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Morse-Kelley Set Rules

1. Everything is a class.

2. Every set is a class; every class is a collection of sets; a class is a

set if and only if it is a member of some class.

3. Every collection of sets is a class.

4. If A is a class and x is a set, then A ∩ x is a set.

5. The image of a set under a function is a set.

6. If A and B are sets, then so are A, B, ∪A and P(A).

7. (Axiom of Choice) If ⟨Ai : i ∈ I⟩ is any sequence of sets such that

∀i ∈ I [Ai ̸= ∅], then
∏

i∈I Ai ̸= ∅.
8. (Axiom of Infinity) N is a set.

9. (Axiom of Extensibility) A = B ⇔ ∀x [x ∈ A ⇔ x ∈ B].

Set Operations

Subset ⊆

D1.6. A ⊆ B if ∀x [x ∈ A ⇒ x ∈ B].

Empty Set ∅

D1.7. A set x is empty if ∀y [y /∈ x].

F1.8. If x = ∅ and A is any collection, then x ⊆ A.

F1.9. If x and y are empty sets, then x = y.

Union ∪ and Intersection ∩

D1.11.

{
x ∪ y = {z : z ∈ x ∨ z ∈ y}
x ∩ y = {z : z ∈ x ∧ z ∈ y}

D1.13.


⋃

A = {x : ∃y [y ∈ A ∧ x ∈ y]}⋂
A =

{
0 if A = ∅;
{x : ∀y [y ∈ A ⇒ x ∈ y]} otherwise.

Other Operators \,△,P

D1.11.


x\y = {z : z ∈ x ∧ z /∈ y

x△y = x\y ∪ y\x
P(x) = {z : z ⊆ x}

Commutativity x ∪ y = y ∪ x

x ∩ y = y ∩ x

Associativity x ∪ (y ∪ z) = (x ∪ y) ∪ z

x ∩ (y ∩ z) = (x ∩ y) ∩ z

Distributivity x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)

x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)

De Morgan x\(y ∪ z) = (x\y) ∩ (x\z)
x\(y ∩ z) = (x\y) ∪ (x\z)

E1.16.


x△∅ = x;x△x = ∅
x△y = y△x

(x△y)△z = x△(y△z)

E1.18. x ∩ (y△z) = (x ∩ y)△(x ∩ z).

Relations and Functions

Ordered Pair ⟨a, b⟩

D2.1. An ordered pair ⟨a, b⟩ is the set {{a}, {a, b}}.
L2.2. ⟨x, y⟩ = ⟨a, b⟩ ⇔ (x = a) ∧ (y = b).

D2.3. A×B = {z : ∃a ∈ A ∃b ∈ B [z = ⟨a, b⟩]}.

Relation R

D2.6. A relation R is a collection of ordered pairs (∀x ∈ R ∃a ∃b [x =

⟨a, b⟩]).
• R is a relation on A if R ⊆ A×A.

• dom(R) = {a : ∃b [⟨a, b⟩ ∈ R]}.
• ran(R) = {b : ∃a [⟨a, b⟩ ∈ R]}.
• R−1 = {x : ∃a ∃b [⟨a, b⟩ ∈ R ∧ x = ⟨b, a⟩]}.

F2.9. If R is a relation and S ⊆ R, then S is a relation.

D2.10. If R is a relation and A is any collection, then R restricted to

A, R ↾ A, is R ∩ (A× ranR).

D2.12. ImR(A) = {b : ∃a ∈ A [⟨a, b⟩ ∈ R]}.
L2.15. Let R be a relation and A be a collection, then ImR(

⋃
A) =⋃

(I : ∃a ∈ A [I = ImR(a)]).

L2.16. Let R be a relation such that ∀x, z [x ̸= z ⇒ ImR({x}) ∩
ImR({y}) = ∅]. Let A and B be any collections, then:

• ImR(
⋂

A) =
⋂
{I : ∃a ∈ A [I = ImR(a)]}.

• ImR(B\A) = ImR(B)\ ImR(A).

