MA3220 Ordinary Differential Equations
AY2022/23 Semester 1.Prepared by Tian Xiao @snoidetx

1 First Order Equation

Separable Equation

Solve the separable ODE $y^{\prime}(x)=P(x) Q(y)$.
The solution is $\int \frac{1}{Q(y)} d y=\int P(x) d x+C$.

Linear Equation (Existence \& Uniqueness Theorem)

An ODE is linear if it is in the form $a_{n}(x) y^{(n)}+\cdots+a_{1} y=P(x)$. It is homogeneous if $P(x)=0$.
$-p$ and g are cont. on $I=(\alpha, \beta)$ containing $x_{0} . \forall y_{0} \in \mathbb{R}, \exists$ unique solution to $y^{\prime}+p(x) y=g(x)$ for each x in I, with IC $y\left(x_{0}\right)=y_{0}$.

Solve the 1st order linear ODE $y^{\prime}+P(x) y=Q(x)$.

Let $\mu(x)=e^{\int P(x) d x}$. The solution is $y=\frac{\int \mu(x) Q(x) d x}{\mu(x) y}+C$.

Nonlinear Equation (Existence \& Uniqueness Theorem)

f and $\frac{\partial f}{\partial y}$ are both cont. in some rectangle $R=(\alpha, \beta) \times(\gamma, \delta)$ containing $\left(x_{0}, y_{0}\right)$. In some interval $x_{0}-h<x<x_{0}+h$ contained in $\alpha<x<\beta, \exists$ unique solution to the IVP $y^{\prime}=f(x, y)$ with IC $y\left(x_{0}\right)-y_{0}$.

Exact Equation

An ODE $M(x, y)+N(x, y) y^{\prime}=0$ is exact if $\exists \psi(x, y)\left[\psi_{x}=M \wedge \psi_{y}=n\right]$.
If an ODE is exact, $M_{y}=N_{x}$.
If M, N, M_{y}, N_{x} are cont. in a simply connected region $D \subset \mathbb{R}^{2}$, then the equation is exact if and only if $M_{y}=N_{x}$.

Solve the 1st order exact ODE $M(x, y)+N(x, y) y^{\prime}=0$.

$$
\psi(x, y)=\int M(x, y) d x+g(y)
$$

Find $g(y)$ by $\psi_{y}=N(x, y)$. The solution is $\psi(x, y)=C$.

Equilibrium Solution | $\leftarrow \cdot \overrightarrow{ }$ | $\vec{*} \cdot \leftarrow$ |
| :---: | :---: |
| unstable | asympt. stable | $\underset{\text { semi-stable }}{\leftarrow \cdot \leftarrow}$

Euler's Method $y_{i}=y_{i-1}+y_{i-1}^{\prime} \times h$.

2 Second Order Equation

p, q, g are cont. on an open interval $I: \alpha<t<\beta$ containing t_{0}, \exists unique solution to the IVP $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ for each t in I, with IC $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. (Existence \& Uniqueness Theorem)

Linear Homogeneous Equation

Superposition Principle y_{1}, y_{2} solutions $\Rightarrow c_{1} y_{1}+c_{2} y_{2}$ also solution.
Wronskian: $W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$
y_{1}, y_{2} form a fundamental set if $\exists t_{0} \in I\left[W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0\right]$.
Abel's Theorem Let y_{1}, y_{2} be two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t)=0$ with p, q cont. in I. Then $W\left[y_{1}, y_{2}\right](t)=c e^{-\int p(t) d t}$. As a result, the Wronskian is either always 0 or never 0
Solve the 2nd order ODE $a y^{\prime \prime}+b y+c=0$.
Characteristic equation: $a r^{2}+b r+c=0$.
Case I Distinct real roots $r_{1}, r_{2}: y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
Case II Repeated real root $r: y=\left(c_{1}+c_{2} t\right) e^{r t}$.
Case III Complex roots $\lambda \pm \mu i: y=e^{\lambda t}\left(c_{1} \cos (\mu t)+c_{2} \sin (\mu t)\right)$.
Given one solution $y_{1}(t)$ of the $\operatorname{ODE} y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=0$, find another solution $y_{2}(t)$.
Method I Abel's Theorem: Solve y_{2} from $y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{-\int p(t) d t}$ Method II Reduction of order. Let $y_{2}(t)=v(t) y_{1}(t)$ and solve $y_{1}(t) v^{\prime \prime}(t)+\left(2 y_{1}^{\prime}(t)+p(t) y_{1}(t)\right) v^{\prime}(t)=0$. Solve by letting $u(t)=v^{\prime}(t)$.

