
MA3205 Set Theory

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

Set Sizes

D5.1. A ≈ B ⇔ ∃f : A → B which is both 1-1 and onto.

F5.2. For any set A, P(A) ≈ {0, 1}A.

D5.4. A ⪅ B if there exists f : A → B which is 1-1.

L5.5. If f and g are both 1-1, then g ◦ f is also 1-1.

L5.6.


A ⪅ A

(A ⪅ B ∧B ⪅ C) ⇒ (A ⪅ C)

(A ≈ B ∧B ≈ C) ⇒ (A ≈ C)

T5.7. (Cantor) For any set X, X ̸⪅ P(X).

D5.12. (Schröder-Bernstein) A ⪅ B ∧B ⪅ A ⇒ A ≈ B.

E5.13. f : X → Y is a 1-1 function. Then ∀Z ⊆ X [Z ≈ Imf (Z)].

E5.14. I ⊆ A and J ⊆ B. If I ≈ J and (A\I) ≈ (B\J), then A ≈ B.

E5.15. m,n ∈ N.



f is 1-1 ⇒ f is onto.

m ∈ n ⇒ m ⪉ n

x ⊊ n ⇒ x ⪉ n

n ⪉ N
(A ≈ n ∧B ≈ m ∧A ∩B = ∅) ⇒ (A ∪B ≈ n+m)

E5.16. If n ∈ N and A ≈ S(n), then ∀a ∈ A [A\{a} ≈ n].

L5.20. Suppose A and B are sets and f : A → B is a 1-1 function.

Then ∀X,Y ⊆ A [Imf (X) = Imf (Y ) ⇒ X = Y ].

L5.21.


A ⪅ B ⇒ P(A) ⪅ P(B)

A ⪅ B ⇒ AC ⪅ BC

(A ⪅ B ∧ C ⪅ D ∧B ∩D = ∅) ⇒ A ∪ C ⪅ B ∪D

L5.23. If n ∈ N and ∃ onto function σ : n → A, then A ⪅ n.

Finite Set

D5.19. A is finite if ∃n ∈ N [n ≈ A], otherwise it is infinite. A is

countable if A ⪅ N, otherwise it is uncountable.

L5.22. If n ∈ N and A ⪅ n, then A is finite.

L5.24. If A and B are finite, then so is A ∪B.

T5.25. Let A be a finite set and f is a function with dom(f) = A,

then:

• X ⊊ A ⇒ X ⪉ A.

• ran(f) is finite and ran(f) ⪅ A.

• If ∀a ∈ A [a is finite], then
⋃

A is finite.

• P(A) is finite.

E5.26. If A is a finite non-empty subset of N, then max(A) =
⋃

A.

E5.27. (A ⪅ C ∧B ⪅ D) ⇒ (A×B ⪅ C ×D).

• If A and B are finite, then A×B is finite.

• If A and B are finite, then AB is finite.

E5.28. If I is finite and ∀i ∈ I [Ai is finite], then
∏
i∈I

Ai is finite.

E5.30. Suppose f is any function, then dom(f) ≈ f .

Orders

Quasi Order ≤

D6.2. ≤ is a quasi order on X if

(1) ∀x ∈ X [x ≤ x];

(2) ∀x, y, z ∈ X [(x ≤ y ∧ y ≤ z) ⇒ (x ≤ z)].

Partial Order <

D6.4. < is a partial order on X if

(1) ∀x ∈ X [x ≮ x];

(2) ∀x, y, z ∈ X [(x < y ∧ y < z) ⇒ (x < z)].

Linear Order ◁

D6.5. ◁ is a linear order on X if

(1) ∀x ∈ X [x ̸◁ x];

(2) ∀x, y, z ∈ X [(x ◁ y ∧ y ◁ z) ⇒ (x ◁ z)];

(3) ∀x, y ∈ X [(x = y) ∨ (x ◁ y) ∨ (y ◁ x)].

Maximal and Minimal

D6.9. If ⟨X,<⟩ is a partial order, then x ∈ X is a maximal element of

X if ∀y ∈ X [x ≮ y]. x ∈ X is a minimal element of X if ∀y ∈ X [y ≮ x].

L6.10. Suppose ⟨X,<⟩ is a finite non-empty partial order, then X has

both a maximal and a minimal element.

Chain and Antichain

D6.11. Let ⟨X,<⟩ be a finite partial order. A set C ⊆ X is called a

chain if ∀x, y ∈ C [x and y are comparable]. A set A ⊆ X is called a

chain if ∀x ̸= y ∈ A [x and y are incomparable].

