MA3205 Set Theory

AY2022/23 Semester 1. Prepared by Tian Xiao @snoidetx

Morse-Kelley Set Rules

1. Everything is a class.
2. Every set is a class; every class is a collection of sets; a class is a set if and only if it is a member of some class.
3. Every collection of sets is a class.
4. If A is a class and x is a set, then $A \cap x$ is a set.
5. The image of a set under a function is a set
6. If A and B are sets, then so are $A, B, \cup A$ and $\mathcal{P}(A)$.
7. (Axiom of Choice) If $\left\langle A_{i}: i \in I\right\rangle$ is any sequence of sets such that $\forall i \in I\left[A_{i} \neq \emptyset\right]$, then $\prod_{i \in I} A_{i} \neq \emptyset$.
8. (Axiom of Infinity) \mathbb{N} is a set
9. (Axiom of Extensibility) $A=B \Leftrightarrow \forall x[x \in A \Leftrightarrow x \in B]$.

Set Operations

$\underline{\text { Subset } \subseteq}$
D1.6. $A \subseteq B$ if $\forall x[x \in A \Rightarrow x \in B]$.
Empty Set \emptyset
D1.7. A set x is empty if $\forall y[y \notin x]$.
F1.8. If $x=\emptyset$ and A is any collection, then $x \subseteq A$
F1.9. If x and y are empty sets, then $x=y$.
Union \cup and Intersection \cap
D1.11. $\left\{\begin{array}{l}x \cup y=\{z: z \in x \vee z \in y\} \\ x \cap y=\{z: z \in x \wedge z \in y\}\end{array}\right.$
D1.13. $\begin{cases}\cup A=\{x: \exists y[y \in A \wedge x \in y]\} & \\ \cap A= \begin{cases}0 & \text { if } A=\emptyset ; \\ \{x: \forall y[y \in A \Rightarrow x \in y]\} & \text { otherwise. }\end{cases} \end{cases}$
Other Operators $\backslash, \triangle, \mathcal{P}$
D1.11. $\left\{\begin{array}{l}x \backslash y=\{z: z \in x \wedge z \notin y \\ x \triangle y=x \backslash y \cup y \backslash x \\ \mathcal{P}(x)=\{z: z \subseteq x\}\end{array}\right.$

Commutativity	$x \cup y=y \cup x$				
	$x \cap y=y \cap x$	$	$		$x \cup(y \cup z)=(x \cup y) \cup z$
:---:	:---:				
Associativity	$x \cap(y \cap z)=(x \cap y) \cap z$				
Distributivity	$x \cup(y \cap z)=(x \cup y) \cap(x \cup z)$				
	$x \cap(y \cup z)=(x \cap y) \cup(x \cap z)$				
De Morgan	$x \backslash(y \cup z)=(x \backslash y) \cap(x \backslash z)$				
	$x \backslash(y \cap z)=(x \backslash y) \cup(x \backslash z)$				

E1.16. $\left\{\begin{array}{l}x \triangle \emptyset=x ; x \triangle x=\emptyset \\ x \triangle y=y \triangle x \\ (x \triangle y) \triangle z=x \triangle(y \triangle z)\end{array}\right.$
E1.18. $x \cap(y \triangle z)=(x \cap y) \triangle(x \cap z)$

Relations and Functions

Ordered Pair $\langle a, b\rangle$
D2.1. An ordered pair $\langle a, b\rangle$ is the set $\{\{a\},\{a, b\}\}$.
L2.2. $\langle x, y\rangle=\langle a, b\rangle \Leftrightarrow(x=a) \wedge(y=b)$.
D2.3. $A \times B=\{z: \exists a \in A \exists b \in B[z=\langle a, b\rangle]\}$.
Relation R
D2.6. A relation R is a collection of ordered pairs ($\forall x \in R \exists a \exists b[x=$ $\langle a, b\rangle]$).

- R is a relation on A if $R \subseteq A \times A$.
- $\operatorname{dom}(R)=\{a: \exists b[\langle a, b\rangle \in R]\}$.
- $\operatorname{ran}(R)=\{b: \exists a[\langle a, b\rangle \in R]\}$.
- $R^{-1}=\{x: \exists a \exists b[\langle a, b\rangle \in R \wedge x=\langle b, a\rangle]\}$.

