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Morse-Kelley Set Rules

1. Everything is a class.

2. Every set is a class; every class is a collection of sets; a class is a set

if and only if it is a member of some class.

3. Every collection of sets is a class.

4. If A is a class and x is a set, then A ∩ x is a set.

5. The image of a set under a function is a set.

6. If A and B are sets, then so are {A,B}, ∪A and P(A).

7. (Axiom of Choice) If ⟨Ai : i ∈ I⟩ is any sequence of sets such that

∀i ∈ I [Ai ̸= ∅], then
∏

i∈I Ai ̸= ∅.
8. (Axiom of Infinity) N is a set.

9. (Axiom of Extensibility) A = B ⇔ ∀x [x ∈ A ⇔ x ∈ B].

Basics

D1.11. x△y = x\y ∪ y\x.
T5.7. (Cantor) For any set X, X ̸⪅ P(X).

D5.12. (Schröder-Bernstein) A ⪅ B ∧B ⪅ A ⇒ A ≈ B.

D6.4. < is a partial order on X if

(1) ∀x ∈ X [x ≮ x];

(2) ∀x, y, z ∈ X [(x < y ∧ y < z) ⇒ (x < z)].

D6.5. A partial order ⟨X,<⟩ is called a linear order if ∀x, y ∈ X [(x =

y) ∨ (x < y) ∨ (y < x)].

D6.13. A linear order ⟨X,<⟩ is called a well order if every non-empty

subset of X has a minimal element.

D6.16. Let ⟨X,<⟩ be a linear order. For any x ∈ X define

pred⟨X,<⟩(x) = {x′ ∈ X : x′ < x}.
D6.33. If ⟨X,◁⟩ and ⟨Y,≺⟩ are linear orders, then a function

f : X → Y is an isomorphism between ⟨X,◁⟩ and ⟨Y,≺⟩ if the

following hold:

(1) f is 1-1 and onto;

(2) ∀x, y ∈ X [x ◁ y ⇔ f(x) ≺ f(y)].

L6.34. ⟨X,◁⟩ and ⟨Y,≺⟩ are linear orders. Suppose f : X → Y is an

onto function such that ∀x, y ∈ X [x◁ y ⇒ f(x) ≺ f(y)]. Then f is an

isomorphism.

D6.35. ⟨X,<⟩ and ⟨Y,≺⟩ are linear orders. A function f : X → Y

is called an embedding if ∀x, x′ ∈ X [x < x′ ↔ f(x) ≺ f(x′)] and f is

1-1. If there exists such embedding, ⟨X,<⟩ ↪→ ⟨Y,≺⟩.
D6.42. A linear order ⟨X,◁⟩ has type omega if X is infinite and for

every x ∈ X, pred⟨X,◁⟩(x) is finite.

T7.14. 2N ≈ NN ≈ P(NN) ≈ P(N) ≈ P(Q) ≈ R.
D8.4. Suppose ⟨X,<⟩ is a finite partial order and A ⊆ X.
Upper bound x: ∀a ∈ A [a ≤ x].

Lower bound x: ∀a ∈ A [x ≤ a].

Supremum u: ∀x ∈ {upper bounds} [u ≤ x].

Infimum u: ∀x ∈ {lower bounds} [x ≤ u].

Ordinals

D10.1. A set x is called transitive if ∀y [y ∈ x ⇒ y ⊆ x].

D10.2. A set α is an ordinal if it is transitive and well-ordered by ∈.
Let ∈α denote {⟨β, γ⟩ ∈ α × α : β ∈ γ}, then α is an ordinal if α is

transitive and ⟨α,∈α⟩ is a well order.

F10.3. N is an ordinal. Every n ∈ N is also an ordinal.

T10.4. Let x be an ordinal, then:

∀y ∈ x [y is an ordinal ∧ y = pred⟨x,∈⟩(y)];

y is any ordinal ∧ ⟨x,∈⟩ is isomorphic to ⟨y,∈⟩ ⇒ x = y;

y is any ordinal ⇒ x ∈ y ∨ x = y ∨ y ∈ x;

y, z are any ordinals =⇒ x ∈ y ∧ y ∈ z ⇒ x ∈ z;

∃y ∈ C∃z ∈ C [y ∈ z ∨ y = z], where C is a non-empty

class of ordinals.

D10.5. ORD = {α : α is an ordinal}.
T10.6. (Burali-Forti) ORD is not a set.

L10.7. Every transitive set if ordinals is an ordinal.