Linear Nonhomogeneous Equation

Find the particular solution of the ODE $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$. Make the right guess: degree- n polynomial \rightarrow degree- n polynomial; $C e^{k t} \rightarrow A e^{k t} ; C \sin (k t)$ or $C \cos k t \rightarrow A \sin (k t)+B \cos (k t)$; sum/product of terms \Rightarrow sum/product of their respective guesses. We handle exceptions by multiplying t to our guess when our guess solves the corresponding homogeneous equation (sum \Rightarrow do for each term; product \Rightarrow multiply the whole)

Find the general solution of the ODE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.
Variation of parameters: $\left\{\begin{array}{l}u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{1} \\ u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{2}\end{array}\right.$
The general solution is $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$.

Power Series Solution

Ratio test: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\left|x-x_{0}\right|<1 \Rightarrow$ converge; $>1 \Rightarrow$ diverge.
Convergence radius: $\left|x-x_{0}\right|>\rho \Rightarrow$ diverge; $<\rho \Rightarrow$ converge.
If f polynomial, convergence radius of power series of $\frac{1}{f(x)}$ centered at $x_{0}=$ distance between x_{0} and the nearest complex roots of $f(x)$.
$-f, g$ analytic at t_{0}, radius $=\rho \Rightarrow f g, f+g$ analytic at t_{0}, radius $=\rho$.

Solve the Euler equation $\left(x-x_{0}\right)^{2} y^{\prime \prime}+\alpha\left(x-x_{0}\right) y^{\prime}+\beta y=0$. Indicial equation: $F(r)=r^{2}+(\alpha-1) r+\beta=0$.
Case I Distinct real roots $r_{1}, r_{2}: y=c_{1}\left|x-x_{0}\right|^{r_{1}}+c_{2}\left|x-x_{0}\right|^{r_{2}}$
Case II Repeated real root $r: y=c_{1}\left|x-x_{0}\right|^{r}+c_{2}\left|x-x_{0}\right|^{r} \ln \left|x-x_{0}\right|$. Case III Complex roots $\lambda \pm \mu i: y=\left|x-x_{0}\right|^{\lambda}\left(c_{1} \cos \left(\mu \ln \left|x-x_{0}\right|\right)+\right.$ $\overline{\left.c_{2} \sin \left(\mu \ln \left|x-x_{0}\right|\right)\right) \text {. }}$

3 System of Equations

A general 1st order system is in the form $\left\{\begin{array}{l}x_{1}^{\prime}(t)=F_{1}\left(t, x_{1}, \cdots, x_{n}\right) \\ \cdots \\ x_{n}^{\prime}(t)=F_{n}\left(t, x_{1}, \cdots, x_{n}\right)\end{array}\right.$

- Autonomous: Every F_{i} only depends on x_{1}, \cdots, x_{n} and not t.

Linear: Every F_{i} is linear: $F_{i}=p_{i 1}(t) x_{1}+\cdots+p_{i n}(t) x_{n}+g_{i}(t)$.
Homogeneous: The system is linear and every $g_{i}(t) \equiv 0$.
Matrix form of linear system: $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) x+\mathbf{g}(t)$.

$$
\frac{d}{d t}\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]=\left[\begin{array}{ccc}
p_{11}(t) & \cdots & p_{1 n}(t) \\
\vdots & \vdots & \vdots \\
p_{n 1}(t) & \cdots & p_{n n}(t)
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]+\left[\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right]
$$

All components of $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are cont. in some open interval I, $t_{0} \in I$, then \exists unique solution $\mathbf{x}(t)$ to the IVP $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) x+\mathbf{g}(t)$ with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ for all $t \in I$. (Existence \& Uniqueness Theorem)

