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Set Sizes

D5.1. Ax B« 3f: A— B which is both 1-1 and onto.

F5.2. For any set A, P(A) =~ {0,1}4.

D5.4. A 5 B if there exists f : A — B which is 1-1.

L5.5. If f and g are both 1-1, then go f is also 1-1.

ASA

(ASBABZC)=(AZ0O)

(A BAB=C)= (A=C)

T5.7. (Cantor) For any set X, X Z P(X).

D5.12. (Schrider-Bernstein) AL BABS A= A~ B.

E5.13. f: X — Y is a I-1 function. Then VZ C X [Z ~ Imy(Z)].

E5.14. I C Aand J C B. If I ~ J and (A\I) ~ (B\J), then A ~ B.
fis 1-1 = f is onto.

L5.6.

men=mzgn
E5.15. myneN. 2 Cn=z3gn
ngN
(AnABxamAANB=0)= (AUB~n+m)
E5.16. If n € N and A = S(n), then Va € A [A\{a} = n].
L5.20. Suppose A and B are sets and f : A — B is a 1-1 function.
Then VX, Y C A[Imy(X) =Imy(Y) = X =Y.
AZB=P(A) LP(B)
ASB= A° £ B¢
(ASBANCEDABND=0)=AUCZLBUD
L5.23. If n € N and 3 onto function o : n — A, then A < n.

L5.21.

Finite Set

D5.19. A is finite if In € N [n = A], otherwise it is infinite. A is
countable if A <N, otherwise it is uncountable.
L5.22. If n € N and A < n, then A is finite.
L5.24. If A and B are finite, then so is AU B.
T5.25. Let A be a finite set and f is a function with dom(f) =
then:

e XCA= X3 A

e ran(f) is finite and ran(f) < A.

e If Va € A [a is finite], then |J A is finite.

e P(A) is finite.
E5.26. If A is a finite non-empty subset of N, then max(A) = |J A.
E5.27. (ASCABZD)= (Ax BSC x D).

e If A and B are finite, then A x B is finite.

o If A and B are finite, then AP is finite.

E5.28. If [ is finite and Vi € I [A; is finite], then [] A; is finite.
el
E5.30. Suppose f is any function, then dom(f) ~ f.

A?

Orders

Quasi Order <

D6.2. < is a quasi order on X if
(1) Ve € X [z < z];
(@) Vz,y,z€ X [(x <yAy<2) = (z<2)]

Partial Order <

D6.4. < is a partial order on X if
(1) Ve € X [z £ zl;
2)Vo,y,ze X [(z<yAy<z)=(z<2).

Linear Order <

D6.5. < is a linear order on X if
(1) Ve € X [z A z);
2) Ve, y,z€ X [(z<yAy<z) = (x<2));
B)Vrz,y e X [(z=y) V(z<y) Vv (y <))

Mazimal and Minimal

D6.9. If (X, <) is a partial order, then z € X is a maximal element of
X ifVy € X[z £ y]. € X is a minimal element of X if Vy € X [y £ z].
L6.10. Suppose (X, <) is a finite non-empty partial order, then X has
both a maximal and a minimal element.

Chain_and Antichain

D6.11. Let (X, <) be a finite partial order. A set C' C X is called a
chain if Vz,y € C [z and y are comparable]. A set A C X is called a
chain if Vz # y € A [z and y are incomparable].

e An antichain A C X is maximal if there is no antichain A’ C X
such that A C A’. A chain C C X is maximal if there is no chain
C'" C X such that C C C".

e () and singletons are both a chain and an antichain.

L6.12. Let (X, <) be a finite partial order. Every antichain in X is
contained in a maximal antichain. Every chain in X is contained in a

maximal chain.
Well Order

D6.13. A linear order (X, <) is called a well order if every non-empty
subset of X has a minimal element.

L6.15. A linear order (X, <) is a well order if and only if there is no
function f: N — X such that Vn € N[f(n) > f(n+1)].

Predecessor pred

D6.16. Let (X,<) be a linear order.
pred x y(z) = {2’ € X : 2’ <=z}

e A subset A C X is downwards closed if Va € AVz € X [z < a =
xz € Al
F6.17. Let (X, <) be a linear order. Suppose A C X is downwards
closed. Then Va € A [pred 4 «y(a) = pred x <) (a)].
F6.19. Let (X, <) be a well order and let A C X be downwards closed.

For any € X define

Then either A =X or 3z € X [A = pred x, (2]

E6.20. Let (X, <) be a well order and A C X. Then (A, <) is a well
order.

