MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

Set Sizes

D5.1. $A \approx B \Leftrightarrow \exists f : A \rightarrow B$ which is both 1-1 and onto. **F5.2.** For any set A, $\mathcal{P}(A) \approx \{0, 1\}^A$. **D5.4.** $A \leq B$ if there exists $f : A \to B$ which is 1-1. **L5.5.** If f and g are both 1-1, then $q \circ f$ is also 1-1. $A \lesssim A$ **L5.6.** $\left\{ (A \lesssim B \land B \lesssim C) \Rightarrow (A \lesssim C) \right\}$ $(A \approx B \land B \approx C) \Rightarrow (A \approx C)$ **T5.7.** (*Cantor*) For any set $X, X \not\subseteq \mathcal{P}(X)$. **D5.12.** (Schröder-Bernstein) $A \underset{\approx}{\leq} B \land B \underset{\approx}{\leq} A \Rightarrow A \approx B$. **E5.13.** $f: X \to Y$ is a 1-1 function. Then $\forall Z \subseteq X [Z \approx \operatorname{Im}_f(Z)]$. **E5.14.** $I \subseteq A$ and $J \subseteq B$. If $I \approx J$ and $(A \setminus I) \approx (B \setminus J)$, then $A \approx B$. f is $1 - 1 \Rightarrow f$ is onto. **E5.15.** $m, n \in \mathbb{N}$. $\begin{cases} m \in n \Rightarrow m \lessapprox n \\ x \subsetneq n \Rightarrow x \gneqq n \\ n \lessapprox \mathbb{N} \end{cases}$ $(A \approx n \land B \approx m \land A \cap B = \emptyset) \Rightarrow (A \cup B \approx n + m)$ both a maximal and a minimal element. **E5.16.** If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A [A \setminus \{a\} \approx n]$.

L5.20. Suppose A and B are sets and $f: A \to B$ is a 1-1 function. Then $\forall X, Y \subseteq A [\operatorname{Im}_f(X) = \operatorname{Im}_f(Y) \Rightarrow X = Y].$

 $A \lesssim B \Rightarrow \mathcal{P}(A) \lesssim \mathcal{P}(B)$ **L5.21.** $A \lesssim B \Rightarrow A^C \lesssim B^C$ $(A \lesssim B \land C \lesssim D \land B \cap D = \emptyset) \Rightarrow A \cup C \lesssim B \cup D$ **L5.23.** If $n \in \mathbb{N}$ and \exists onto function $\sigma : n \to A$, then $A \leq n$.

Finite Set

D5.19. A is finite if $\exists n \in \mathbb{N} \ [n \approx A]$, otherwise it is infinite. A is countable if $A \leq \mathbb{N}$, otherwise it is uncountable. **L5.22.** If $n \in \mathbb{N}$ and $A \leq n$, then A is finite. **L5.24.** If A and B are finite, then so is $A \cup B$. **T5.25.** Let A be a finite set and f is a function with dom(f) = A, then: • $X \subsetneq A \Rightarrow X \lessapprox A$. • $\operatorname{ran}(f)$ is finite and $\operatorname{ran}(f) \leq A$. • If $\forall a \in A \ [a \ is \ finite]$, then $\bigcup A \ is \ finite$. • $\mathcal{P}(A)$ is finite.

E5.26. If A is a finite non-empty subset of \mathbb{N} , then $\max(A) = \bigcup A$. **E5.27.** $(A \leq C \land B \leq D) \Rightarrow (A \times B \leq C \times D).$

• If A and B are finite, then $A \times B$ is finite.

• If A and B are finite, then A^B is finite.

E5.28. If I is finite and $\forall i \in I [A_i \text{ is finite}]$, then $\prod A_i$ is finite. **E5.30.** Suppose f is any function, then dom $(f) \approx f$.

Orders

$Quasi \ Order \leq$

D6.2. \leq is a quasi order on X if (1) $\forall x \in X \ [x < x];$ (2) $\forall x, y, z \in X [(x \leq y \land y \leq z) \Rightarrow (x \leq z)].$

$Partial \ Order <$

D6.4. < is a partial order on X if (1) $\forall x \in X \ [x \not< x];$ (2) $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow (x < z)].$

$Linear \ Order \lhd$

D6.5. \triangleleft is a linear order on X if (1) $\forall x \in X \ [x \not \lhd x];$ (2) $\forall x, y, z \in X [(x \triangleleft y \land y \triangleleft z) \Rightarrow (x \triangleleft z)];$ (3) $\forall x, y \in X [(x = y) \lor (x \lhd y) \lor (y \lhd x)].$

