MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao

Sets and Operations

Axiom of Extensibility

For any sets A and B, A = B if and only if $\forall x, (x \in A) \Leftrightarrow (x \in B)$.

Quantifiers

 $\neg \mid \land \mid \lor \mid \Rightarrow \mid \Leftrightarrow \mid \forall \mid \exists$

Empty Set

 \emptyset denotes *the* empty set.

Set Operations

 $\cup \mid \cap \mid \setminus \mid \bigtriangleup \mid \mathcal{P}$

riangle represents symmetric difference (i.e. $x riangle y = (x ackslash y) \cup (y ackslash x)$).

 $\mathcal P$ represents *power set* (i.e. $\mathcal P(x) = \{z: z \subseteq x\}$).

Union and Intersection of Collection of Sets

 $igcup A = \{x: \exists y \ [(y \in A) \land (x \in y)]\} \ igcup A = iggl\{ x: orall y \ [y \in A \Rightarrow x \in y] \} \ igcup ext{otherwise.} \end{cases}$ if $A = \emptyset,$ otherwise.

Pairing, Products and Relations

Ordered Pairs

 $\langle a,b
angle = \{\{a\},\{a,b\}\}$

<u>Lemma 2.2</u>

 $\langle x,y
angle = \langle a,b
angle$ if and only if x=a and y=b.

Cartesian Product of Sets

 $A imes B = \{z: \exists a \in A, b \in B \ [z = \langle a, b
angle]\}$

Relation

A relation is a collection of ordered pairs.

- Domain: $dom(R) = \{a: \exists b \ [\langle a,b
 angle \in R]\}$
- Range: $ran(R) = \{b: \exists a \ [\langle a,b
 angle \in R]\}$
- Inverse: $R^{-1} = \{ \langle b, a
 angle : \langle a, b
 angle \in R \}$
- $R_{less} = \{ \langle r,s
 angle \in \mathbb{R} imes \mathbb{R} : r < s \}$
- Restriction: $R \upharpoonright A = R \cap (A imes ran(R))$
- Image: $Im_R(A) = \{b: \exists a \in A \ [\langle a,b
 angle \in R]\}$

Function

A function is a relation that no two of its elements have the same first coordinate. Formally, f is a function if and only if f is a relation and $\forall a, b, c \ [(\langle a, b \rangle \in f) \land (\langle a, c \rangle \in f) \Rightarrow (b = c)]$. $f : A \to B$ if dom(f) = A and $ran(f) \subseteq B$.

- Note that $Im_f(A)$ is different from f(A). Suppose A is a set, $Im_f(A)$ represents the set of second coordinates of all the elements in A, whereas f(A) represents the second coordinate of A itself.
- Composite function: $f\circ g=\{\langle a,c
 angle: \exists b \ [(\langle a,b
 angle\in g)\wedge (\langle b,c
 angle\in f)]\}$
- Injection: f is injective (1-1) if $\forall a, a' \in dom(f) \ [(f(a) = f(a')) \Rightarrow (a = a')].$
- Surjection: $f: A \rightarrow B$ is surjective (f is onto B) if ran(f) = B.
- Bijection: *f* is bijective if it is both injective and surjective.
- $X^Y = \{f: (f ext{ is a function}) \land (f:Y
 ightarrow X)\}$

<u>Lemma 2.15</u>

Let R be a relation and A be a collection, then $Im_R(\bigcup A) = \bigcup \{Im_R(a) : a \in A\}.$

<u>Lemma 2.16</u>

Let R be a relation such that for any x
eq y, $Im_R(\{x\}) \cap Im_R(\{y\}) = \emptyset$, then:

- 1. $Im_R(igcap A)=igcap\{Im_R(a):a\in A\};$
- 2. $Im_R(A \setminus B) = Im_R(A) \setminus Im_R(B)$.

<u>Lemma 2.19</u>

Let f, g, h be functions, then:

- 1. $g \circ f$ is a function;
- 2. If f:A
 ightarrow B and g:B
 ightarrow C, then $g\circ f:A
 ightarrow C$;
- 3. $h \circ (g \circ f) = (h \circ g) \circ f$.

<u>Lemma 2.22</u>

If f:A
ightarrow B is 1-1 and onto B, then $f^{-1}:B
ightarrow A$ is 1-1 and onto A.

Sequence

In set theory, functions are sequences. Suppose F is function with dom(F) = I, then the function can be written as a sequence $F = \langle A_i : i \in I \rangle$.

Cartesian Product of a Function

 $\text{Suppose } F = \langle A_i : i \in I \rangle \text{, then } \prod F = \{f : (f \text{ is a function}) \land (dom(f) = I) \land (\forall i \in I \ [f(i) \in A_i]) \}$

Axiom of Choice

If $\langle A_i:i\in I
angle$ is any sequence of sets such that $orall i\in I$ $[A_i
eq \emptyset]$, then $\prod_{i\in I}A_i
eq \emptyset$.

Directed Collections

A collection G is called *directed* if $\forall a, b \in G, \exists c \in G \ [a \subseteq c \land b \subseteq c].$

<u>Lemma 2.40</u>

Let G be a directed collection of functions, then $f = \bigcup G$ is a function. Moreover, $dom(f) = \bigcup \{ dom(\sigma) : \sigma \in G \}$ and $ran(f) = \bigcup \{ ran(\sigma) : \sigma \in G \}$.