E6.21. Let (X, <) be a linear order. We say that f : X — X is expan-
sive if Vo € X [f(z) > z]. We say that f : X — X is order-preserving if
Vz,y € X [ <y = f(z) < f(y)]. Prove that if (X, <) is a well order,
then every order-preserving f : X — X is expansive.

New Order from the Old

L6.23. Suppose that X is a set and that (Y, <) and (Z, <) are partial
orders. Suppose f: X — Y and g : X — Z are any functions. Define
< on X by stipulating that for z, 2’ € X,

z <z’ & (f(@) < f@) V(@)= Ff)A(g(x) ag(z"))]-

Then the following hold:

(1) < is a partial order on X;

(2) If (Y,<) and (Z,<) are both linear orders and Vz,z’ €
X [(f(z) = f(@') Ag(z) = g(z') = = = '], then < is a linear or-
der on X.

(3) If (Y, <) and (Z, <1) are both well orders and Vz,z’ € X[(f(z) =
f(@) A g(z) = g(z') = x = 2'], then < is a well order on X.
C6.24. Let X be a set and (Y, <) be a partial order. Suppose
f + X — Y is any function. Define <* on X by stipulating that
for any z,z’ € X,

z<*z' & f(z) < f(z')

Then <* is a partial order on X. Furthermore, if f is 1-1 and < is a
linear order on Y, then <* is a linear order on X. If f is 7-1 and < is
a well order on Y, then <* is a well order on X.

D6.26. Suppose (I,<) is any well order and X is any set.
f,g € X1, if f # g, define

For

A(f,9) = min(({i € I : () # 9(1)}, <))-

L6.27. Suppose (X, <) is a linear order and (I, <) is a well order. De-
fine a relation < on X! by stipulating that for any f,g € X!,

f=ge f#anfAf,9) <g(A(f,9))

Then < is a linear order on X7'.
D6.28. For each n € N;

N" ={a € P(N) : a = n}

[N]<¢ = {a € P(N) : a is finite} = J,,cn[N]"

N" = {0 : ¢ is a function A dom(c) = n Aran(c) = N}

N<“ = {¢ : ¢ is a function A dom(c) € NAran(o) = N} =,y N
E6.31. NN is dense. 2N is not dense.

Embeddings and Isomorphisms

D6.33. If (X,<) and (Y,<) are linear orders, then a function
f:X — Y is an isomorphism between (X, <1) and (Y, <) if the follow-



ing hold:

(1) f is 1-1 and onto;

(2)Vr,y e X [zay & f(z) < f(y)]
L6.34. (X, <) and (Y, <) are linear orders. Suppose f: X — Y is an
onto function such that Vz,y € X [x <y = f(z) < f(y)]. Then f is an
isomorphism.
D6.35. (X, <) and (Y, <) are linear orders. A function f: X — Y is
called an embedding if Vz,z’ € X [z < 2’ + f(z) < f(2')] and f is
1-1. If there exists such embedding, (X, <) < (Y, <).
F6.36. (X, <) and (Y, <) are linear orders. If f : X — Y is a function
such that Vz,z’ € X [z < 2’ = f(x) < f(2')], then f is an embedding.
F6.37. (X,<) and (Y, <) are linear orders. Suppose A and B are
downwards closed subsets of X and Y respectively. If f : A — B
is an isomorphism from (A,<) to (B,<), then for any a € A,
f I predix «y(a) is an isomorphism from (pred x .y(a),<) to
(pred,y. -y (F(2)), <).
T6.38. Suppose (X, <) is a finite linear order. Then there exists a
unique n € N such that (X, <) is isomorphic to (n, €). Moreover, this
isomorphism is unique.
T6.39. Suppose (X, <) is an infinite linear order such that for each
r € X, pred x 4y(z) is finite. Then (X, <) is isomorphic to (N, €).
Moreover, this isomorphism is unique.
D6.42. A linear order (X, <) has type omega if X is infinite and for
every z € X, pred x 4 () is finite.

Countable and Uncountable Sets

C7.1. Suppose X C N is infinite. Then (X, €) is isomorphic to (N, €).
C7.2. Suppose X C N is infinite and countable, then X =~ N.
T7.3. There exists linear orders of type omega on the following ob-
jects: (1) N x N, (2) [N]<¢, (3) N<w,

{N x N & N; [N]<@ ~ N; N<@ a2 N,
C7.4.

YneN[n>1= (N*" =~ NA[N]"” = N).