Linear Homogeneous System of Equations

Superposition Principle Consider the system $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}$, if $\mathbf{x}_{\mathbf{1}}(t)$ and $\mathbf{x}_{\mathbf{2}}(t)$ are both solutions, then their linear combination $C_{1} \mathbf{x}_{1}(t)+$ $C_{2} \mathbf{x}_{\mathbf{2}}(t)$ is also a solution for any constant C_{1}, C_{2}
General solution: If every solution can be written in some linear combination of $\mathbf{x}_{\mathbf{1}}(t)$ and $\mathbf{x}_{\mathbf{2}}(t)$, then they form a fundamental set of solutions. $C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{\mathbf{2}}(t)$ is the general solution.
Wronskian: $W\left[\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}\right](t)=\operatorname{det}\left[\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)\right]$

$$
\text { - } \mathbf{P}(t) \text { is cont. in }(\alpha, \beta) . \text { If } \exists t_{0} \in(\alpha, \beta)\left[W\left[\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}\right]\left(t_{0}\right) \neq 0\right],
$$

then $\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}$ form a fundamental set of solutions for $t \in(\alpha, \beta)$.
Abel's Theorem In $(\alpha, \beta), W$ is either identically zero or never zero.
Solve $\mathbf{x}^{\prime}=\mathbf{A x}$. A has distinct eigenvalues.
If \mathbf{A} has n distinct eigenvalues r_{1}, \cdots, r_{n} and corresponding linearly independent eigenvectors $\mathbf{v}^{(1)}, \cdots, \mathbf{v}^{(n)}$, then the general solution is:

$$
\mathbf{x}(t)=C_{1} \mathbf{v}^{(1)} e^{r_{1} t}+\cdots+C_{n} \mathbf{v}^{(n)} e^{r_{n} t}
$$

If \mathbf{A} has a complex eigenvalue $r=\lambda+\mu i$ and corresponding eigenvector $\mathbf{a}+\mathbf{b} i$, then the fundamental set of solutions is:

$$
\begin{aligned}
& \mathbf{x}^{(1)}(t)=e^{\lambda t}(\mathbf{a} \cos (\mu t)-\mathbf{b} \sin (\mu t)) \\
& \mathbf{x}^{(2)}(t)=e^{\lambda t}(\mathbf{b} \cos (\mu t)+\mathbf{a} \sin (\mu t))
\end{aligned}
$$

Fundamental matrix: For $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) x$, suppose $\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions. Then the $n \times n$ matrix $\boldsymbol{\Psi}(t)=$ $\left[\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)\right]$ is called a fundamental matrix for the system.

$$
\boldsymbol{\Psi}^{\prime}(t)=\mathbf{P}(t) \boldsymbol{\Psi}(t)
$$

General solution: $\mathbf{x}(t)=\boldsymbol{\Psi}(t) \mathbf{c}$.
Solution to IVP with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}: \mathbf{x}(t)=\boldsymbol{\Psi}(t) \boldsymbol{\Psi}\left(t_{0}\right)^{-1} \mathbf{x}_{0}=\boldsymbol{\Phi}(t) \mathbf{x}_{0}$.
The matrix $\boldsymbol{\Phi}(t)=\boldsymbol{\Psi}(t) \boldsymbol{\Psi}\left(t_{0}\right)^{-1}$ is also a fundamental matrix and it satisfies $\boldsymbol{\Phi}\left(t_{0}\right)=\mathbf{I}$.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Matrix exponential: $e^{\mathbf{B}}=\mathbf{I}+\mathbf{B}+\frac{\mathbf{B}^{2}}{2!}+\cdots+\frac{\mathbf{B}^{n}}{n!}+\cdots$
$-e^{\mathbf{A t}}=\mathbf{I}+\mathbf{A t}+\frac{\mathbf{A}^{2} t^{2}}{2!}+\cdots+\frac{\mathbf{A}^{n} t^{n}}{n!}+$

Multiplicity of eigenvalues: The algebraic multiplicity of a repeated eigenvalue is its times of repetition; the geometric multiplicity of a repeated eigenvalue is the number of its corresponding eigenvector.
Jordan form: If \mathbf{A} has an eigenvalue r with algebraic multiplicity m and geometric multiplicity p, then \mathbf{J} has m number of r in its diagonal and a total of p Jordan blocks with diagonal entry r.

