MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

Morse-Kellev Set Rules

1. Everything is a class.

2. Every set is a class; every class is a collection of sets; a class is a **Relations and Functions** set if and only if it is a member of some class.

3. Every collection of sets is a class.

4. If A is a class and x is a set, then $A \cap x$ is a set.

5. The image of a set under a function is a set.

6. If A and B are sets, then so are $A, B, \cup A$ and $\mathcal{P}(A)$.

7. (Axiom of Choice) If $\langle A_i : i \in I \rangle$ is any sequence of sets such that $\forall i \in I \ [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset.$

8. (Axiom of Infinity) \mathbb{N} is a set.

9. (Axiom of Extensibility) $A = B \Leftrightarrow \forall x \ [x \in A \Leftrightarrow x \in B]$.

Set Operations

 $Subset \subset$

D1.6. $A \subseteq B$ if $\forall x \ [x \in A \Rightarrow x \in B]$.

Empty Set \emptyset

D1.7. A set x is empty if $\forall y \ [y \notin x]$. **F1.8.** If $x = \emptyset$ and A is any collection, then $x \subseteq A$. **F1.9.** If x and y are empty sets, then x = y.

Union \cup and Intersection \cap

$$\mathbf{D1.11.} \begin{cases} x \cup y = \{z : z \in x \lor z \in y\} \\ x \cap y = \{z : z \in x \land z \in y\} \end{cases}$$
$$\mathbf{D1.13.} \begin{cases} \bigcup A = \{x : \exists y \ [y \in A \land x \in y]\} \\ \bigcap A = \begin{cases} 0 & \text{if } A = \emptyset; \\ \{x : \forall y \ [y \in A \Rightarrow x \in y]\} \end{cases} \text{ otherwise.}$$

Other Operators $\backslash, \triangle, \mathcal{P}$

D1.11.
$$\begin{cases} x \setminus y = \{z : z \in x \land z \notin y \\ x \triangle y = x \setminus y \cup y \setminus x \\ \mathcal{P}(x) = \{z : z \subseteq x\} \end{cases}$$

Commutativity	$x\cup y=y\cup x$
	$x\cap y=y\cap x$
Associativity	$x \cup (y \cup z) = (x \cup y) \cup z$
	$x\cap (y\cap z)=(x\cap y)\cap z$
Distributivity	$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
	$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
De Morgan	$x \backslash (y \cup z) = (x \backslash y) \cap (x \backslash z)$
	$x \backslash (y \cap z) = (x \backslash y) \cup (x \backslash z)$

 $x \triangle \emptyset = x; x \triangle x = \emptyset$ E1.16. $x \triangle y = y \triangle x$ $(x \triangle y) \triangle z = x \triangle (y \triangle z)$ **E1.18.** $x \cap (y \triangle z) = (x \cap y) \triangle (x \cap z).$

Ordered Pair $\langle a, b \rangle$

D2.1. An ordered pair $\langle a, b \rangle$ is the set $\{\{a\}, \{a, b\}\}$. **L2.2.** $\langle x, y \rangle = \langle a, b \rangle \Leftrightarrow (x = a) \land (y = b).$ **D2.3.** $A \times B = \{z : \exists a \in A \exists b \in B [z = \langle a, b \rangle]\}.$

Relation R

D2.6. A relation R is a collection of ordered pairs ($\forall x \in R \exists a \exists b \mid x =$ $\langle a, b \rangle$]) • R is a relation on A if $R \subset A \times A$. • dom(R) = { $a : \exists b [\langle a, b \rangle \in R]$ }. • ran(R) = { $b : \exists a [\langle a, b \rangle \in R]$ }. • $R^{-1} = \{x : \exists a \exists b [\langle a, b \rangle \in R \land x = \langle b, a \rangle]\}.$ **F2.9.** If R is a relation and $S \subseteq R$, then S is a relation. **D2.10.** If R is a relation and A is any collection, then R restricted to $A, R \upharpoonright A, \text{ is } R \cap (A \times \operatorname{ran} R).$ **D2.12.** Im_R(A) = { $b : \exists a \in A [\langle a, b \rangle \in R]$ }. **L2.15.** Let R be a relation and A be a collection, then $\text{Im}_B(|A|) =$ $\bigcup (I : \exists a \in A \ [I = \operatorname{Im}_{R}(a)]).$ **L2.16.** Let R be a relation such that $\forall x, z \mid x \neq z \Rightarrow \operatorname{Im}_{R}(\{x\}) \cap$ $\operatorname{Im}_{B}(\{y\}) = \emptyset$. Let A and B be any collections, then: • $\operatorname{Im}_B(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = \operatorname{Im}_B(a)]\}.$ • $\operatorname{Im}_{R}(B \setminus A) = \operatorname{Im}_{R}(B) \setminus \operatorname{Im}_{R}(A).$