L7.5. (An :n € N) and (fn : n € N) are sequences such that for each
n€N, fn: A, = Nis 1-1. Then UneN A,, is countable.
L7.6. A countable union of countable sets is countable.
L7.8. The set of rational numbers Q is countable.
F7.12. If z,y € R and z < y, there is a ¢ € Q with x < ¢ < y.
L7.13. 2Y SR S P(Q).
T7.14. 2V ~ N¥ ~ P(NV) ~ P(N) = P(Q) ~ R.
D7.15. A set X is set to be have size continuum or size ¢ if X ~ P(N).
L7.16. Let r,s € R with r < s.
(r,s)={z€eR:r <z <s}
E7.17. Let | C R? be a line, then [ ~ R.
L7.21. If A £ B and A # 0, then there exists an onto function
g: B— A
L7.22. Suppose A and B are sets and f : B — A is onto, then A < B.
L7.23. Suppose A, B and C are sets and f : C — B is onto, then
AB S AC.

Then (r,s) has size ¢, where

C7.24. If B~ C, then AP ~ AC.
C7.25. If AS D and B 5 C, and B # 0, then AB 5 DC.
L7.26. There exists a sequence (A, : n € N) of pairwise disjoint infi-

nite subsets of N such that UneN A, =N.
L7.27. Suppose A, B, C are sets with BN C = @, then A8 x AC ~
ABUC.

NN x NN ~ NN, Hence R x R ~ R.

R? has size c.

Let A, B,C be sets. ABXC ~ (AB)C,

C7.32. (NHN NN,

C7.33. RY has size c.

D7.34. A function f : R — R is said to be continuous if for each z € R
and each € > 0, there exists § > 0 such that Im;((z — §,z + 9)) C
(f(z) — €, f(x) +€). Aset U C R is called an open interval if there
exist r,s € Rsuch that U = (r,s) ={r e R:r <z <s}. UCRis
called open if it is the union of a collection of open intervals.

C7.28.
C17.29.
L7.31.

L7.35. There are only ¢ many continuous functions from R to R.
L7.36. There are only ¢ many open subsets of R.

E7.37. RR ~ 2R,

E7.38. Z(X)\ {0} = N. There are countably many algebraic real
numbers.

More about Partial and Linear Orders

T8.1. Suppose (X, <) is a finite partial order. Let k(X) = max{m €
N:3A C X [A is an antichain in X A A & m]}. Then X is a union of
k(X) disjoint chains.
D8.4. Suppose (X, <) is a finite partial order and A C X.

Upper bound z: Va € A [a < z].

Lower bound z: Va € A [z < al.

Supremum u: Vz € {upper bounds} [u < z].

Infimum u: Vo € {lower bounds} [z < u].

D8.10. Let (X, <) be a linear order. A pair (A, B) is called a cut of
(X, <) if the following hold:

(1) A is downwards closed.

(2) B is upwards closed.

(3) A and B partition X.
F8.11. Let (X, <) be a linear order and Y C X. If z € X \ Y and if
A={a€Y:a<z}and B={beY :z<b}, then (A, B) is a cut of
(Y, <).
D8.13. A linear order (X, <) is called dense if Vz,y € X Iz € X [z <
y=>z<z<yl.
D8.14. A linear order (X, <) is without endpoints or has no endpoints
if (X, <) has neither a maximal element or a minimal element.
T8.15.
out endpoints.
(Y, <) = (X, <).
T8.16. Let (X, <) and (Y, <) be any non-empty countable dense lin-
ear orders without endpoints. Then (X, <) and (Y, <) are isomorphic.
E8.19. The two countable linear orders ((0,1),<) and ([0,1],<)

Suppose (X,<) is a non-empty dense linear order with-

Let (Y, <) be any countable linear order. Then

embed into each other but are not isomorphic.
E8.20. The two countable linear orders (N, €) and (N,3) do not
embed to each other.

Well Ordered Sets

F9.1. If (X, <) is a linear order of type omega, then (X, <) is a well
order.
L9.2. Suppose (X, <) is a well order. Suppose A and B are downwards
closed subsets of X. If (A, <) is isomorphic to (B, <), then A = B.
C9.3. Suppose (X, <) is a well order. Suppose z < z’ € X. Then
(pred, x, <y(z'), <) is not isomorphic to (predx, y(z), <).
C9.4. Suppose (X,<) is a well order. Then for any z € X,
(pred, x, <y(z), <) is not isomorphic to (X, <).
L9.5. If (X, <) and (Y, <) are isomorphic well orders, then the iso-
morphism between them is unique.
T9.6. If (X,<) and (Y, <) are isomorphic well orders, then exactly
one of the 3 followings hold:

(1) (X, <) is isomorphic to (Y, <);

(2) 3z € X [{pred x <) (x), <) is isomorphic to (Y, <)];

(3) 3y € Y [(predy, <) (y), <) is isomorphic to (X, <)].
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