Function f

D2.8. A function is a relation such that no two of its elements have

the same 1st coordinate (∀a, b, c [(⟨a, b⟩ ∈ f ∧ ⟨a, c⟩ ∈ f) ⇒ b = c]).

• f : A → B if dom(f) = A and ran(f) ⊆ B.

F2.9. If f is a function and g ⊆ f , then g is a function.

F2.11. If f is a function and A is any collection, then f ↾ A is also a

function.

• If A ⊆ dom(f), then dom(f ↾ A) = A

D2.21. XY = {f : f is a function ∧ f : Y → X}.

Inverse of Function f−1

D2.14. If f is a function and B is a collection, f−1(B) = Imf−1 (B) =

{a : ∃b ∈ B [⟨a, b⟩ ∈ f ]}.
C2.17. Let f be any function and A and B be any collections of sets.

Then:

• f−1(
⋃

A) =
⋃
{I : ∃a ∈ A [I = f−1(a).

• f−1(
⋂

A) =
⋂
{I : ∃a ∈ A [I = f−1(a).

• f−1(B\A) = f−1(B)\f−1(A).

Composite Function g ◦ f

D2.18. f composed with g, g ◦ f = {x : ∃a∃b∃c [(⟨a, b⟩ ∈ f)∧ (⟨b, c⟩ ∈
g) ∧ (x = ⟨a, c⟩)]}.
L2.19. Let f , g, h be functions, then:

• g ◦ f is a function.

• If f : A → B and g : B → C, then g ◦ f : A → C.

• (Associativity) h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Injection, Surjection and Bijection

D2.20. Let f : A → B be a function, then:

• (1-1 ) ∀a, a′ ∈ A [f(a) = f(a′) ⇒ a = a′].

• (onto) ran(f) = B.

• (bijective) 1-1 and onto.

L2.22. If f : A → B is 1-1 and onto B, then f−1 is 1-1 and onto A.

Directed Collection

D2.39. A collection G is called directed if

∀a, b ∈ G ∃c ∈ G [a ⊆ c ∧ b ⊆ c]

L2.40. Let G be a directed collection of functions, then f =
⋃

G

is a function. Moreover, dom(f) =
⋃
{dom(σ) : σ ∈ G} and

ran(f) =
⋃
{ran(σ) : σ ∈ G}.

Cartesian Product
∏

Conv. A function f such that ∀f ∈ I = dom(f) [f(i) = Ai] is

equivalent as a sequence F = ⟨Ai : i ∈ I⟩.
D2.36.

∏
F = {func f : dom(f) = I ∧ ∀i ∈ I [f(i) ∈ Ai]}.

T2.46. (General Distributive Laws) Let I be a set and ⟨Ji : i ∈ I⟩ be

a sequence of sets. Suppose that I ̸= ∅ and ∀i ∈ I [Ji ̸= ∅]. For each

i ∈ I, let ⟨Ai,j : j ∈ Ji⟩ be a sequence of sets. Then:⋃
i∈I

⋂
j∈Ji

Ai,j =
⋂

{
⋃
i∈I

Ai,f(i) : f ∈
∏
i∈I

Ji}

⋂
i∈I

⋃
j∈Ji

Ai,j =
⋃

{
⋂
i∈I

Ai,f(i) : f ∈
∏
i∈I

Ji}

∏
i∈I

(
⋃

j∈Ji

Ai,j) =
⋃

{
∏
i∈I

Ai,f(i) : f ∈
∏
i∈I

Ji}

∏
i∈I

(
⋂

j∈Ji

Ai,j) =
⋂

{
∏
i∈I

Ai,f(i) : f ∈
∏
i∈I

Ji}

T2.47. Fix n ≥ 1. Let X be a set and let A1, A2, . . ., An be subsets

of X. Then there are at most 22
n

different sets that can be formed

from A1, A2, . . ., An using the operations X\·, ∪ and ∩ (number of

regions in a Venn diagram).

Russell’s Paradox

T3.1. (Russell) R = {x : x is a set ∧ x /∈ x} is not a set.

T3.3. V = {x : x is a set} is not a set.