T10.8. Let ⟨X,<⟩ be a well-ordered set. Then there exists a unique

ordinal α such that ⟨X,<⟩ is isomorphic to ⟨α,∈α⟩.
D10.11. If ⟨X,<⟩ is any well-ordered set, then otp(X) = otp(⟨X,<⟩),
which is called the order type of ⟨X,<⟩, is the unique ordinal α such

that ⟨X,<⟩ is isomorphic to ⟨α,∈α⟩.
L10.13. α ≤ β ⇔ α ⊆ β.

L10.14.

{
If A is a non-empty set of ordinals, then min(A) =

⋂
A;

If A is any set of ordinals, then supORD(A) =
⋃

A.

L10.15. For any α,


S(α) is an ordinal;

α < S(α);

∀β [β < S(α) ⇔ β ≤ α].

D10.16.

{
α is a successor ordinal if ∃β [α = S(β)];

α is a limit ordinal if α ̸= 0 ∧ α is not a successor ordinal.

L10.17. An ordinal α is a natural number if and only if

∀β ≤ α [β = 0 ∨ β is a successor ordinal].

Conv. ω denotes the set of natural numbers (ω = N).
E10.27. X ⊆ α ⇒ otp(⟨X,∈⟩) ≤ α.

E10.28. α > 0 is a limit ordinal if and only if
⋃

α = α.

Induction and Recursion

T10.19. Let P (α) be some property. If ∀α ∈ ORD [∀β < α [P (β)] ⇒
P (α)], then ∀α ∈ ORD [P (α)].

D10.20. Let FOD denote the class of all functions whose domain is

some ordinal, i.e.

FOD = {σ : σ is a function ∧ ∃α ∈ ORD [dom(σ) = α]}.

An ordinal extender is a function E : FOD → V.

T10.21. ∃!F : ORD → V [∀α ∈ ORD [F(α) = E(F ↾ α)]].
E10.26. A class C is trans-finitely inductive if (1) 0 ∈ C (2)

∀x ∈ C [S(x) ∈ C] (3) ∀X ⊆ C [
⋃

X ∈ C]. Then ORD is the smallest

trans-finitely inductive class.

Ordinal Addition

D11.1. Let ⟨X,<X⟩ and ⟨Y,<Y ⟩ be well orders. Define X ⊕ Y to be

the set ({0} ×X)∪ ({1} × Y ). Define <X⊕Y by the following clauses:{
∀x, x′ ∈ X [⟨0, x⟩ <X⊕Y ⟨0, x′⟩ ⇔ x <X x′];

∀y, y′ ∈ Y [⟨1, y⟩ <X⊕Y ⟨1, y′⟩ ⇔ y <Y y′];

D11.2. α+ β = otp(⟨α⊕ β,<α⊕β⟩).
L11.4. Let ⟨X,<X⟩, ⟨Y,<Y ⟩, ⟨Z,<Z⟩ be well orders. Suppose that

A,B ⊆ Z. Assume that A ∪ B = Z and ∀a ∈ A ∀b ∈ B [a <Z b].

Then if ⟨A,<Z⟩ is isomorphic to ⟨X,<X⟩ and ⟨B,<Z⟩ is isomorphic

to ⟨Y,<Y ⟩, then ⟨Z,<Z⟩ is isomorphic to ⟨X ⊕ Y,<X⊕Y ⟩.

L11.5.



α+ (β + γ) = (α+ β) + γ;

α+ 0 = α;

α+ 1 = S(α);

α+ S(β) = S(α+ β);

β is a limit ordinal ⇒ α+ β = sup{α+ ξ : ξ < β}.
E11.13. α < β ⇒ (γ + α < γ + β) ∧ (α+ γ ≤ β + γ).

E11.14. If α ≥ ω, then 1 + α = α.

Ordinal Multiplication

D11.7. α · β = otp(⟨β × α,<α·β⟩). <α·β is dictionary order.

L11.8. Suppose A ⊆ γ and ⟨A,∈⟩ is isomorphic to ⟨β,∈⟩. Then

⟨A× α,<α×γ⟩ is isomorphic to ⟨β × α,<α×β⟩.

L11.9.



α · (β · γ) = (α · β) · γ;
α · 0 = 0;

α · 1 = α;

β is a limit ordinal ⇒ α · β = sup{α · ξ : ξ < β};
α · (β + γ) = α · β + α · γ.

E11.12. ∀α > 0 [α · ω > α].

E11.15. If γ > 0, then α < β ⇒ (γ · α < γ · β) ∧ (α · γ ≤ β · γ).
E11.16. 0 < α ≤ β −→ ∃!δ, ξ [ξ < α ∧ α · δ + ξ = β].