• An antichain A ⊆ X is maximal if there is no antichain A′ ⊆ X

such that A ⊂ A′. A chain C ⊆ X is maximal if there is no chain

C′ ⊆ X such that C ⊂ C′.

• ∅ and singletons are both a chain and an antichain.

L6.12. Let ⟨X,<⟩ be a finite partial order. Every antichain in X is

contained in a maximal antichain. Every chain in X is contained in a

maximal chain.

Well Order

D6.13. A linear order ⟨X,<⟩ is called a well order if every non-empty

subset of X has a minimal element.

L6.15. A linear order ⟨X,<⟩ is a well order if and only if there is no

function f : N → X such that ∀n ∈ N [f(n) > f(n+ 1)].

Predecessor pred

D6.16. Let ⟨X,<⟩ be a linear order. For any x ∈ X define

pred⟨X,<⟩(x) = {x′ ∈ X : x′ < x}.
• A subset A ⊆ X is downwards closed if ∀a ∈ A∀x ∈ X [x < a ⇒

x ∈ A].

F6.17. Let ⟨X,<⟩ be a linear order. Suppose A ⊆ X is downwards

closed. Then ∀a ∈ A [pred⟨A,<⟩(a) = pred⟨X,<⟩(a)].

F6.19. Let ⟨X,<⟩ be a well order and let A ⊆ X be downwards closed.

Then either A = X or ∃x ∈ X [A = pred⟨X,<⟩(x)]].

E6.20. Let ⟨X,<⟩ be a well order and A ⊆ X. Then ⟨A,<⟩ is a well

order.

E6.21. Let ⟨X,<⟩ be a linear order. We say that f : X → X is expan-

sive if ∀x ∈ X [f(x) ≥ x]. We say that f : X → X is order-preserving if

∀x, y ∈ X [x < y ⇒ f(x) < f(y)]. Prove that if ⟨X,<⟩ is a well order,

then every order-preserving f : X → X is expansive.

New Order from the Old

L6.23. Suppose that X is a set and that ⟨Y,≺⟩ and ⟨Z,◁⟩ are partial

orders. Suppose f : X → Y and g : X → Z are any functions. Define

< on X by stipulating that for x, x′ ∈ X,

x < x′ ⇔ (f(x) ≺ f(x′)) ∨ [(f(x) = f(x′)) ∧ (g(x) ◁ g(x′))].

Then the following hold:

(1) < is a partial order on X;

(2) If ⟨Y,≺⟩ and ⟨Z,◁⟩ are both linear orders and ∀x, x′ ∈
X [(f(x) = f(x′) ∧ g(x) = g(x′) ⇒ x = x′], then < is a linear or-

der on X.

(3) If ⟨Y,≺⟩ and ⟨Z,◁⟩ are both well orders and ∀x, x′ ∈ X [(f(x) =

f(x′) ∧ g(x) = g(x′) ⇒ x = x′], then < is a well order on X.

C6.24. Let X be a set and ⟨Y,≺⟩ be a partial order. Suppose

f : X → Y is any function. Define <∗ on X by stipulating that

for any x, x′ ∈ X,

x <∗ x′ ⇔ f(x) ≺ f(x′)

Then <∗ is a partial order on X. Furthermore, if f is 1-1 and ≺ is a

linear order on Y , then <∗ is a linear order on X. If f is 1-1 and ≺ is

a well order on Y , then <∗ is a well order on X.

D6.26. Suppose ⟨I,<⟩ is any well order and X is any set. For

f, g ∈ XI , if f ̸= g, define

∆(f, g) = min(⟨{i ∈ I : f(i) ̸= g(i)}, <⟩).

L6.27. Suppose ⟨X,◁⟩ is a linear order and ⟨I,<⟩ is a well order. De-

fine a relation ≺ on XI by stipulating that for any f, g ∈ XI ,

f ≺ g ⇔ f ̸= g ∧ f(∆(f, g)) ◁ g(∆(f, g)).

Then ≺ is a linear order on XI .

D6.28. For each n ∈ N,
[N]n = {a ∈ P(N) : a ≈ n}
[N]<ω = {a ∈ P(N) : a is finite} =

⋃
n∈N[N]n

Nn = {σ : σ is a function ∧ dom(σ) = n ∧ ran(σ) = N}
N<ω = {σ : σ is a function ∧ dom(σ) ∈ N ∧ ran(σ) = N} =

⋃
n∈N Nn

.

E6.31. NN is dense. 2N is not dense.