E3.4. If A and B are sets, then A×B is also a set.
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E3.5. If A and B are sets, then dom(A), ran(A),
⋂

A, AB are sets.

E3.6. I is a set and ⟨Ai : i ∈ I⟩ is a sequence. Then
∏
i∈I

Ai is a set.

E3.7. R and A are sets. If R is a relation, then ImR(A) is a set.

E3.8. The class U = {x : ∃a∃b [x = ⟨a, b⟩]} is a set.

E3.9. If f is a function and dom(f) is a set, then f is a set.

E3.x. U = {A : A is a set and N ≈ A} is not a set. Suppose U is

a set. Fix any x ∈ V. Then x is a set, so Ax = {x} × N is a set.

N ≈ Ax since ∃f(n) = ⟨x, n⟩ that is bijective. For any x ∈ V, we have

x ∈ {x} ∈ ⟨x, 0⟩ ∈ Ax ∈ U. Hence V ⊆
⋃⋃⋃

U, contradiction.

The Natural Numbers

F4.1. (Peano Axioms) L4.6 + L4.7 + L4.14 + E4.15(6)

Natural Number Set N

D4.3. 0 is the empty set ∅.
D4.2. S(x) = x ∪ {x}. 1 = S(0) = {0}.
D4.4. A class A is called inductive if 0 ∈ A and ∀x ∈ A [S(x) ∈ A]. A

set n is called a natural number if it belongs to every inductive class.

L4.6.

{
0 ∈ N
n ∈ N ⇒ S(n) ∈ N

L4.7. If X is any set of natural numbers such that 0 ∈ X and

∀x ∈ X [S(x) ∈ X], then X is the set of all natural numbers.

F4.8. (Principle of Mathematical Induction) P is some property.

Suppose that 0 has property P and ∀n ∈ N [n has property P ⇒
S(n) has property P ]. Then all natural numbers have property P .

L4.9.


∀x ∈ n [x ⊆ n]

n ⊆ N
∀x [(x ⊆ n ∧ x ̸= ∅) ⇒ ∃m ∈ x [x ∩m = ∅]]

L4.10.


n /∈ n

m ⊆ n ⇒ (m ∈ n ∨m = n)

(m ⊆ n ∧ n ∈ k) ⇒ m ∈ k

Either m = n or m ∈ n or n ∈ m.

L4.11. Let X ⊆ N. If X ̸= ∅, then ∃n ∈ X [X ∩ n = ∅].
L4.14. ∀n,m ∈ N [n ̸= m ⇒ S(n) ̸= S(m)].

Less Than Relation <

D4.12. ∀n,m ∈ N [m < n ⇔ m ⊂ n].

F4.13. (Principle of Strong Induction) P is some property. Suppose

that ∀n ∈ N [if P holds for all m ∈ N less than n, then P holds for n].

Then P holds for all n ∈ N.

E4.15.



m ∈ n ∈ k ⇒ m ∈ k

m ∈ n ∈ S(m) is impossible.

n ̸= 0 ⇒ n = S(
⋃

n)

n ≤ m ⇔ n ⊆ m

max {n,m} = n ∪m

Either n = 0 or ∃k ∈ n [S(k) = n].

E4.16. X ⊆ N. Suppose X has the property that ∀n ∈ X [n ⊆ X],

then either X = N or ∃n ∈ N [X = n].

Extender E, Addition + and Multiplication ·

D4.17. Let FN denote the class of all functions whose domain is some

natural number (FN is a proper class):

FN = {σ : σ is a function ∧ ∃n ∈ N [dom(σ) = n]}

An extender is a function E : FN → V.

T4.19. Suppose E : FN → V is any extender. Then ∃!f : N →
V [∀n ∈ N [f(n) = E(f ↾ n)]].

D4.25. Define E(σ) =

{
m dom(σ) = 0

S(σ(
⋃

dom(σ)) dom(σ) ̸= 0
.

∃!fm corresponds to E. Define m+ n = fm(n).

Define E(σ) =

{
0 dom(σ) = 0 ∨ σ(

⋃
dom(σ)) /∈ N

fσ(
⋃

dom(σ))(m) dom(σ) ̸= 0 ∧ σ(
⋃

dom(σ)) ∈ N
.