Function f

D2.8. A function is a relation such that no two of its elements have the same 1^{st} coordinate $(\forall a, b, c [(\langle a, b \rangle \in f \land \langle a, c \rangle \in f) \Rightarrow b = c]).$ • $f: A \to B$ if dom(f) = A and ran $(f) \subseteq B$. **F2.9.** If f is a function and $g \subseteq f$, then g is a function. **F2.11.** If f is a function and A is any collection, then $f \upharpoonright A$ is also a function. • If $A \subset \text{dom}(f)$, then $\text{dom}(f \upharpoonright A) = A$ **D2.21.** $X^Y = \{f : f \text{ is a function } \land f : Y \to X\}.$

Inverse of Function f^{-1}

 $\{a: \exists b \in B \ [\langle a, b \rangle \in f]\}.$

C2.17. Let *f* be any function and *A* and *B* be any collections of sets. Then:

- $f^{-1}([]A) = []{I : \exists a \in A [I = f^{-1}(a).}$
- $f^{-1}(\bigcap A) = \bigcap \{I : \exists a \in A \mid I = f^{-1}(a).$
- $f^{-1}(B \setminus A) = f^{-1}(B) \setminus f^{-1}(A)$.

Composite Function $g \circ f$

D2.18. f composed with $q, q \circ f = \{x : \exists a \exists b \exists c [(\langle a, b \rangle \in f) \land (\langle b, c \rangle \in f) \}$ $g) \land (x = \langle a, c \rangle)]\}.$ **L2.19.** Let f, q, h be functions, then:

- $q \circ f$ is a function.
- If $f: A \to B$ and $q: B \to C$, then $q \circ f: A \to C$.
- (Associativity) $h \circ (q \circ f) = (h \circ q) \circ f$.

Injection, Surjection and Bijection

D2.20. Let $f : A \to B$ be a function, then: • (1-1) $\forall a, a' \in A [f(a) = f(a') \Rightarrow a = a'].$ • (onto) $\operatorname{ran}(f) = B$. • (bijective) 1-1 and onto. **L2.22.** If $f : A \to B$ is 1-1 and onto B, then f^{-1} is 1-1 and onto A.

Directed Collection

D2.39. A collection G is called directed if

 $\forall a, b \in G \exists c \in G [a \subseteq c \land b \subseteq c]$

L2.40. Let G be a directed collection of functions, then $f = \bigcup G$ is a function. Moreover, $\operatorname{dom}(f) = \bigcup \{ \operatorname{dom}(\sigma) : \sigma \in G \}$ and $\operatorname{ran}(f) = \bigcup \{ \operatorname{ran}(\sigma) : \sigma \in G \}.$

Cartesian Product \prod

Conv. A function f such that $\forall f \in I = \text{dom}(f) [f(i) = A_i]$ is equivalent as a sequence $F = \langle A_i : i \in I \rangle$.

