omega_{\alpha}^{+}; \\ \alpha \text{ is a limit ordinal} \Rightarrow \omega_{\alpha} = \sup\{\omega_{\xi} : \xi < \alpha\}. \end{cases}$

 ω_{α} is also denoted as \aleph_{α} .

 $\begin{cases} \alpha < \beta \Rightarrow \aleph_{\alpha} < \aleph_{\beta}. \\ \text{Every infinite cardinal is equal to } \aleph_{\alpha}, \text{ for some } \alpha \in \mathbf{ORD}. \end{cases}$ D12.20.

Choice and Cardinality

D12.21. Let X be any set. We say that F is a choice function on X if F is a function, dom(F) = $X \setminus \{0\}$ and $\forall a \in X \setminus \{0\}$ [F(a) $\in a$]. **T12.22.** (*Zermelo*) X is well-orderable \Leftrightarrow there exists a choice function on $\mathcal{P}(X)$.

T12.26. The following statements are equivalent:

The Cartesian product of non-empty sets is non-empty; For every set X there exists a choice function on X:

Every set is well-orderable;

For any two sets X, Y, either $X \leq Y$ or $Y \leq X$;

For any set X there is any ordinal α and a 1-1 $f: X \to \alpha$; For any set X there is a cardinal κ such that $X \approx \kappa$.

Cardinal Exponentiation (AC)

D12.28. $\kappa^{\lambda} = |\{f : f \text{ is a function } \land \operatorname{dom}(f) = \lambda \land \operatorname{ran}(f) \subseteq \kappa\}|.$ $\int (\kappa^{\lambda})^{\theta} = \kappa^{\lambda \boxtimes \theta};$ L12.30. $(\kappa^{\lambda}) \boxtimes (\kappa^{\theta}) = \kappa^{\lambda \boxplus \theta}.$

D12.31. Define a sequence $\langle \beth_{\alpha} : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

 $\beth_0 = \omega;$ $\begin{cases} \beth_{S(\alpha)} = 2^{\beth_{\alpha}}; \\ \alpha \text{ is a limit ordinal} \Rightarrow \beth_{\alpha} = \sup\{\beth_{\xi} : \xi < \alpha\}. \end{cases}$ $\begin{cases} (Generalised \ Continuum \ Hypothesis) \ \forall \alpha \in \mathbf{ORD} \ [\beth_{\alpha} = \aleph_{\alpha}] \\ (Continuum \ Hypothesis) \ \beth_{1} (= 2^{\beth_{0}} = 2^{\aleph_{0}}) = \aleph_{1}. \end{cases}$

C12.35. $2^{\aleph_0} \neq \aleph_{\omega}$.

Applications of AC

D13.1. Let A be any set. $\mathcal{F} \subseteq \mathcal{P}(A)$ is of *finite character* if and only if $\forall X \subseteq A \ [X \in \mathcal{F} \iff \forall Y \subseteq X \ [|Y| < \omega \Rightarrow Y \in \mathcal{F}]]$, i.e. $X \in \mathcal{F}$ if and only if all its finite subsets are in \mathcal{F} .

L13.2. If $\mathcal{F} \subseteq \mathcal{P}(A)$ is of finite character, then $X \in \mathcal{F} \land Y \subseteq X \Rightarrow$ $Y \in \mathcal{F}$.

T13.3. The following statements are equivalent:

• AC.

- (Teichmüller-Tukey Lemma) For any set A and $\mathcal{F} \subseteq \mathcal{P}(A)$, if \mathcal{F} has finite character, then for every $X \in \mathcal{F}$, there exists $Y \subseteq \mathcal{F}$ such that $X \subseteq Y$ and Y is maximal in $\langle \mathcal{F}, \varsigma \rangle$. By AC fix an ordinal α and an 1-1 and onto function $e: \alpha \to A$. Define a function $f: \alpha \to 2$ by induction on α : fix $\xi < \alpha$ and suppose $f(\xi)$ has been defined for $\zeta < \xi$. If $X \cup \{e(\zeta) : \zeta < \xi \land f(\zeta) = 1\} \cup \{e(\xi)\} \in \mathcal{F}$, then define $f(\xi) = 1$; otherwise $f(\xi) = 0$. Let $Y = \{e(\xi) : \xi < \alpha \land f(\xi) = 1\}$. First check $X \cup Y \in \mathcal{F}$. Next check $X \subseteq Y$. Finally, there is no $Z \in \mathcal{F}$ such that $Y \subseteq Z$. So Y is as required.
- (Hausdorff's Maximal Chain Theorem) Every chain in every Legends partial order is contained in a maximal chain. Suppose $\langle X, \langle \rangle$ is a partial order and $C \subseteq X$ is a chain. $\mathcal{F} = \{A \subseteq X :$ A is a chain} has finite character. By Teichmüller-Tukey Lemma $\exists A \in \mathcal{F} [C \subseteq A \land A \text{ is maximal in } \langle \mathcal{F}, \subsetneq \rangle].$ A is a maximal chain containing C.
- (Zorn's Lemma) If $\langle X, \langle \rangle$ is any partial order which has the property that every chain in (X, <) has an upper bound in $\langle X, \langle \rangle$, then $\langle X, \langle \rangle$ has a maximal element. Suppose $\langle X, \langle \rangle$ is a partial order such that every chain has an upper bound. \emptyset is a chain. By Hausdorff's Maximal Chain Theorem, $\exists C \subseteq X \ [C \text{ is a maximal chain}]. \ C \text{ has an upper bound } x \in X.$ x is maximal in $\langle X, \langle \rangle$. If not, then $\exists y \neq x \ [x < y]$. $C \cup \{y\}$ is a chain, contradicting the maximality of C.