Maximal and Minimal

D6.9. If $\langle X, \langle \rangle$ is a partial order, then $x \in X$ is a maximal element of X if $\forall y \in X [x \leq y]$. $x \in X$ is a minimal element of X if $\forall y \in X [y \leq x]$. **L6.10.** Suppose $\langle X, \langle \rangle$ is a finite non-empty partial order, then X has

Chain and Antichain

D6.11. Let $\langle X, \langle \rangle$ be a finite partial order. A set $C \subseteq X$ is called a chain if $\forall x, y \in C$ [x and y are comparable]. A set $A \subseteq X$ is called a chain if $\forall x \neq y \in A$ [x and y are incomparable].

• An antichain $A \subseteq X$ is maximal if there is no antichain $A' \subseteq X$ such that $A \subset A'$. A chain $C \subset X$ is maximal if there is no chain $C' \subset X$ such that $C \subset C'$.

• \emptyset and singletons are both a chain and an antichain.

L6.12. Let $\langle X, \langle \rangle$ be a finite partial order. Every antichain in X is contained in a maximal antichain. Every chain in X is contained in a maximal chain.

Well Order

D6.13. A linear order $\langle X, \langle \rangle$ is called a well order if every non-empty subset of X has a minimal element.

L6.15. A linear order $\langle X, \langle \rangle$ is a well order if and only if there is no function $f : \mathbb{N} \to X$ such that $\forall n \in \mathbb{N} [f(n) > f(n+1)]$.

Predecessor pred

D6.16. Let $\langle X, \langle \rangle$ be a linear order. For any $x \in X$ define $\operatorname{pred}_{\langle X < \rangle}(x) = \{ x' \in X : x' < x \}.$

• A subset $A \subseteq X$ is downwards closed if $\forall a \in A \forall x \in X \ [x < a \Rightarrow$ $x \in A$].

F6.17. Let $\langle X, \langle \rangle$ be a linear order. Suppose $A \subseteq X$ is downwards closed. Then $\forall a \in A [\operatorname{pred}_{\langle A, \leq \rangle}(a) = \operatorname{pred}_{\langle X, \leq \rangle}(a)].$

F6.19. Let $\langle X, \langle \rangle$ be a well order and let $A \subseteq X$ be downwards closed.

Then either A = X or $\exists x \in X [A = \text{pred}_{\langle X \leq \rangle}(x)]].$

E6.20. Let $\langle X, \langle \rangle$ be a well order and $A \subseteq X$. Then $\langle A, \langle \rangle$ is a well order.

E6.21. Let $\langle X, \langle \rangle$ be a linear order. We say that $f: X \to X$ is expansive if $\forall x \in X [f(x) > x]$. We say that $f: X \to X$ is order-preserving if $\forall x, y \in X \ [x < y \Rightarrow f(x) < f(y)].$ Prove that if $\langle X, \langle \rangle$ is a well order, then every order-preserving $f: X \to X$ is expansive.

New Order from the Old

L6.23. Suppose that X is a set and that $\langle Y, \prec \rangle$ and $\langle Z, \triangleleft \rangle$ are partial orders. Suppose $f: X \to Y$ and $q: X \to Z$ are any functions. Define < on X by stipulating that for $x, x' \in X$,

 $x < x' \Leftrightarrow (f(x) \prec f(x')) \lor [(f(x) = f(x')) \land (q(x) \lhd q(x'))].$

Then the following hold:

(1) <is a partial order on X;

(2) If $\langle Y, \prec \rangle$ and $\langle Z, \triangleleft \rangle$ are both linear orders and $\forall x, x' \in$ $X[(f(x) = f(x') \land g(x) = g(x') \Rightarrow x = x'], \text{ then } < \text{ is a linear or-}$ der on X.

(3) If $\langle Y, \prec \rangle$ and $\langle Z, \triangleleft \rangle$ are both well orders and $\forall x, x' \in X[(f(x) =$ $f(x') \wedge q(x) = q(x') \Rightarrow x = x'$, then < is a well order on X.

C6.24. Let X be a set and $\langle Y, \prec \rangle$ be a partial order. Suppose $f: X \to Y$ is any function. Define $<^*$ on X by stipulating that for any $x, x' \in X$,

$$x <^* x' \Leftrightarrow f(x) \prec f(x')$$

Then $<^*$ is a partial order on X. Furthermore, if f is 1-1 and \prec is a linear order on Y, then $<^*$ is a linear order on X. If f is 1-1 and \prec is a well order on Y, then $<^*$ is a well order on X.