D2.36. $\prod F = \{ \text{func } f : \text{dom}(f) = I \land \forall i \in I \ [f(i) \in A_i] \}.$

T2.46. (*General Distributive Laws*) Let I be a set and $\langle J_i : i \in I \rangle$ be a sequence of sets. Suppose that $I \neq \emptyset$ and $\forall i \in I \ [J_i \neq \emptyset]$. For each $i \in I$, let $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets. Then:

$$\begin{split} \bigcup_{i \in I} \bigcap_{j \in J_i} A_{i,j} &= \bigcap \{ \bigcup_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \} \\ \bigcap_{i \in I} \bigcup_{j \in J_i} A_{i,j} &= \bigcup \{ \bigcap_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \} \\ \prod_{i \in I} (\bigcup_{j \in J_i} A_{i,j}) &= \bigcup \{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \} \\ \prod_{i \in I} (\bigcap_{j \in J_i} A_{i,j}) &= \bigcap \{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \} \end{split}$$

T2.47. Fix $n \ge 1$. Let X be a set and let A_1, A_2, \ldots, A_n be subsets **D2.14.** If f is a function and B is a collection, $f^{-1}(B) = \text{Im}_{f^{-1}}(B) = \text{of } X$. Then there are at most 2^{2^n} different sets that can be formed from A_1, A_2, \ldots, A_n using the operations $X \setminus \cdot, \cup$ and \cap (number of regions in a Venn diagram).

Russell's Paradox

T3.1. (*Russell*) $R = \{x : x \text{ is a set } \land x \notin x\}$ is not a set. **T3.3.** $V = \{x : x \text{ is a set}\}$ is not a set. **E3.4.** If A and B are sets, then $A \times B$ is also a set.

E3.5. If A and B are sets, then dom(A), ran(A), $\bigcap A$, A^B are sets. **E3.6.** I is a set and $\langle A_i : i \in I \rangle$ is a sequence. Then $\prod A_i$ is a set.

E3.7. R and A are sets. If R is a relation, then $Im_R(A)$ is a set. **E3.8.** The class $\mathbf{U} = \{x : \exists a \exists b \ [x = \langle a, b \rangle]\}$ is a set. **E3.9.** If f is a function and dom(f) is a set, then f is a set. **E3.x.** $\mathbb{U} = \{A : A \text{ is a set and } \mathbb{N} \approx A\}$ is not a set. Suppose \mathbb{U} is a set. Fix any $x \in \mathbb{V}$. Then x is a set, so $A_x = \{x\} \times \mathbb{N}$ is a set. $\mathbb{N} \approx A_x$ since $\exists f(n) = \langle x, n \rangle$ that is bijective. For any $x \in \mathbf{V}$, we have $x \in \{x\} \in \langle x, 0 \rangle \in A_x \in \mathbb{U}$. Hence $\mathbf{V} \subseteq \bigcup \bigcup \bigcup \bigcup$ contradiction.

The Natural Numbers

F4.1. (*Peano Axioms*) L4.6 + L4.7 + L4.14 + E4.15(6)

Natural Number Set \mathbb{N}

D4.3. 0 is the empty set \emptyset .

D4.2. $S(x) = x \cup \{x\}$. $1 = S(0) = \{0\}$.

D4.4. A class A is called inductive if $0 \in A$ and $\forall x \in A [S(x) \in A]$. A set n is called a natural number if it belongs to every inductive class.

 $0 \in \mathbb{N}$ L4.6. $n \in \mathbb{N} \Rightarrow S(n) \in \mathbb{N}$

L4.7. If X is any set of natural numbers such that $0 \in X$ and $\forall x \in X [S(x) \in X]$, then X is the set of all natural numbers.

F4.8. (*Principle of Mathematical Induction*) P is some property. Suppose that 0 has property P and $\forall n \in \mathbb{N} \mid n \text{ has property } P \Rightarrow$ S(n) has property P. Then all natural numbers have property P.

```
\forall x \in n \ [x \subseteq n]
 L4.9. \langle n \subseteq \mathbb{N}
                 \forall x \ [(x \subseteq n \land x \neq \emptyset) \Rightarrow \exists m \in x \ [x \cap m = \emptyset]]
                    n \notin n
L4.10. \begin{cases} m \subseteq n \Rightarrow (m \in n \lor m = n) \\ (m \subseteq n \land n \in k) \Rightarrow m \in k \end{cases}
                    Either m = n or m \in n or n \in m.
 L4.11. Let X \subseteq \mathbb{N}. If X \neq \emptyset, then \exists n \in X [X \cap n = \emptyset].
 L4.14. \forall n, m \in \mathbb{N} \ [n \neq m \Rightarrow S(n) \neq S(m)].
```

Less Than Relation <

D4.12. $\forall n, m \in \mathbb{N} [m < n \Leftrightarrow m \subset n].$

F4.13. (*Principle of Strong Induction*) P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n, then P holds for n]. Then P holds for all $n \in \mathbb{N}$.