Solve $\mathrm{x}^{\prime}=\mathbf{A x}$. A has repeated eigenvalue.
If \mathbf{A} has repeated eigenvalue r with only one eigenvector \mathbf{v}, then the Jordan form is:

$$
J=\left[\begin{array}{ll}
r & 1 \\
0 & r
\end{array}\right]
$$

Find \mathbf{w} such that $(\mathbf{A}-r \mathbf{I}) \mathbf{w}=\mathbf{v}$. The general solution is:

$$
\mathbf{x}(t)=C_{1} e^{r t} \mathbf{v}+C_{2} e^{r t}(\mathbf{v} t+\mathbf{w})
$$

Nonhomogeneous System of Equations
Solve $\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$.
Using variation of parameters, the solution is:

$$
\mathbf{x}(t)=\mathbf{\Psi}(t)\left(\int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) d t+\mathbf{C}\right)
$$

Nonlinear Autonomous System

Autonomous system: $\mathbf{x}^{\prime}(t)=\mathbf{f}(\mathbf{x})$.

- Critical point (equilibrium solution): $\mathbf{f}\left(\mathbf{x}_{0}\right)=\mathbf{0}$.
- Stability: A critical point \mathbf{x}_{0} is stable if for any $\epsilon>0$, there is a $\delta>0$ such that for every solution satisfying the initial condition, $\left\|\mathbf{x}(0)-\mathbf{x}_{0}\right\|<\epsilon$ for all $t>0$; a stable critical point \mathbf{x}_{0} is asymptotically stable if there exists some $\delta<0$ such that every initial data satisfying $\left\|\mathbf{x}(0)-\mathbf{x}_{0}\right\|<\delta$ leads to $\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{x}_{0}$.
Linearization: Consider $\left\{\begin{array}{l}x^{\prime}(t)=F(x, y) \\ y^{\prime}(t)=G(x, y)\end{array}\right.$ with equilibrium point $\left(x_{0}, y_{0}\right)$. The corresponding linear system is $\mathbf{x}^{\prime}=\mathbf{J}\left(\mathbf{x}_{0}\right) \mathbf{x}$:

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
F_{x}\left(x_{0}, y_{0}\right) & F_{y}\left(x_{0}, y_{0}\right) \\
G_{x}\left(x_{0}, y_{0}\right) & G_{y}\left(x_{0}, y_{0}\right)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- For a 2×2 autonomous system $\mathbf{x}^{\prime}(t)=\mathbf{f}(\mathbf{x})$ with critical point \mathbf{x}_{0}, if $\mathbf{J}\left(\mathbf{x}_{0}\right)$ has distinct eigenvalues and both eigenvalues have non-zero real parts, then the critical point \mathbf{x}_{0} must have the same type and stability as in the linear system.

4 Boundary Value Problems

Eigenvalue Problem

Homogeneous boundary condition: $\left\{\begin{array}{l}a_{1} y(\alpha)+a_{2} y^{\prime}(\alpha)=0 \\ b_{1} y(\beta)+b_{2} y^{\prime}(\beta)=0\end{array}\right.$

- The BVP is homogeneous if both equation and boundary condition are homogeneous. Any homogeneous BVP has only constant zero solution $y \equiv 0$ or infinitely many solutions.
Eigenvalue problem: $L y+\lambda y=0$ with homogeneous BC. Here $L y=$
$y^{\prime \prime}+p(x) y^{\prime}+q(x) y$. We are to find all $\lambda \in \mathbb{C}$ such that the BVP has a nontrivial solution.