D6.26. Suppose $\langle I, \langle \rangle$ is any well order and X is any set. For $f, g \in X^I$, if $f \neq g$, define

$$\Delta(f,g) = \min(\langle \{i \in I : f(i) \neq g(i)\}, \langle \rangle).$$

L6.27. Suppose $\langle X, \triangleleft \rangle$ is a linear order and $\langle I, \triangleleft \rangle$ is a well order. Define a relation \prec on X^I by stipulating that for any $f, g \in X^I$,

$$f\prec g\Leftrightarrow f\neq g\wedge f(\Delta(f,g))\lhd g(\Delta(f,g)).$$

Then \prec is a linear order on X^I .

D6.28. For each $n \in \mathbb{N}$,

 $\left([\mathbb{N}]^n = \{ a \in \mathcal{P}(\mathbb{N}) : a \approx n \} \right)$ $[\mathbb{N}]^{<\omega} = \{a \in \mathcal{P}(\mathbb{N}) : a \text{ is finite}\} = \bigcup_{n \in \mathbb{N}} [\mathbb{N}]^n$ $\mathbb{N}^n = \{ \sigma : \sigma \text{ is a function} \land \operatorname{dom}(\sigma) = n \land \operatorname{ran}(\sigma) = \mathbb{N} \}$ $\mathbb{N}^{<\omega} = \{\sigma : \sigma \text{ is a function} \land \operatorname{dom}(\sigma) \in \mathbb{N} \land \operatorname{ran}(\sigma) = \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ **E6.31.** $\mathbb{N}^{\mathbb{N}}$ is dense. $2^{\mathbb{N}}$ is not dense.

Embeddings and Isomorphisms

D6.33. If $\langle X, \triangleleft \rangle$ and $\langle Y, \prec \rangle$ are linear orders, then a function $f: X \to Y$ is an isomorphism between $\langle X, \triangleleft \rangle$ and $\langle Y, \prec \rangle$ if the follow-

ing hold:

(1) f is 1-1 and onto;

(2) $\forall x, y \in X \ [x \triangleleft y \Leftrightarrow f(x) \prec f(y)].$

L6.34. (X, \triangleleft) and (Y, \prec) are linear orders. Suppose $f: X \to Y$ is an intersubsets of \mathbb{N} such that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$. isomorphism.

D6.35. $\langle X, \langle \rangle$ and $\langle Y, \langle \rangle$ are linear orders. A function $f: X \to Y$ is called an embedding if $\forall x, x' \in X \ [x < x' \leftrightarrow f(x) \prec f(x')]$ and f is 1-1. If there exists such embedding, $\langle X, \langle \rangle \hookrightarrow \langle Y, \prec \rangle$.

F6.36. $\langle X, \langle \rangle$ and $\langle Y, \prec \rangle$ are linear orders. If $f: X \to Y$ is a function such that $\forall x, x' \in X \ [x < x' \Rightarrow f(x) \prec f(x')]$, then f is an embedding. **F6.37.** $\langle X, \langle \rangle$ and $\langle Y, \langle \rangle$ are linear orders. Suppose A and B are downwards closed subsets of X and Y respectively. If $f : A \to B$ is an isomorphism from $\langle A, \prec \rangle$ to $\langle B, \prec \rangle$, then for any $a \in A$, $f \upharpoonright \operatorname{pred}_{(X,<)}(a)$ is an isomorphism from $\operatorname{(pred}_{(X,<)}(a),<)$ to $\langle \operatorname{pred}_{\langle Y, \prec \rangle}(f(a)), \prec \rangle.$

T6.38. Suppose $\langle X, \triangleleft \rangle$ is a finite linear order. Then there exists a unique $n \in \mathbb{N}$ such that $\langle X, \triangleleft \rangle$ is isomorphic to $\langle n, \in \rangle$. Moreover, this isomorphism is unique.

 $x \in X$, pred_{(X <1})(x) is finite. Then $\langle X, \triangleleft \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$. numbers. Moreover, this isomorphism is unique.

D6.42. A linear order $\langle X, \triangleleft \rangle$ has type omega if X is infinite and for every $x \in X$, $\operatorname{pred}_{(X,\triangleleft)}(x)$ is finite.