Appendix

Extender. Generally, suppose we have a function $\mathbf{F} : \mathbf{ORD} \to V$ that is defined recursively as (1) $\mathbf{F}(0) = v_0$ (2) given $\mathbf{F}(\alpha) \in \mathbf{ORD}$, $\mathbf{F}(\alpha + 1) = h(\mathbf{F}(\alpha))$ (3) if α is a limit ordinal, then $\mathbf{F}(\alpha) = \sup{\mathbf{F}(\xi)}$: $\xi < \alpha$, then the extender corresponding to **F** should be defined as

$$\mathbf{E}(\sigma) = \begin{cases} v_0 & \operatorname{dom}(\sigma) = 0\\ h(\sigma(\beta)) & \operatorname{dom}(\sigma) = S(\beta), \exists \beta \in \mathbf{ORD} \land \sigma(\beta) \in \mathbf{ORD}\\ 0 & \operatorname{dom}(\sigma) = S(\beta), \exists \beta \in \mathbf{ORD} \land \sigma(\beta) \notin \mathbf{ORD}\\ \bigcup \operatorname{ran}(\sigma) & \operatorname{dom}(\sigma) \text{ is a limit ordinal} \end{cases}$$

 $\lambda^{\lambda} = 2^{\lambda}$. Take $f \in \lambda^{\lambda}$, then $f \subset \lambda \times \lambda$. Since $\lambda \boxtimes \lambda = \lambda$, there exists a bijection $e: \lambda \times \lambda \to \lambda$. Im_e(f) provides a bijection between λ^{λ} and 2^{λ} .

 $\langle P, \subsetneq \rangle$ satisfies Zorn's Lemma. First, verify that $\langle P, \subsetneq \rangle$ is a partial order by **D6.4**. Next, let $C \subseteq P$ be a chain. Let $\mathcal{F} = \bigcup C$ be an upper bound of C and show $\mathcal{F} \in P$ by contradiction. By Zorn's Lemma, every chain in P has a maximal element.

E11.17. $\alpha > 0$ is an ordinal. Then $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$.

E11.x. Let X be any set of ordinals, α be any ordinal.

 $(X \neq \emptyset) \land (\forall \alpha \in X \ [\alpha \ limit \ ordinal]) \Rightarrow \sup(X) \ limit \ ordinal;$ $\sup(X)$ successor ordinal $\Rightarrow \sup(X) \in X;$ $\alpha \cdot \omega \leq \omega^{\alpha}.$

E12.36. Let κ, λ be infinite cardinals with $\lambda < \kappa$. Then $\kappa^{\lambda} = |\{X \subseteq \kappa : |X| = \lambda\}|.$

E12.37. Let $\kappa, \lambda, \theta, \chi$ be cardinals. If $\kappa \leq \lambda$, then $\kappa^{\theta} \leq \lambda^{\theta}$; if $\kappa \leq \chi, \lambda \leq \theta$ and $\lambda \neq 0$, then $\kappa^{\lambda} \leq \chi^{\theta}$.

E12.39.	There exists a cardinal κ such that $\aleph_{\kappa} = \kappa$.	
L12.00.	There exists a cardinal κ such that $\beth_{\kappa} = \kappa$.	

E12.x Let κ, λ be infinite cardinals.

 $\kappa < \lambda \Rightarrow \kappa^{\lambda} = 2^{\lambda};$ $(\aleph_1)^{\aleph_0} = 2^{\aleph_0}.$

C	Corollary
D	Definition
E	Exercise
F	Fact
L	Lemma
Т	Theorem
Conv.	Convention