Embeddings and Isomorphisms

D6.33. If ⟨X,◁⟩ and ⟨Y,≺⟩ are linear orders, then a function

f : X → Y is an isomorphism between ⟨X,◁⟩ and ⟨Y,≺⟩ if the follow-



ing hold:

(1) f is 1-1 and onto;

(2) ∀x, y ∈ X [x ◁ y ⇔ f(x) ≺ f(y)].

L6.34. ⟨X,◁⟩ and ⟨Y,≺⟩ are linear orders. Suppose f : X → Y is an

onto function such that ∀x, y ∈ X [x◁ y ⇒ f(x) ≺ f(y)]. Then f is an

isomorphism.

D6.35. ⟨X,<⟩ and ⟨Y,≺⟩ are linear orders. A function f : X → Y is

called an embedding if ∀x, x′ ∈ X [x < x′ ↔ f(x) ≺ f(x′)] and f is

1-1. If there exists such embedding, ⟨X,<⟩ ↪→ ⟨Y,≺⟩.
F6.36. ⟨X,<⟩ and ⟨Y,≺⟩ are linear orders. If f : X → Y is a function

such that ∀x, x′ ∈ X [x < x′ ⇒ f(x) ≺ f(x′)], then f is an embedding.

F6.37. ⟨X,<⟩ and ⟨Y,≺⟩ are linear orders. Suppose A and B are

downwards closed subsets of X and Y respectively. If f : A → B

is an isomorphism from ⟨A,<⟩ to ⟨B,≺⟩, then for any a ∈ A,

f ↾ pred⟨X,<⟩(a) is an isomorphism from ⟨pred⟨X,<⟩(a), <⟩ to

⟨pred⟨Y,≺⟩(f(a)),≺⟩.
T6.38. Suppose ⟨X,◁⟩ is a finite linear order. Then there exists a

unique n ∈ N such that ⟨X,◁⟩ is isomorphic to ⟨n,∈⟩. Moreover, this

isomorphism is unique.

T6.39. Suppose ⟨X,◁⟩ is an infinite linear order such that for each

x ∈ X, pred⟨X,◁⟩(x) is finite. Then ⟨X,◁⟩ is isomorphic to ⟨N,∈⟩.
Moreover, this isomorphism is unique.

D6.42. A linear order ⟨X,◁⟩ has type omega if X is infinite and for

every x ∈ X, pred⟨X,◁⟩(x) is finite.

Countable and Uncountable Sets

C7.1. Suppose X ⊆ N is infinite. Then ⟨X,∈⟩ is isomorphic to ⟨N,∈⟩.
C7.2. Suppose X ⊆ N is infinite and countable, then X ≈ N.
T7.3. There exists linear orders of type omega on the following ob-

jects: (1) N× N, (2) [N]<ω , (3) N<ω .

C7.4.

{
N× N ≈ N; [N]<ω ≈ N;N<ω ≈ N.
∀n ∈ N [n ≥ 1 ⇒ (Nn ≈ N ∧ [N]n ≈ N)].

L7.5. ⟨An : n ∈ N⟩ and ⟨fn : n ∈ N⟩ are sequences such that for each

n ∈ N, fn : An → N is 1-1. Then
⋃

n∈N An is countable.

L7.6. A countable union of countable sets is countable.

L7.8. The set of rational numbers Q is countable.

F7.12. If x, y ∈ R and x < y, there is a q ∈ Q with x < q < y.

L7.13. 2N ⪅ R ⪅ P(Q).

T7.14. 2N ≈ NN ≈ P(NN) ≈ P(N) ≈ P(Q) ≈ R.
D7.15. A set X is set to be have size continuum or size c if X ≈ P(N).
L7.16. Let r, s ∈ R with r < s. Then (r, s) has size c, where

(r, s) = {x ∈ R : r < x < s}.
E7.17. Let l ⊆ R2 be a line, then l ≈ R.
L7.21. If A ⪅ B and A ̸= ∅, then there exists an onto function

g : B → A.

L7.22. Suppose A and B are sets and f : B → A is onto, then A ⪅ B.

L7.23. Suppose A, B and C are sets and f : C → B is onto, then

AB ⪅ AC .

C7.24. If B ≈ C, then AB ≈ AC .

C7.25. If A ⪅ D and B ⪅ C, and B ̸= ∅, then AB ⪅ DC .

L7.26. There exists a sequence ⟨An : n ∈ N⟩ of pairwise disjoint infi-

nite subsets of N such that
⋃

n∈N An = N.
L7.27. Suppose A, B, C are sets with B ∩ C = ∅, then AB × AC ≈
AB∪C .