F2.9. If R is a relation and $S \subset R$, then S is a relation.
D2.10. If R is a relation and \bar{A} is any collection, then R restricted to
$A, R \upharpoonright A$, is $R \cap(A \times \operatorname{ran} R)$.
D2.12. $\operatorname{Im}_{R}(A)=\{b: \exists a \in A[\langle a, b\rangle \in R]\}$.
L2.15. Let R be a relation and A be a collection, then $\operatorname{Im}_{R}(\cup A)=$ $\bigcup\left(I: \exists a \in A\left[I=\operatorname{Im}_{R}(a)\right]\right)$.
L2.16. Let R be a relation such that $\forall x, z\left[x \neq z \Rightarrow \operatorname{Im}_{R}(\{x\}) \cap\right.$
$\left.\operatorname{Im}_{R}(\{y\})=\emptyset\right]$. Let A and B be any collections, then

- $\operatorname{Im}_{R}(\bigcap A)=\bigcap\left\{I: \exists a \in A\left[I=\operatorname{Im}_{R}(a)\right]\right\}$.
- $\operatorname{Im}_{R}(B \backslash A)=\operatorname{Im}_{R}(B) \backslash \operatorname{Im}_{R}(A)$.

Function f

D2.8. A function is a relation such that no two of its elements have the same $1^{\text {st }}$ coordinate $(\forall a, b, c[(\langle a, b\rangle \in f \wedge\langle a, c\rangle \in f) \Rightarrow b=c])$.

- $f: A \rightarrow B$ if $\operatorname{dom}(f)=A$ and $\operatorname{ran}(f) \subseteq B$.

F2.9. If f is a function and $g \subseteq f$, then g is a function.
F2.11. If f is a function and A is any collection, then $f \upharpoonright A$ is also a function.

- If $A \subset \operatorname{dom}(f)$, then $\operatorname{dom}(f \upharpoonright A)=A$

D2.21. $X^{\bar{Y}}=\{f: f$ is a function $\wedge f: Y \rightarrow X\}$.
Inverse of Function f^{-1}
D2.14. If f is a function and B is a collection, $f^{-1}(B)=\operatorname{Im}_{f^{-1}}(B)=$ $\{a: \exists b \in B[\langle a, b\rangle \in f]\}$.
C2.17. Let f be any function and A and B be any collections of sets. Then:

- $f^{-1}(\bigcup A)=\bigcup\left\{I: \exists a \in A\left[I=f^{-1}(a)\right.\right.$
- $f^{-1}(\bigcap A)=\bigcap\left\{I: \exists a \in A\left[I=f^{-1}(a)\right.\right.$.
- $f^{-1}(B \backslash A)=f^{-1}(B) \backslash f^{-1}(A)$.

Composite Function $g \circ f$

D2.18. f composed with $g, g \circ f=\{x: \exists a \exists b \exists c[(\langle a, b\rangle \in f) \wedge(\langle b, c\rangle \in$ g) $\wedge(x=\langle a, c\rangle)]\}$.

L2.19. Let f, g, h be functions, then:

- $g \circ f$ is a function.
- If $f: A \rightarrow B$ and $g: B \rightarrow C$, then $g \circ f: A \rightarrow C$
- (Associativity) $h \circ(g \circ f)=(h \circ g) \circ f$.

Injection, Surjection and Bijection
D2.20. Let $f: A \rightarrow B$ be a function, then:

- (1-1) $\forall a, a^{\prime} \in A\left[f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}\right]$.
(onto) $\operatorname{ran}(f)=B$.
- (bijective) 1-1 and onto.

L2.22. If $f: A \rightarrow B$ is $1-1$ and onto B, then f^{-1} is $1-1$ and onto A Directed Collection

D2.39. A collection G is called directed if

$$
\forall a, b \in G \exists c \in G[a \subseteq c \wedge b \subseteq c]
$$

L2.40. Let G be a directed collection of functions, then $f=\bigcup G$ is a function. Moreover, $\operatorname{dom}(f)=\bigcup\{\operatorname{dom}(\sigma): \sigma \in G\}$ and $\operatorname{ran}(f)=\bigcup\{\operatorname{ran}(\sigma): \sigma \in G\}$.

