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Morse-Kelley Set Rules

1. Everything is a class.

2. Every set is a class; every class is a collection of sets; a class is a set
if and only if it is a member of some class.

. Every collection of sets is a class.

. If Ais a class and z is a set, then ANz is a set.

. The image of a set under a function is a set.

. If A and B are sets, then so are {A, B}, UA and P(A).

. (Aziom of Choice) If (A; : i € I) is any sequence of sets such that
Viel [Al #* @], then Hie[ A; # 0.

8. (Aziom of Infinity) N is a set.

9. (Aziom of Extensibility) A= B & Vo [z € A&z € BJ.
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Basics

D1.11. zAy = z\y Uy\z.
T5.7. (Cantor) For any set X, X Z P(X).
D5.12. (Schrioder-Bernstein) AL BABS A= A~ B.
D6.4. < is a partial order on X if

(1) Ve € X [z £ z];

2)V,y,ze X [(z<yAhy<z)=(z<2).
D6.5. A partial order (X, <) is called a linear order if Vz,y € X [(z =
yVv(@<y)Vv(y<z)
D6.13. A linear order (X, <) is called a well order if every non-empty
subset of X has a minimal element.
D6.16. Let (X,<) be a linear order.
pred x <y(z) = {2’ € X : 2’ <z}
D6.33. If (X,<) and (Y,<) are linear orders, then a function
f + X — Y is an isomorphism between (X, <) and (Y, <) if the
following hold:

(1) fis 1-1 and onto;

(2) Yo,y € X [z ay & [(2) < f@)]
L6.34. (X, <) and (Y, <) are linear orders. Suppose f: X — Y is an
onto function such that Vz,y € X [z <y = f(x) < f(y)]. Then f is an
isomorphism.
D6.35. (X,<) and (Y, <) are linear orders. A function f: X — Y
is called an embedding if Vz,2’ € X [z < 2’/ +> f(z) < f(z')] and f is
1-1. If there exists such embedding, (X, <) < (Y, <).
D6.42. A linear order (X, <) has type omega if X is infinite and for
every z € X, pred x 4 () is finite.
T7.14. 2V ~ NV ~ P(NV) = P(N) =~ P(Q) = R.
D8.4. Suppose (X, <) is a finite partial order and A C X.

Upper bound z: Va € A [a < z].

Lower bound z: Va € A [z < al.

For any « € X define

Supremum u: Va € {upper bounds} [u < z].

Infimum u: Vz € {lower bounds} [z < u].

Ordinals

D10.1. A set z is called transitive if Vy [y € z = y C z].
D10.2. A set a is an ordinal if it is transitive and well-ordered by €.
Let €, denote {(8,7) € a X o : B € v}, then «a is an ordinal if o is
transitive and (o, €q) is a well order.
F10.3. N is an ordinal. Every n € N is also an ordinal.
T10.4. Let = be an ordinal, then:
Vy € z [y is an ordinal Ay = pred; c)(y)];
y is any ordinal A (z, €) is isomorphic to (y, €) = = = y;
y is any ordinal =z cyVer=yVyE x;
y,z are any ordinals = rx € yAy€z=z € z;
Jy € CIz € Cly € zVy = z], where C is a non-empty
class of ordinals.
D10.5. ORD = {«: « is an ordinal}.
T10.6. (Burali-Forti) ORD is not a set.
L10.7. Every transitive set if ordinals is an ordinal.
T10.8. Let (X, <) be a well-ordered set. Then there exists a unique
ordinal a such that (X, <) is isomorphic to («, €qa).
D10.11. If (X, <) is any well-ordered set, then otp(X) = otp({X, <)),
which is called the order type of (X, <), is the unique ordinal a such
that (X, <) is isomorphic to (o, €q).
L10.13. a <8< a CB.
110.14. {If A is a non-empty set of ordinals, then min(A) = () 4;
If A is any set of ordinals, then supgrp(4) = U A.
S(e) is an ordinal;
a < S(a);
V(8 < S(a) © B <al.

o is a successor ordinal if 38 [a = S(B)];

L10.15. For any «,

D10.16.
« is a limit ordinal if a@ 7 0 A « is not a successor ordinal.

L10.17. An ordinal « is a natural number if and only if
VB < a8 =0V g is a successor ordinal].

Conv. w denotes the set of natural numbers (w = N).

E10.27. X C a = otp((X, €)) < a.

E10.28. o > 0 is a limit ordinal if and only if Ja = a.

Induction and Recursion

T10.19. Let P(a) be some property. If Va € ORD [V8 < a [P(8)] =
P(a)], then Ya € ORD [P(«)].