Ordinal Exponentiation

D11.10. For a fixed α, define αβ recursively on β using the following

clauses:
α = 0 ⇒0= 0;α > 0 ⇒ α0 = 1;

αβ+1 = αβ · α;
β is a limit ordinal ⇒ αβ = sup{αξ : ξ < β}.

Cardinals

D12.1. A set X is said to be well-orderable if there exists a relation

<⊆ X ×X such that ⟨X,<⟩ is a well order.

D12.2. The cardinality of X is |X| = min{α ∈ ORD : α ≈ X}.
D12.3. α is a cardinal if |α| = α.

F12.4. ω is a cardinal. If n ∈ ω, n is a cardinal.

L12.5. If |α| < β < α. then |β| = |α|.
L12.6. X is finite ⇔ |X| < ω;X is countable ⇔ |X| ≤ ω.



D12.7. Let κ and λ be cardinals. Both ({0}×κ)∪ ({1}×λ) and κ×λ

are well-orderable. Define

{
κ ⊞ λ = |({0} × κ) ∪ ({1} × λ)|;
κ ⊠ λ = |κ× λ|.

L12.8. Every infinite cardinal is a limit cardinal.

T12.9. If κ is an infinite cardinal, then κ ⊠ κ = κ.

C12.10. Let κ and λ be infinite cardinals. κ⊞λ = κ⊠λ = max{κ, λ}.
T12.11. For every set X there is a cardinal α such that there is no

1-1 function f : α → X.

L12.15. Let A be any set of cardinals. Then
⋃

A is a cardinal.

D12.16. For each α ∈ ORD, α+ is the least cardinal strictly greater

than α.

L12.17. Suppose F : ORD → ORD is a function such that

∀α, β ∈ ORD [α < β ⇒ F(α) < F(β)]. Then ∀β ∈ ORD [β ≤ F(β)].

D12.18. Define a sequence ⟨ωα : α ∈ ORD⟩ by induction using the

following clauses:
ω0 = ω;

ωS(α) = ω+
α ;

α is a limit ordinal ⇒ ωα = sup{ωξ : ξ < α}.
ωα is also denoted as ℵα.

D12.20.

{
α < β ⇒ ℵα < ℵβ .

Every infinite cardinal is equal to ℵα, for some α ∈ ORD.

Choice and Cardinality

D12.21. Let X be any set. We say that F is a choice function on X

if F is a function, dom(F ) = X \ {0} and ∀a ∈ X \ {0} [F (a) ∈ a].

T12.22. (Zermelo) X is well-orderable ⇔ there exists a choice func-

tion on P(X).

T12.26. The following statements are equivalent:

The Cartesian product of non-empty sets is non-empty;

For every set X there exists a choice function on X;

Every set is well-orderable;

For any two sets X,Y , either X ⪅ Y or Y ⪅ X;

For any set X there is any ordinal α and a 1-1 f : X → α;

For any set X there is a cardinal κ such that X ≈ κ.

Cardinal Exponentiation (AC)

D12.28. κλ = |{f : f is a function ∧ dom(f) = λ ∧ ran(f) ⊆ κ}|.

L12.30.

{
(κλ)θ = κλ⊠θ;

(κλ) ⊠ (κθ) = κλ⊞θ.

D12.31. Define a sequence ⟨ℶα : α ∈ ORD⟩ by induction using the

following clauses:
ℶ0 = ω;

ℶS(α) = 2ℶα ;

α is a limit ordinal ⇒ ℶα = sup{ℶξ : ξ < α}.

D12.32.

{
(Generalised Continuum Hypothesis) ∀α ∈ ORD [ℶα = ℵα].

(Continuum Hypothesis) ℶ1(= 2ℶ0 = 2ℵ0 ) = ℵ1.

T12.34. (König) ℵω
ℵ0 > ℵω .

C12.35. 2ℵ0 ̸= ℵω .

Applications of AC

D13.1. Let A be any set. F ⊆ P(A) is of finite character if and only

if ∀X ⊆ A [X ∈ F ⇐⇒ ∀Y ⊆ X [|Y | < ω ⇒ Y ∈ F ]], i.e. X ∈ F if and

only if all its finite subsets are in F .

L13.2. If F ⊆ P(A) is of finite character, then X ∈ F ∧ Y ⊆ X ⇒
Y ∈ F .

T13.3. The following statements are equivalent:

• AC.