Cartesian Product Π

Conv. A function f such that $\forall f \in I=\operatorname{dom}(f)\left[f(i)=A_{i}\right]$ is equivalent as a sequence $F=\left\langle A_{i}: i \in I\right\rangle$.
D2.36. $\Pi F=\left\{\right.$ func $\left.f: \operatorname{dom}(f)=I \wedge \forall i \in I\left[f(i) \in A_{i}\right]\right\}$.
T2.46. (General Distributive Laws) Let I be a set and $\left\langle J_{i}: i \in I\right\rangle$ be a sequence of sets. Suppose that $I \neq \emptyset$ and $\forall i \in I\left[J_{i} \neq \emptyset\right]$. For each $i \in I$, let $\left\langle A_{i, j}: j \in J_{i}\right\rangle$ be a sequence of sets. Then:

$$
\begin{aligned}
& \bigcup_{i \in I} \bigcap_{\mathcal{U}_{i}} A_{i, j}=\bigcap\left\{\bigcup_{i \in I} A_{i, f(i)}: f \in \prod_{i \in I} J_{i}\right\} \\
& \bigcap_{i \in I} \bigcup_{j \in \mathcal{J}_{i}} A_{i, j}=\bigcup\left\{\bigcap_{i \in I} A_{i, f(i)}: f \in \prod_{i \in I} J_{i}\right\} \\
& \left.\prod_{i \in I}\left(\bigcup_{j \in J_{i}} A_{i, j}\right)=\bigcup \prod_{i \in I} A_{i, f(i)}: f \in \prod_{i \in I} J_{i}\right\} \\
& \prod_{i \in I}\left(\bigcap_{j \in J_{i}} A_{i, j}\right)=\bigcap\left\{\prod_{i \in I} A_{i, f(i)}: f \in \prod_{i \in I} J_{i}\right\}
\end{aligned}
$$

T2.47. Fix $n \geq 1$. Let X be a set and let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of X. Then there are at most $2^{2^{n}}$ different sets that can be formed from $A_{1}, A_{2}, \ldots, A_{n}$ using the operations $X \backslash \cdot, \cup$ and \cap (number of regions in a Venn diagram).

Russell's Paradox

T3.1. (Russell) $R=\{x: x$ is a set $\wedge x \notin x\}$ is not a set. T3.3. $V=\{x: x$ is a set $\}$ is not a set
E3.4. If A and B are sets, then $A \times B$ is also a set.

E3.5. If A and B are sets, then $\operatorname{dom}(A), \operatorname{ran}(A), \cap A, A^{B}$ are sets E3.6. I is a set and $\left\langle A_{i}: i \in I\right\rangle$ is a sequence. Then $\prod_{i \in I} A_{i}$ is a set. E3.7. R and A are sets. If R is a relation, then $\operatorname{Im}_{R}(A)$ is a set. E3.8. The class $\mathbf{U}=\{x: \exists a \exists b[x=\langle a, b\rangle]\}$ is a set
E3.9. If f is a function and $\operatorname{dom}(f)$ is a set, then f is a set.
E3.x. $\mathbb{U}=\{A: A$ is a set and $\mathbb{N} \approx A\}$ is not a set. Suppose \mathbb{U} is a set. Fix any $x \in \mathbb{V}$. Then x is a set, so $A_{x}=\{x\} \times \mathbb{N}$ is a set. $\mathbb{N} \approx A_{x}$ since $\exists f(n)=\langle x, n\rangle$ that is bijective. For any $x \in \mathbf{V}$, we have $x \in\{x\} \in\langle x, 0\rangle \in A_{x} \in \mathbb{U}$. Hence $\mathbf{V} \subseteq \bigcup \bigcup \bigcup \mathbf{U}$, contradiction.

The Natural Numbers

F4.1. (Peano Axioms) $\mathbf{L 4 . 6}+\mathbf{L} 4.7+\mathbf{L 4 . 1 4}+\mathbf{E 4 . 1 5}(6)$

Natural Number Set \mathbb{N}

D4.3. 0 is the empty set \emptyset.
D4.2. $S(x)=x \cup\{x\}$. $1=S(0)=\{0\}$.
D4.4. A class A is called inductive if $0 \in A$ and $\forall x \in A[S(x) \in A]$. A set n is called a natural number if it belongs to every inductive class.
L4.6. $\left\{\begin{array}{l}0 \in \mathbb{N} \\ n \in \mathbb{N}\end{array}\right.$
L4.7. If X is any set of natural numbers such that $0 \in X$ and $\forall x \in X[S(x) \in X]$, then X is the set of all natural numbers.
F4.8. (Principle of Mathematical Induction) P is some property. Suppose that 0 has property P and $\forall n \in \mathbb{N}[n$ has property $P \Rightarrow$ $S(n)$ has property $P]$. Then all natural numbers have property P.
L4.9. $\left\{\begin{array}{l}\forall x \in n[x \subseteq n] \\ n \subseteq \mathbb{N}\end{array}\right.$ $\forall x[(x \subseteq n \wedge x \neq \emptyset) \Rightarrow \exists m \in x[x \cap m=\emptyset]]$