Countable and Uncountable Sets

C7.1. Suppose $X \subseteq \mathbb{N}$ is infinite. Then $\langle X, \in \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$. **C7.2.** Suppose $X \subseteq \mathbb{N}$ is infinite and countable, then $X \approx \mathbb{N}$. **T7.3.** There exists linear orders of type omega on the following objects: (1) $\mathbb{N} \times \mathbb{N}$, (2) $[\mathbb{N}]^{<\omega}$, (3) $\mathbb{N}^{<\omega}$. $\int \mathbb{N} \times \mathbb{N} \approx \mathbb{N}; [\mathbb{N}]^{<\omega} \approx \mathbb{N}; \mathbb{N}^{<\omega} \approx \mathbb{N}.$ C7.4. $\forall n \in \mathbb{N} \ [n \ge 1 \Rightarrow (\mathbb{N}^n \approx \mathbb{N} \land [\mathbb{N}]^n \approx \mathbb{N})].$ **L7.5.** $\langle A_n : n \in \mathbb{N} \rangle$ and $\langle f_n : n \in \mathbb{N} \rangle$ are sequences such that for each $n \in \mathbb{N}, f_n : A_n \to \mathbb{N}$ is 1-1. Then $\bigcup_{n \in \mathbb{N}} A_n$ is countable. L7.6. A countable union of countable sets is countable. **L7.8.** The set of rational numbers \mathbb{Q} is countable. **F7.12.** If $x, y \in \mathbb{R}$ and x < y, there is a $q \in \mathbb{Q}$ with x < q < y. **L7.13.** $2^{\mathbb{N}} \lesssim \mathbb{R} \lesssim \mathcal{P}(\mathbb{Q})$. **T7.14.** $2^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}} \approx \mathcal{P}(\mathbb{N}^{\mathbb{N}}) \approx \mathcal{P}(\mathbb{N}) \approx \mathcal{P}(\mathbb{Q}) \approx \mathbb{R}.$ **D7.15.** A set X is set to be have size continuum or size \mathfrak{c} if $X \approx \mathcal{P}(\mathbb{N})$. **L7.16.** Let $r, s \in \mathbb{R}$ with r < s. Then (r, s) has size \mathfrak{c} , where $(r, s) = \{ x \in \mathbb{R} : r < x < s \}.$ **E7.17.** Let $l \subset \mathbb{R}^2$ be a line, then $l \approx \mathbb{R}$. **L7.21.** If $A \leq B$ and $A \neq \emptyset$, then there exists an *onto* function $q: B \to A.$ **L7.22.** Suppose A and B are sets and $f: B \to A$ is *onto*, then $A \leq B$. $A^B \lesssim A^C$.

C7.24. If $B \approx C$, then $A^B \approx A^C$. **C7.25.** If $A \leq D$ and $B \leq C$, and $B \neq \emptyset$, then $A^B \leq D^C$. **L7.26.** There exists a sequence $\langle A_n : n \in \mathbb{N} \rangle$ of pairwise disjoint infionto function such that $\forall x, y \in X [x \triangleleft y \Rightarrow f(x) \prec f(y)]$. Then f is an L7.27. Suppose A, B, C are sets with $B \cap C = \emptyset$, then $A^B \times A^C \approx$ $A^{B\cup C}$ **C7.28.** $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. Hence $\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$. C7.29. \mathbb{R}^2 has size \mathfrak{c} . **L7.31.** Let A, B, C be sets. $A^{B \times C} \approx (A^B)^C$. C7.32. $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. **C7.33.** $\mathbb{R}^{\mathbb{N}}$ has size \mathfrak{c} . **D7.34.** A function $f : \mathbb{R} \to \mathbb{R}$ is said to be continuous if for each $x \in \mathbb{R}$ and each $\epsilon > 0$, there exists $\delta > 0$ such that $\operatorname{Im}_f((x - \delta, x + \delta)) \subseteq$ $(f(x) - \epsilon, f(x) + \epsilon)$. A set $U \subseteq \mathbb{R}$ is called an open interval if there exist $r, s \in \mathbb{R}$ such that $U = (r, s) = \{x \in \mathbb{R} : r < x < s\}$. $U \subseteq \mathbb{R}$ is called open if it is the union of a collection of open intervals. **L7.35.** There are only \mathfrak{c} many continuous functions from \mathbb{R} to \mathbb{R} . **L7.36.** There are only \mathfrak{c} many open subsets of \mathbb{R} . E7.37. $\mathbb{R}^{\mathbb{R}} \approx 2^{\mathbb{R}}$. **T6.39.** Suppose (X, \triangleleft) is an infinite linear order such that for each **E7.38.** $\mathbb{Z}(X) \setminus \{0\} \approx \mathbb{N}$. There are countably many algebraic real More about Partial and Linear Orders **T8.1.** Suppose $\langle X, \langle \rangle$ is a finite partial order. Let $k(X) = \max\{m \in X\}$ \mathbb{N} : $\exists A \subset X \ [A \text{ is an antichain in } X \land A \approx m] \}$. Then X is a union of Legends k(X) disjoint chains.