D10.20. Let FOD denote the class of all functions whose domain is
some ordinal, i.e.

FOD = {0 : o is a function A Jo € ORD [dom(c) = «f}.

An ordinal extender is a function E : FOD — V.

T10.21. 3'F : ORD — V [Va € ORD [F(a) = E(F | o)]].

E10.26. A class C is trans-finitely inductive if (1) 0 € C (2)
Ve € C[S(z) € C] (3) VX C C[UJX € C]. Then ORD is the smallest
trans-finitely inductive class.

Ordinal Addition

D11.1. Let (X, <x) and (Y, <y) be well orders. Define X &Y to be
the set ({0} x X)U ({1} X Y). Define <xgy by the following clauses:
{‘v’x,x’ € X [(0,z) <xgy (0,2') &z <x 2'];

Vy,y' €Y [(Ly) <xaev (LY) <y <y ¥l
D11.2. a + 3 =otp({a ® B, <agg))-
L11.4. Let (X,<x), (Y,<y), (Z,<z) be well orders. Suppose that
A,B C Z. Assume that AUB = Z and Va € AVb € Bla <z b].
Then if (A, <z) is isomorphic to (X, <x) and (B, <z) is isomorphic
to (Y, <y), then (Z, <z) is isomorphic to (X @Y, <xgy).
at+(B+7)=(a+p8)+7
a+0=aq;
a+1=58();
a+S(8) =S(a+B);
B is a limit ordinal = a4+ 8 =sup{a+&£: & < S}.
E11.13. a<B8= (vy+a<y+B)A(a+v < B+7).
E11.14. If a > w, then 1 + a = a.

L11.5.

Ordinal Multiplication

D11.7. a- 8 =otp({8 X o, <q4.8)). <a.g is dictionary order.
L11.8. Suppose A C v and (A, €) is isomorphic to (B, €).
(A X a, <ax~) is isomorphic to (8 x a, <qxg)-
a-(B-y)=(ax-8) 7
a-0=0;

Then

L11.9. Sa-1=q;

B is a limit ordinal = o+ 8 = sup{a - & : ¢ < B}
a-(B+y)=a-B+a-7.

E11.12. Va > 0[a-w > a].

E11.15. If y> 0, thena< = (y-a<vy-B)A(a-y<B-7).
E11.16. 0<a<pf— 35 <ana-d+&=7]

Ordinal Exponentiation

D11.10. For a fixed «, define af recursively on 3 using the following

clauses:

a=0=29=0a>0=a%=1;

aftl =of . o

B is a limit ordinal = o = sup{af : £ < B}.
Cardinals

D12.1. A set X is said to be well-orderable if there exists a relation
<C X X X such that (X, <) is a well order.

D12.2. The cardinality of X is | X| = min{fa € ORD : a =~ X }.
D12.3.
F12.4. w is a cardinal. If n € w, n is a cardinal.

L12.5. If || < 8 < a. then |B] = |af.

L12.6. X is finite & |X| < w; X is countable < | X| < w.

a is a cardinal if || = a.



D12.7. Let k and X be cardinals. Both ({0} x k) U ({1} x A) and k x A
rBA=[({0} x r) U ({1} x N);

KA = |k XA

L12.8. Every infinite cardinal is a limit cardinal.

are well-orderable. Define {

T12.9. If k is an infinite cardinal, then k X k = k.

C12.10. Let s and X be infinite cardinals. kKEX = kKX = max{x, A\}.
T12.11. For every set X there is a cardinal a such that there is no
1-1 function f:a — X.

L12.15. Let A be any set of cardinals. Then (J A is a cardinal.
D12.16. For each o € ORD, a7 is the least cardinal strictly greater
than o.

L12.17. Suppose F ORD — ORD is a function such that
Va, 8 € ORD [a < 8 = F(a) < F(B)]. Then ¥3 € ORD [3 < F(B)].
D12.18. Define a sequence (wq : @« € ORD) by induction using the
following clauses:

wo = w;
Ws(a) = W;;
a is a limit ordinal = wa = sup{we : £ < a}.
we 1s also denoted as N.

< B = Ny < Ng.
D12.20.{a A= Ra <Rg

Every infinite cardinal is equal to Ry, for some o« € ORD.

Choice and Cardinality

D12.21. Let X be any set. We say that F' is a choice function on X
if F is a function, dom(F) = X \ {0} and Va € X \ {0} [F(a) € a].
T12.22. (Zermelo) X is well-orderable < there exists a choice func-
tion on P(X).