L4.10. $(n \notin n$

$$
m \subseteq n \Rightarrow(m \in n \vee m=n)
$$

$(m \subseteq n \wedge n \in k) \Rightarrow m \in k$
Either $m=n$ or $m \in n$ or $n \in m$.
L4.11. Let $X \subseteq \mathbb{N}$. If $X \neq \emptyset$, then $\exists n \in X[X \cap n=\emptyset]$.
L4.14. $\forall n, m \in \mathbb{N}[n \neq m \Rightarrow S(n) \neq S(m)]$.
Less Than Relation $<$
D4.12. $\forall n, m \in \mathbb{N}[m<n \Leftrightarrow m \subset n]$.
F4.13. (Principle of Strong Induction) P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n, then P holds for n]. Then P holds for all $n \in \mathbb{N}$.
$\left\{\begin{array}{l}m \in n \in k \Rightarrow m \in k \\ m \in n \in S(m) \text { is impossible. } \\ n \neq 0 \Rightarrow n=S(\bigcup n) \\ n \leq m \Leftrightarrow n \subseteq m \\ \max \{n, m\}=n \cup m \\ \text { Fither } n=0 \text { or } \exists k \in n[S(k)=n] .\end{array}\right.$

E4.15.

Either $n=0$ or $\exists k \in n[S(k)=n]$.

E4.16. $X \subseteq \mathbb{N}$. Suppose X has the property that $\forall n \in X[n \subseteq X]$, then either $X=\mathbb{N}$ or $\exists n \in \mathbb{N}[X=n]$.

E5.13. $f: X \rightarrow Y$ is a $1-1$ function. Then $\forall Z \subseteq X\left[Z \approx \operatorname{Im}_{f}(Z)\right]$.

Extender E, Addition + and Multiplication.

D4.17. Let $\mathbf{F N}$ denote the class of all functions whose domain is some natural number ($\mathbf{F N}$ is a proper class):

$$
\mathbf{F N}=\{\sigma: \sigma \text { is a function } \wedge \exists n \in \mathbb{N}[\operatorname{dom}(\sigma)=n]\}
$$

An extender is a function $\mathbf{E}: \mathbf{F N} \rightarrow \mathbf{V}$.
T4.19. Suppose $\mathbf{E}: \mathbf{F N} \rightarrow \mathbf{V}$ is any extender. Then $\exists!f: \mathbb{N} \rightarrow$ $\mathbf{V}[\forall n \in \mathbb{N}[f(n)=\mathbf{E}(f \upharpoonright n)]]$.
D4.25. Define $\mathbf{E}(\sigma)=\left\{\begin{array}{ll}m & \operatorname{dom}(\sigma)=0 \\ S(\sigma(\bigcup \operatorname{dom}(\sigma)) & \operatorname{dom}(\sigma) \neq 0\end{array}\right.$.
$\exists!f_{m}$ corresponds to \mathbb{E}. Define $m+n=f_{m}(n)$.
Define $\mathbf{E}(\sigma)= \begin{cases}0 & \operatorname{dom}(\sigma)=0 \vee \sigma(\bigcup \operatorname{dom}(\sigma)) \notin \mathbb{N} \\ f_{\sigma(\cup \operatorname{dom}(\sigma))}(m) & \operatorname{dom}(\sigma) \neq 0 \wedge \sigma(\bigcup \operatorname{dom}(\sigma)) \in \mathbb{N}\end{cases}$
$\exists!g_{m}$ corresponds to \mathbb{E}. Define $m \cdot n=g_{m}(n)$
More generally, suppose we have a function $f: \mathbb{N} \rightarrow B$ that is defined recursively as $f(0)=b_{0}$ and $f(n+1)=h(f(n))$, then the extender corresponding to f should be defined as

$\mathbb{E}(\sigma)=\left\{\begin{array}{l}b_{0} \\ h(\sigma(\bigcup \operatorname{dom}(\sigma))) \\ \emptyset\end{array}\right.$
 $\operatorname{dom}(\sigma)=0$
 -
 ($) \neq 0 \wedge \sigma(\cup \operatorname{dom}(\sigma)) \in B$
 $\operatorname{dom}(\sigma) \neq 0 \wedge \sigma(\cup \operatorname{dom}(\sigma)) \notin B$