D8.4. Suppose $\langle X, \langle \rangle$ is a finite partial order and $A \subseteq X$.

Upper bound $x: \forall a \in A \ [a < x].$

Lower bound $x: \forall a \in A \ [x \leq a].$

Supremum $u: \forall x \in \{\text{upper bounds}\} [u < x].$

Infimum $u: \forall x \in \{\text{lower bounds}\} [x \leq u].$

D8.10. Let $\langle X, \langle \rangle$ be a linear order. A pair $\langle A, B \rangle$ is called a cut of

 $\langle X, \langle \rangle$ if the following hold:

(1) A is downwards closed.

(2) B is upwards closed

(3) A and B partition X.

F8.11. Let $\langle X, \langle \rangle$ be a linear order and $Y \subseteq X$. If $z \in X \setminus Y$ and if $A = \{a \in Y : a < z\}$ and $B = \{b \in Y : z < b\}$, then $\langle A, B \rangle$ is a cut of $\langle Y, \langle \rangle$.

D8.13. A linear order $\langle X, \langle \rangle$ is called dense if $\forall x, y \in X \exists z \in X \ [x < z \in X]$ $y \Rightarrow x < z < y$].

D8.14. A linear order $\langle X, \langle \rangle$ is without endpoints or has no endpoints if $\langle X, \langle \rangle$ has neither a maximal element or a minimal element.

T8.15. Suppose $\langle X, \langle \rangle$ is a non-empty dense linear order without endpoints. Let $\langle Y, \prec \rangle$ be any countable linear order. Then $\langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle.$

T8.16. Let $\langle X, \langle \rangle$ and $\langle Y, \langle \rangle$ be any non-empty countable dense lin-**L7.23.** Suppose A, B and C are sets and $f: C \to B$ is *onto*, then ear orders without endpoints. Then $\langle X, \langle \rangle$ and $\langle Y, \prec \rangle$ are isomorphic. **E8.19.** The two countable linear orders $\langle (0,1), < \rangle$ and $\langle [0,1], < \rangle$

embed into each other but are not isomorphic.

E8.20. The two countable linear orders (\mathbb{N}, \in) and (\mathbb{N}, i) do not embed to each other.

Well Ordered Sets

F9.1. If $\langle X, \langle \rangle$ is a linear order of type omega, then $\langle X, \langle \rangle$ is a well order.

L9.2. Suppose $\langle X, \langle \rangle$ is a well order. Suppose A and B are downwards closed subsets of X. If $\langle A, \langle \rangle$ is isomorphic to $\langle B, \langle \rangle$, then A = B.

C9.3. Suppose $\langle X, \langle \rangle$ is a well order. Suppose $x < x' \in X$. Then $\langle \operatorname{pred}_{\langle X, \langle \rangle}(x'), \langle \rangle$ is not isomorphic to $\langle \operatorname{pred}_{\langle X, \langle \rangle}(x), \langle \rangle$.

C9.4. Suppose $\langle X, \langle \rangle$ is a well order. Then for any $x \in X$, $\langle \operatorname{pred}_{\langle X, < \rangle}(x), < \rangle$ is not isomorphic to $\langle X, < \rangle$.

L9.5. If $\langle X, \langle \rangle$ and $\langle Y, \langle \rangle$ are isomorphic well orders, then the isomorphism between them is unique.

T9.6. If $\langle X, \langle \rangle$ and $\langle Y, \langle \rangle$ are isomorphic well orders, then exactly one of the 3 followings hold:

(1) $\langle X, \langle \rangle$ is isomorphic to $\langle Y, \prec \rangle$;

(2) $\exists x \in X \ [\langle \operatorname{pred}_{\langle X, \leq \rangle}(x), < \rangle \text{ is isomorphic to } \langle Y, \prec \rangle];$

(3) $\exists y \in Y \ [\langle \operatorname{pred}_{\langle Y, \prec \rangle}(y), \prec \rangle \text{ is isomorphic to } \langle X, < \rangle].$

C	Corollary
D	Definition
E	Exercise
F	Fact
L	Lemma
Т	Theorem
Conv.	Convention