∃!gm corresponds to E. Define m · n = gm(n).

More generally, suppose we have a function f : N → B that is defined

recursively as f(0) = b0 and f(n + 1) = h(f(n)), then the extender

corresponding to f should be defined as

E(σ) =


b0 dom(σ) = 0

h(σ(
⋃

dom(σ))) dom(σ) ̸= 0 ∧ σ(
⋃

dom(σ)) ∈ B

∅ dom(σ) ̸= 0 ∧ σ(
⋃

dom(σ)) /∈ B

E4.26.



n+ 1 = S(n)

n+ (m+ k) = (n+m) + k

n+m = m+ n

n+ n = 2 · n
2 · n = 2 ·m ⇒ n = m

n · (m+ k) = n ·m+ n · k
n · (m · k) = (n ·m) · k
n ·m = m · n

E4.27.

{
n < k ⇒ m+ n < m+ k

m ̸= 0 ∧ n < k ⇒ m · n < m · k

Set Sizes

D5.1. A ≈ B ⇔ ∃f : A → B which is both 1-1 and onto.

F5.2. For any set A, P(A) ≈ {0, 1}A.

D5.4. A ⪅ B if there exists f : A → B which is 1-1.

L5.5. If f and g are both 1-1, then g ◦ f is also 1-1.

L5.6.


A ⪅ A

(A ⪅ B ∧B ⪅ C) ⇒ (A ⪅ C)

(A ≈ B ∧B ≈ C) ⇒ (A ≈ C)

T5.7. (Cantor) For any set X, X ̸⪅ P(X).

D5.12. (Schröder-Bernstein) A ⪅ B ∧B ⪅ A ⇒ A ≈ B.

E5.13. f : X → Y is a 1-1 function. Then ∀Z ⊆ X [Z ≈ Imf (Z)].

E5.14. I ⊆ A and J ⊆ B. If I ≈ J and (A\I) ≈ (B\J), then A ≈ B.

E5.15. m,n ∈ N.



f is 1-1 ⇒ f is onto.

m ∈ n ⇒ m ⪉ n

x ⊊ n ⇒ x ⪉ n

n ⪉ N
(A ≈ n ∧B ≈ m ∧A ∩B = ∅) ⇒ (A ∪B ≈ n+m)

E5.16. If n ∈ N and A ≈ S(n), then ∀a ∈ A [A\{a} ≈ n].

L5.20. Suppose A and B are sets and f : A → B is a 1-1 function.

Then ∀X,Y ⊆ A [Imf (X) = Imf (Y ) ⇒ X = Y ].

L5.21.


A ⪅ B ⇒ P(A) ⪅ P(B)

A ⪅ B ⇒ AC ⪅ BC

(A ⪅ B ∧ C ⪅ D ∧B ∩D = ∅) ⇒ A ∪ C ⪅ B ∪D

L5.23. If n ∈ N and ∃ onto function σ : n → A, then A ⪅ n.

Finite Set

D5.19. A is finite if ∃n ∈ N [n ≈ A], otherwise it is infinite. A is

countable if A ⪅ N, otherwise it is uncountable.

L5.22. If n ∈ N and A ⪅ n, then A is finite.

L5.24. If A and B are finite, then so is A ∪B.

T5.25. Let A be a finite set and f is a function with dom(f) = A,

then:

• X ⊊ A ⇒ X ⪉ A.

• ran(f) is finite and ran(f) ⪅ A.

• If ∀a ∈ A [a is finite], then
⋃

A is finite.

• P(A) is finite.

E5.26. If A is a finite non-empty subset of N, then max(A) =
⋃

A.

E5.27. (A ⪅ C ∧B ⪅ D) ⇒ (A×B ⪅ C ×D).

• If A and B are finite, then A×B is finite.

• If A and B are finite, then AB is finite.

E5.28. If I is finite and ∀i ∈ I [Ai is finite], then
∏
i∈I

Ai is finite.

E5.30. Suppose f is any function, then dom(f) ≈ f .
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