E4.26.

$$
\left\{\begin{array}{l}
n+(m+k)=(n+m)+k \\
n+m=m+n \\
n+n=2 \cdot n \\
2 \cdot n=2 \cdot m \Rightarrow n=m \\
n \cdot(m+k)=n \cdot m+n \cdot k \\
n \cdot(m \cdot k)=(n \cdot m) \cdot k \\
n \cdot m=m \cdot n
\end{array}\right.
$$

E4.27.

$$
\left\{\begin{array}{l}
n<k \Rightarrow m+n<m+k \\
m \neq 0 \wedge n<k \Rightarrow m \cdot n
\end{array}\right.
$$

Set Sizes

D5.1. $A \approx B \Leftrightarrow \exists f: A \rightarrow B$ which is both 1-1 and onto. F5.2. For any set $A, \mathcal{P}(A) \approx\{0,1\}^{A}$
D5.4. $A \lesssim B$ if there exists $f: A \rightarrow B$ which is $1-1$.
L5.5. If f and g are both $1-1$, then $g \circ f$ is also $1-1$.
L5.6. $\left\{\begin{array}{l}A \lesssim A \\ (A \lesssim B \wedge B \lesssim C) \Rightarrow(A \lesssim C) \\ (A \approx B \wedge B \approx C) \Rightarrow(A \approx C)\end{array}\right.$
T5.7. (Cantor) For any set $X, X \not Z \mathcal{P}(X)$.
D5.12. (Schröder-Bernstein) $A \lesssim B \wedge B \lesssim A \Rightarrow A \approx B$.

E5.14. $I \subseteq A$ and $J \subseteq B$. If $I \approx J$ and $(A \backslash I) \approx(B \backslash J)$, then $A \approx B$.

E5.15. $m, n \in \mathbb{N}$.
$\left\{\begin{array}{l}f \text { is } 1-1 \Rightarrow f \text { is onto. } \\ m \in n \Rightarrow m \nRightarrow n \\ x \subsetneq n \Rightarrow x \nRightarrow n \\ n \nsupseteq \mathbb{N} \\ (A \approx n \wedge B \approx m \wedge A \cap B\end{array}\right.$

E5.16. If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A[A \backslash\{a\} \approx n]$.
L5.20. Suppose A and B are sets and $f: A \rightarrow B$ is a $1-1$ function.
Then $\forall X, Y \subseteq A\left[\operatorname{Im}_{f}(X)=\operatorname{Im}_{f}(Y) \Rightarrow X=Y\right]$.
L5.21. $\left\{\begin{array}{l}A \lesssim B \Rightarrow \mathcal{P}(A) \lesssim \mathcal{P}(B) \\ A \lesssim B \Rightarrow A^{C} \lesssim B^{C} \\ (A \lesssim B \wedge C \lesssim D \wedge B \cap D=\emptyset) \Rightarrow A \cup C \lesssim B \cup D\end{array}\right.$
L5.23. If $n \in \mathbb{N}$ and \exists onto function $\sigma: n \rightarrow A$, then $A \lesssim n$.
Finite Set
D5.19. A is finite if $\exists n \in \mathbb{N}[n \approx A]$, otherwise it is infinite. A is countable if $A \lesssim \mathbb{N}$, otherwise it is uncountable.
L5.22. If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.
L5.24. If A and B are finite, then so is $A \cup B$.
T5.25. Let A be a finite set and f is a function with $\operatorname{dom}(f)=A$, then:

- $X \subsetneq A \Rightarrow X \not \approx A$.
- $\operatorname{ran}(f)$ is finite and $\operatorname{ran}(f) \lesssim A$
- If $\forall a \in A$ [a is finite], then $\bigcup A$ is finite.
- $\mathcal{P}(A)$ is finite.

E5.26. If A is a finite non-empty subset of \mathbb{N}, then $\max (A)=\bigcup A$.
E5.27. $(A \lesssim C \wedge B \lesssim D) \Rightarrow(A \times B \lesssim C \times D)$.

- If A and B are finite, then $A \times B$ is finite.
- If A and B are finite, then A^{B} is finite.

E5.28. If I is finite and $\forall i \in I\left[A_{i}\right.$ is finite $]$, then $\prod_{i \in I} A_{i}$ is finite.
E5.30. Suppose f is any function, then $\operatorname{dom}(f) \approx f$.

Legends

C	Corollary
D	Definition
E	Exercise
F	Fact
L	Lemma
T	Theorem
Conv.	Convention