 $\int m \in n \in k \Rightarrow m \in k$ $m \in n \in S(m)$ is impossible. **E4.15.** $\begin{cases} n \neq 0 \Rightarrow n = S(\bigcup n) \\ n \le m \Leftrightarrow n \subseteq m \end{cases}$ $\max\left\{n,m\right\} = n \cup m$ Either n = 0 or $\exists k \in n [S(k) = n]$. then either $X = \mathbb{N}$ or $\exists n \in \mathbb{N} [X = n]$.

Extender **E**, Addition + and Multiplication \cdot

D4.17. Let **FN** denote the class of all functions whose domain is some natural number (**FN** is a proper class):

$$\mathbf{FN} = \{ \sigma : \sigma \text{ is a function} \land \exists n \in \mathbb{N} [\operatorname{dom}(\sigma) = n] \}$$

An extender is a function $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$. **T4.19.** Suppose $\mathbf{E} : \mathbf{FN} \to \mathbf{V}$ is any extender. Then $\exists ! f : \mathbb{N} \to \mathbb{N}$ $\mathbf{V} \ [\forall n \in \mathbb{N} \ [f(n) = \mathbf{E}(f \upharpoonright n)]].$ **D4.25.** Define $\mathbf{E}(\sigma) = \begin{cases} m & \operatorname{dom}(\sigma) = 0\\ S(\sigma(\bigcup \operatorname{dom}(\sigma)) & \operatorname{dom}(\sigma) \neq 0 \end{cases}$. $\exists ! f_m \text{ corresponds to } \mathbb{E}.$ Define $m + n = f_m(n).$ $\text{Define } \mathbf{E}(\sigma) \ = \ \begin{cases} 0 & \text{dom}(\sigma) = 0 \lor \sigma(\bigcup \text{dom}(\sigma)) \notin \mathbb{N} \\ f_{\sigma(\bigcup \text{dom}(\sigma))}(m) & \text{dom}(\sigma) \neq 0 \land \sigma(\bigcup \text{dom}(\sigma)) \in \mathbb{N} \end{cases}$ $\exists ! g_m \text{ corresponds to } \mathbb{E}.$ Define $m \cdot n = g_m(n)$.

More generally, suppose we have a function $f: \mathbb{N} \to B$ that is defined recursively as $f(0) = b_0$ and f(n+1) = h(f(n)), then the extender corresponding to f should be defined as

		$dom(\sigma) = 0$ $dom(\sigma) \neq 0 \land \sigma(\bigcup dom(\sigma)) \in B$ $dom(\sigma) \neq 0 \land \sigma(\bigcup dom(\sigma)) \notin B$	
	$ \begin{pmatrix} n+1 = S(n) \\ \vdots \\ \vdots$	、 .	
	n + (m+k) = (n+m) + k		
	n+m=m+n		
E4.26.	$n+n=2\cdot n$		
	$2 \cdot n = 2 \cdot m \Rightarrow n = m$	<i>i</i>	
	$n \cdot (m+k) = n \cdot m + n \cdot k$		
E4.26. $\begin{cases} n+1 = S(n) \\ n + (m+k) = (n+m) + k \\ n+m = m+n \\ n+n = 2 \cdot n \\ 2 \cdot n = 2 \cdot m \Rightarrow n = m \\ n \cdot (m+k) = n \cdot m + n \cdot k \\ n \cdot (m \cdot k) = (n \cdot m) \cdot k \\ n \cdot m = m \cdot n \end{cases}$			
$n \cdot m = m \cdot n$			
E4.27.	$\begin{cases} n < k \Rightarrow m + n < m - m \\ m \neq 0 \land n < k \Rightarrow m \end{cases}$	+ k	
	$m \neq 0 \land n < k \Rightarrow m$.	$n < m \cdot k$	