C7.28. NN × NN ≈ NN. Hence R× R ≈ R.
C7.29. R2 has size c.

L7.31. Let A,B,C be sets. AB×C ≈ (AB)C .

C7.32. (NN)N ≈ NN.

C7.33. RN has size c.

D7.34. A function f : R → R is said to be continuous if for each x ∈ R
and each ϵ > 0, there exists δ > 0 such that Imf ((x − δ, x + δ)) ⊆
(f(x) − ϵ, f(x) + ϵ). A set U ⊆ R is called an open interval if there

exist r, s ∈ R such that U = (r, s) = {x ∈ R : r < x < s}. U ⊆ R is

called open if it is the union of a collection of open intervals.

L7.35. There are only c many continuous functions from R to R.
L7.36. There are only c many open subsets of R.
E7.37. RR ≈ 2R.

E7.38. Z(X) \ {0} ≈ N. There are countably many algebraic real

numbers.

More about Partial and Linear Orders

T8.1. Suppose ⟨X,<⟩ is a finite partial order. Let k(X) = max{m ∈
N : ∃A ⊆ X [A is an antichain in X ∧ A ≈ m]}. Then X is a union of

k(X) disjoint chains.

D8.4. Suppose ⟨X,<⟩ is a finite partial order and A ⊆ X.
Upper bound x: ∀a ∈ A [a ≤ x].

Lower bound x: ∀a ∈ A [x ≤ a].

Supremum u: ∀x ∈ {upper bounds} [u ≤ x].

Infimum u: ∀x ∈ {lower bounds} [x ≤ u].

D8.10. Let ⟨X,<⟩ be a linear order. A pair ⟨A,B⟩ is called a cut of

⟨X,<⟩ if the following hold:

(1) A is downwards closed.

(2) B is upwards closed.

(3) A and B partition X.

F8.11. Let ⟨X,<⟩ be a linear order and Y ⊆ X. If z ∈ X \ Y and if

A = {a ∈ Y : a < z} and B = {b ∈ Y : z < b}, then ⟨A,B⟩ is a cut of

⟨Y,<⟩.
D8.13. A linear order ⟨X,<⟩ is called dense if ∀x, y ∈ X ∃z ∈ X [x <

y ⇒ x < z < y].

D8.14. A linear order ⟨X,<⟩ is without endpoints or has no endpoints

if ⟨X,<⟩ has neither a maximal element or a minimal element.

T8.15. Suppose ⟨X,<⟩ is a non-empty dense linear order with-

out endpoints. Let ⟨Y,≺⟩ be any countable linear order. Then

⟨Y,≺⟩ ↪→ ⟨X,<⟩.
T8.16. Let ⟨X,<⟩ and ⟨Y,≺⟩ be any non-empty countable dense lin-

ear orders without endpoints. Then ⟨X,<⟩ and ⟨Y,≺⟩ are isomorphic.

E8.19. The two countable linear orders ⟨(0, 1), <⟩ and ⟨[0, 1], <⟩

embed into each other but are not isomorphic.

E8.20. The two countable linear orders ⟨N,∈⟩ and ⟨N,∋⟩ do not

embed to each other.

Well Ordered Sets

F9.1. If ⟨X,<⟩ is a linear order of type omega, then ⟨X,<⟩ is a well

order.

L9.2. Suppose ⟨X,<⟩ is a well order. Suppose A and B are downwards

closed subsets of X. If ⟨A,<⟩ is isomorphic to ⟨B,<⟩, then A = B.

C9.3. Suppose ⟨X,<⟩ is a well order. Suppose x < x′ ∈ X. Then

⟨pred⟨X,<⟩(x
′), <⟩ is not isomorphic to ⟨pred⟨X,<⟩(x), <⟩.

C9.4. Suppose ⟨X,<⟩ is a well order. Then for any x ∈ X,

⟨pred⟨X,<⟩(x), <⟩ is not isomorphic to ⟨X,<⟩.
L9.5. If ⟨X,<⟩ and ⟨Y,≺⟩ are isomorphic well orders, then the iso-

morphism between them is unique.

T9.6. If ⟨X,<⟩ and ⟨Y,≺⟩ are isomorphic well orders, then exactly

one of the 3 followings hold:

(1) ⟨X,<⟩ is isomorphic to ⟨Y,≺⟩;
(2) ∃x ∈ X [⟨pred⟨X,<⟩(x), <⟩ is isomorphic to ⟨Y,≺⟩];
(3) ∃y ∈ Y [⟨pred⟨Y,≺⟩(y),≺⟩ is isomorphic to ⟨X,<⟩].
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