<u> Theorem 2.46 (AC)</u>

Let I be a set and $\langle J_i : i \in I \rangle$ be a sequence of sets. Suppose that $I \neq \emptyset$ and that $\forall i \in I \ [J_i \neq \emptyset]$. For each $i \in I$, let $\langle A_{i,j} : j \in J_i \rangle$ be a sequence of sets. Then:

$$1. \bigcup_{i \in I} \bigcap_{j \in J_{i}} A_{i,j} = \bigcap \left\{ \bigcup_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_{i} \right\}$$

$$2. \bigcap_{i \in I} \bigcup_{j \in J_{i}} A_{i,j} = \bigcup \left\{ \bigcap_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_{i} \right\}$$

$$3. \prod_{i \in I} \left(\bigcup_{j \in J_{i}} A_{i,j} \right) = \bigcup \left\{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_{i} \right\}$$

$$4. \prod_{i \in I} \left(\bigcap_{j \in J_{i}} A_{i,j} \right) = \bigcap \left\{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_{i} \right\}$$

<u> Theorem 2.47</u>

X is a set with A_1, A_2, \ldots, A_n as subsets of X. There are at most 2^{2^n} sets which can be formed by repeating \cap, \cup and $X \setminus$.

Russell's Paradox and Proper Classes

Russell's Argument

Let $R = \{x : x ext{ is a set and } x \notin x\}$, then R is not a set.

Rules about Sets and Classes

- 1. Everything is a class.
- 2. Every set is a class. Every class is a collection of sets. A class is a set if and only if it is a member of some class.
- 3. Every collection of sets is a class.
- 4. If A is a class and x is a set, then $A \cap x$ is a set.
- 5. The image of a set under a function is a set.

- 6. If A and B are sets, then so are $A, B, \bigcup A$, and $\mathcal{P}(A)$.
- 7. Axiom of Choice
- 8. Axiom of Infinity: The collection of natural numbers is a set.
- 9. <u>Axiom of Extensibility</u>

<u>Theorem 3.3</u>

 $V = \{x : x \text{ is a set}\}$ is not a set.

Modelling and Properties of N
Poundation inductive Clerk A
$$\begin{cases} 0 \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup \{x\} \\ \forall x \in A, S(x) \in A \oplus S(x) = x \cup S(x) = x \\ for end and for a given a giv$$

Principle of Strong Induction P(n) is a property of n. Then $\forall n \left[\forall m < n \left[P(m) \right] \Rightarrow P(n) \right] \Rightarrow \forall n \left[P(m) \right]$

 $\frac{\text{Lemma } 4.14}{\text{n,m } 6 \text{ [N. If } n \neq m, \text{ then } S(n) \neq S(m).}$ $\frac{n \in M}{n \in M} \text{ or } m \in n$ $S(n) = n \cup \{n_{i}^{2} \quad S(m) = m \cup \{m_{i}^{2} \quad S(m) = m \cup \{m_{i}^{2} \quad H \in S(m) = S(m), m \in S(m) = S(m) \text{ or } m \in n \text{ contradiction}}$ $\frac{1}{1000} \text{ (note that the second second$

Definition 4.25

Functions on IN

*
$$FN = \int G : G$$
 is a function Λ dom $(G) \in \mathbb{N}$ $\frac{2}{3}$
class" Extender : $E: FN \rightarrow V$
Theorem 4.19
 $E: FN \rightarrow V$ is any extender. Then there
exists a unique function $f: \mathbb{N} \rightarrow V$ such that
 $\forall n \in \mathbb{N}$, $f(n) = E(f \upharpoonright n)$

Theorem 5.12 Schröder-Berstein
H A
$$\leq B$$
 and B $\leq A$, then $A \approx B$.

 $\exists f: A \supset B \vdash \exists g: B \supset A \vdash I$
 $\exists f: A \supset B \vdash \exists g: B \supset A \vdash I$
 $\exists h: A \supset B \vdash I \text{ and onto}$

 $\exists h: A \supset B \vdash I \text{ and onto}$

Finite: $\exists n \in \mathbb{N}$, $n \approx A \iff Infinite$
 $implies$ Countroble: $A \leq \mathbb{N}$
 $f: A \supset B \vdash I \text{ and onto}$

 $\underbrace{Lemma 5.20}$
Suppose $f: A \rightarrow B$ is $\vdash I$. $\forall X, Y \in A$, if $\operatorname{Im}(X) = \operatorname{Im}(Y)$, then $X = Y$.

 $\underbrace{Lemma 5.21}$
 $\bigcirc A \leq B \Rightarrow \mathcal{P}(A) \leq \mathcal{P}(B) \ll$
 $\Downarrow J : A \supset B \vdash I$ Define $G(X) = \operatorname{Im}(X)$ also $\vdash I$
 $\bigcirc A \leq B \Rightarrow A^{c} \leq B^{c}$ Define $G(G)(X) = f(G(X))$
 $\oslash If A \leq B$. $C \leq D$, $B \cap D = \phi$, then $AUC \leq BUD$.
 $h(X) = \begin{cases} f(x) \times K \in A \\ g(X) \times K \in C \setminus A \end{cases}$