Set Sizes

D5.1. $A \approx B \Leftrightarrow \exists f : A \to B$ which is both 1-1 and onto. **F5.2.** For any set $A, \mathcal{P}(A) \approx \{0, 1\}^A$. **D5.4.** $A \leq B$ if there exists $f : A \rightarrow B$ which is 1-1. **L5.5.** If f and g are both 1-1, then $g \circ f$ is also 1-1. $A \lesssim A$ **L5.6.** $\left\{ (A \lessapprox B \land B \lessapprox C) \Rightarrow (A \lessapprox C) \right\}$ $(A \approx B \land B \approx C) \Rightarrow (A \approx C)$ **T5.7.** (*Cantor*) For any set $X, X \not\leq \mathcal{P}(X)$. **D5.12.** (Schröder-Bernstein) $A \leq B \land B \leq A \Rightarrow A \approx B$.

E4.16. $X \subseteq \mathbb{N}$. Suppose X has the property that $\forall n \in X \mid n \subseteq X$, **E5.13.** $f: X \to Y$ is a 1-1 function. Then $\forall Z \subseteq X \mid Z \approx \operatorname{Im}_{f}(Z)$. **E5.14.** $I \subseteq A$ and $J \subseteq B$. If $I \approx J$ and $(A \setminus I) \approx (B \setminus J)$, then $A \approx B$.

> f is $1 - 1 \Rightarrow f$ is onto. **E5.15.** $m, n \in \mathbb{N}$. $\begin{cases} m \in n \Rightarrow m \lessapprox n \\ x \subsetneq n \Rightarrow x \gneqq n \\ n \lessapprox \mathbb{N} \end{cases}$ $(A \approx n \land B \approx m \land A \cap B = \emptyset) \Rightarrow (A \cup B \approx n + m)$ **E5.16.** If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A [A \setminus \{a\} \approx n]$. **L5.20.** Suppose A and B are sets and $f : A \to B$ is a 1-1 function. Then $\forall X, Y \subset A [\operatorname{Im}_f(X) = \operatorname{Im}_f(Y) \Rightarrow X = Y].$ $A \lesssim B \Rightarrow \mathcal{P}(A) \lesssim \mathcal{P}(B)$ **L5.21.** $\left\{ A \lessapprox B \Rightarrow A^C \lessapprox B^C \right\}$ $\left((A \lessapprox B \land C \lessapprox D \land B \cap D = \emptyset) \Rightarrow A \cup C \lessapprox B \cup D \right)$ **L5.23.** If $n \in \mathbb{N}$ and \exists onto function $\sigma : n \to A$, then $A \leq n$.

Finite Set

D5.19. A is finite if $\exists n \in \mathbb{N} \ [n \approx A]$, otherwise it is infinite. A is countable if $A \leq \mathbb{N}$, otherwise it is uncountable.

L5.22. If $n \in \mathbb{N}$ and $A \leq n$, then A is finite.

L5.24. If A and B are finite, then so is $A \cup B$.

T5.25. Let A be a finite set and f is a function with dom(f) = A, then:

• $X \subseteq A \Rightarrow X \lneq A$.

• $\operatorname{ran}(f)$ is finite and $\operatorname{ran}(f) \leq A$.

• If $\forall a \in A \ [a \ is \ finite]$, then $\bigcup A \ is \ finite$.

• $\mathcal{P}(A)$ is finite.

E5.26. If A is a finite non-empty subset of \mathbb{N} , then $\max(A) = \bigcup A$. **E5.27.** $(A \leq C \land B \leq D) \Rightarrow (A \times B \leq C \times D).$

• If A and B are finite, then $A \times B$ is finite.

• If A and B are finite, then A^B is finite.

E5.28. If I is finite and $\forall i \in I [A_i \text{ is finite}]$, then $\prod A_i$ is finite.

E5.30. Suppose f is any function, then $dom(f) \approx f$.

Legends

C	Corollary
D	Definition
E	Exercise
F	Fact
L	Lemma
Т	Theorem
Conv.	Convention