T12.26. The following statements are equivalent:

The Cartesian product of non-empty sets is non-empty;

For every set X there exists a choice function on X;

Every set is well-orderable;

For any two sets X,Y, either X S Y or Y 5 X;

For any set X there is any ordinal « and a 1-1 f: X — a;

For any set X there is a cardinal x such that X =~ k.

Cardinal Ezponentiation (AC)

D12.28. x* = |{f: f is a function A dom(f) = X Aran(f) C &}|.
(,&)0 — A K.

(M) R (k%) = 89,
D12.31. Define a sequence (Jq :
following clauses:

L12.30. {
a € ORD) by induction using the
Jo = w;

s(a) = 275
o is a limit ordinal = Jo = sup{J¢ : { < a}.

D12.32.
(Continuum Hypothesis) J1(= 270 = 280) = R,

(Generalised Continuum Hypothesis) Yoo € ORD [Jy = Rq).

T12.34. (Kénig) R,N0 > Ry,
C12.35. 280 £ R,

Applications of AC

D13.1. Let A be any set. F C P(A) is of finite character if and only
VX CAX e F<=VWCX|[Y|<w=Y € F],ie X € Fifand
only if all its finite subsets are in F.

L13.2. If F C P(A) is of finite character, then X € FAY C X =
Y eF.

T13.3. The following statements are equivalent:

e AC.

o (Teichmiiller-Tukey Lemma) For any set A and F C P(A),
if F has finite character, then for every X € F, there
exists Y CF such that X CY and Y is maximal in
F,9).
tion e : @ — A. Define a function f : @ — 2 by induction
on a: fix £ < a and suppose f(&) has been defined for ¢ < . If
X U{e(Q): € < EAF(Q) = 1} ULe(€)} € F, then define £(€) = 1;
otherwise f(§) = 0. Let Y = {e(§) : £ < a A f(§) = 1}. First
check X UY € F. Next check X C Y. Finally, there isno Z € F
such that Y C Z. So Y is as required.

By AC fix an ordinal @ and an -1 and onto func-

e (Hausdorff’s Mazimal Chain Theorem) Every chain in every
partial order is contained in a maximal chain. Suppose
(X, <) is a partial order and C C X is a chain. F ={A C X :
A is a chain} has finite character. By Teichmiiller-Tukey Lemma
JA € F|C C AA A is maximal in (F,C)]. A is a maximal chain
containing C.

e (Zorn’s Lemma) If (X, <) is any partial order which has the
property that every chain in (X, <) has an upper bound
in (X,<), then (X,<) has a maximal element. Suppose
(X,<) is a partial order such that every chain has an upper
bound. 0 is a chain. By Hausdorff’s Maximal Chain Theorem,
3C C X [C is a maximal chain]. C has an upper bound z € X.
z is maximal in (X, <). If not, then Jy # z [z < y]. CU{y} is a
chain, contradicting the maximality of C.

Appendix

Extender. Generally, suppose we have a function F : ORD — V
that is defined recursively as (1) F(0) = vo (2) given F(a) € ORD,
F(a+1) = h(F(a)) (3) if « is a limit ordinal, then F(a) = sup{F(¢) :
¢ < a}, then the extender corresponding to F should be defined as

o) is a limit ordinal

vo dom(c) =0
B(o) = h(a(8))  dom(o) = S(8),38 € ORD Ao (8) € ORD
0 dom(c) = S(8),38 € ORD A o(8) ¢ ORD
(o)

Uran(o) dom

A =2* Take f € A}, then f C A x A. Since AKX = A, there exists a
bijection e : Ax A — X. Im.(f) provides a bijection between A* and 2*.
(P, C) satisfies Zorn’s Lemma. First, verify that (P, C) is a partial
order by D6.4. Next, let C' C P be a chain. Let 7 = |J C be an upper
bound of C' and show F € P by contradiction.

every chain in P has a maximal element.

By Zorn’s Lemma,

E11.17. a > 0 is an ordinal. Then oft7 = of . a7.
E11.x. Let X be any set of ordinals, a be any ordinal.
(X #0) A (Vo € X [ limit ordinal]) = sup(X) limit ordinal;
sup(X) successor ordinal = sup(X) € X;
a-w < w*.
E12.36. Let k,A be infinite cardinals with A < k.
R =|{X Cr:|X|=A}.
E12.37. Let k,\,0,x be cardinals.
k< x,A <6 and \#0, then k™ < x?.

Then
If k < A, then x? < X; if

There exists a cardinal s such that N, = k.
E12.39.
There exists a cardinal x such that 3, = k.

E12.x Let k, A be infinite cardinals.
k< A= g =22
(Nl)NO = 2Ro,
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