• (Teichmüller-Tukey Lemma) For any set AAA and F ⊆ P(A)F ⊆ P(A)F ⊆ P(A),

if FFF has finite character, then for every X ∈ FX ∈ FX ∈ F, there

exists Y ⊆ FY ⊆ FY ⊆ F such that X ⊆ YX ⊆ YX ⊆ Y and YYY is maximal in

⟨F ,⊊⟩⟨F ,⊊⟩⟨F ,⊊⟩. By AC fix an ordinal α and an 1-1 and onto func-

tion e : α → A. Define a function f : α → 2 by induction

on α: fix ξ < α and suppose f(ξ) has been defined for ζ < ξ. If

X ∪ {e(ζ) : ζ < ξ ∧ f(ζ) = 1} ∪ {e(ξ)} ∈ F , then define f(ξ) = 1;

otherwise f(ξ) = 0. Let Y = {e(ξ) : ξ < α ∧ f(ξ) = 1}. First

check X ∪Y ∈ F . Next check X ⊆ Y . Finally, there is no Z ∈ F
such that Y ⊊ Z. So Y is as required.

• (Hausdorff’s Maximal Chain Theorem) Every chain in every

partial order is contained in a maximal chain. Suppose

⟨X,<⟩ is a partial order and C ⊆ X is a chain. F = {A ⊆ X :

A is a chain} has finite character. By Teichmüller-Tukey Lemma

∃A ∈ F [C ⊆ A∧A is maximal in ⟨F ,⊊⟩]. A is a maximal chain

containing C.

• (Zorn’s Lemma) If ⟨X,<⟩⟨X,<⟩⟨X,<⟩ is any partial order which has the

property that every chain in ⟨X,<⟩⟨X,<⟩⟨X,<⟩ has an upper bound

in ⟨X,<⟩⟨X,<⟩⟨X,<⟩, then ⟨X,<⟩⟨X,<⟩⟨X,<⟩ has a maximal element. Suppose

⟨X,<⟩ is a partial order such that every chain has an upper

bound. ∅ is a chain. By Hausdorff’s Maximal Chain Theorem,

∃C ⊆ X [C is a maximal chain]. C has an upper bound x ∈ X.

x is maximal in ⟨X,<⟩. If not, then ∃y ̸= x [x < y]. C ∪ {y} is a

chain, contradicting the maximality of C.

Appendix

Extender. Generally, suppose we have a function F : ORD → V

that is defined recursively as (1) F(0) = v0 (2) given F(α) ∈ ORD,

F(α+ 1) = h(F(α)) (3) if α is a limit ordinal, then F(α) = sup{F(ξ) :

ξ < α}, then the extender corresponding to F should be defined as

E(σ) =


v0 dom(σ) = 0

h(σ(β)) dom(σ) = S(β), ∃β ∈ ORD ∧ σ(β) ∈ ORD

0 dom(σ) = S(β), ∃β ∈ ORD ∧ σ(β) /∈ ORD⋃
ran(σ) dom(σ) is a limit ordinal

.

λλ = 2λ.λλ = 2λ.λλ = 2λ. Take f ∈ λλ, then f ⊆ λ× λ. Since λ⊠ λ = λ, there exists a

bijection e : λ×λ → λ. Ime(f) provides a bijection between λλ and 2λ.

⟨P,⊊⟩⟨P,⊊⟩⟨P,⊊⟩ satisfies Zorn’s Lemma. First, verify that ⟨P,⊊⟩ is a partial

order by D6.4. Next, let C ⊆ P be a chain. Let F =
⋃

C be an upper

bound of C and show F ∈ P by contradiction. By Zorn’s Lemma,

every chain in P has a maximal element.

E11.17. α > 0 is an ordinal. Then αβ+γ = αβ · αγ .

E11.x. Let X be any set of ordinals, α be any ordinal.
(X ̸= ∅) ∧ (∀α ∈ X [α limit ordinal]) ⇒ sup(X) limit ordinal;

sup(X) successor ordinal ⇒ sup(X) ∈ X;

α · ω ≤ ωα.

E12.36. Let κ, λ be infinite cardinals with λ ≤ κ. Then

κλ = |{X ⊆ κ : |X| = λ}|.
E12.37. Let κ, λ, θ, χ be cardinals. If κ ≤ λ, then κθ ≤ λθ; if

κ ≤ χ, λ ≤ θ and λ ̸= 0, then κλ ≤ χθ.

E12.39.

{
There exists a cardinal κ such that ℵκ = κ.

There exists a cardinal κ such that ℶκ = κ.

E12.x Let κ, λ be infinite cardinals.{
κ ≤ λ ⇒ κλ = 2λ;

(ℵ1)ℵ0 = 2ℵ0 .
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