Eigenvalue: λ such that the BVP has a nontrivial solution.
Eigenfunction: Nontrivial solution y corresponding to λ.
Solve $y^{\prime \prime}+\lambda y=0$ with $y(0)=y(\pi)=0$.
Characteristic equation: $r^{2}+\lambda=0 \Rightarrow r= \pm \sqrt{\lambda}$.
Case I $\lambda>0$. There are two complex roots $r= \pm \sqrt{\lambda} i$.
General solution: $y(x)=C_{1} \cos (\sqrt{\lambda} x)+C_{2} \sin (\sqrt{\lambda} x)$.
We have $\left\{\begin{array}{l}y(0)=C_{1}=0 \\ y(\pi)=C_{2} \sin (\sqrt{\lambda} \pi)=0 \Rightarrow \sqrt{\lambda}=n \text { for some } n \in \mathbb{N}^{+} \text {. }\end{array}\right.$
Hence $y(x)=\sin (n x)$ is the corresponding eigenfunction for $\lambda=n^{2}$.
Case II $\lambda=0$. There is one repeated root $r=0$.
General solution: $y(x)=C_{1}+C_{2} x$.
We have $\left\{\begin{array}{l}y(0)=C_{1}=0 \\ y(\pi)=C_{2} \pi=0 \Rightarrow C_{2}=0\end{array}\right.$
(only trivial solution).
Case III $\lambda<0$. There is two real roots $r= \pm \sqrt{-\lambda}= \pm \sqrt{\mu}$.
General solution: $y(x)=C_{1} e^{\sqrt{\mu} x}+C_{2} e^{-\sqrt{\mu} x}$.
We have $\left\{\begin{array}{l}y(0)=C_{1}+C_{2}=0 \Rightarrow C_{1}=-C_{2} \\ y(\pi)=C_{1} e^{\sqrt{\mu} \pi}+C_{2} e^{-\sqrt{\mu} x}=0 \Rightarrow C_{1}\left(e^{\sqrt{\mu} \pi}-e^{-\sqrt{\mu} x}\right)=0 .\end{array}\right.$
Since $e^{\sqrt{\mu} \pi}-e^{-\sqrt{\mu} x}>0$, there is only trivial solution.
Inner product: $(u, v)=\int_{a}^{b} u(x) v(x) d x$.

- u and v are orthogonal if their inner product is zero.

Prove $\lambda>0$ without using explicit solutions.
$y^{\prime \prime}+\lambda y=0 \Rightarrow-y^{\prime \prime}=\lambda y$. Assume y is nontrivial with eigenvalue λ. Here $\left(-y^{\prime \prime}, y\right)=\int_{0}^{\pi}-y^{\prime \prime}(x) y(x) d x=\int_{0}^{\pi} y^{\prime}(x)^{2} d x-\left.y^{\prime} y\right|_{0} ^{\pi}=$ $\int_{0}^{\pi} y^{\prime}(x)^{2} d x-\left(y^{\prime}(\pi) y(\mathbb{X})-y^{\prime}(0) y(Q)\right)$. Hence, $\int_{0}^{\pi} y^{\prime 2} d x=\lambda \int_{0}^{\pi} y^{2} d x$. Note that LHS ≥ 0, RHS >0. If LHS $=0$, then $y^{\prime} \equiv 0$, hence $y \equiv 0$, which is trivial. Hence LHS $>0 . \lambda=\frac{\text { LHS }}{\text { RHS }}>0$.

Prove that eigenfunctions corresponding to different eigenvalues must be mutually orthogonal.
Assume y_{1}, y_{2} are nontrivial eigenfunctions corresponding to $\lambda_{1} \neq \lambda_{2}$.
We have $\left\{\begin{array}{l}-y_{1}^{\prime \prime}=\lambda_{1} y_{1} \Rightarrow\left(-y_{1}^{\prime \prime}, y_{2}\right)=\lambda_{1}\left(y_{1}, y_{2}\right) \\ -y_{2}^{\prime \prime}=\lambda_{2} y_{2} \Rightarrow\left(-y_{2}^{\prime \prime}, y_{1}\right)=\lambda_{2}\left(y_{2}, y_{1}\right)\end{array}\right.$
(1) - (2), we have $\int_{0}^{\pi}-y_{1}^{\prime \prime} y_{2}+y_{2}^{\prime \prime} y_{1} d x=\left(\lambda_{1}-\lambda_{2}\right) \int_{0}^{\pi} y_{1} y_{2} d x$.

Since $\lambda_{1} \neq \lambda_{2}, \int_{0}^{\pi} y_{1} y_{2} d x=0 \Rightarrow\left(y_{1}, y_{2}\right)=0$. They are orthogonal.
Prove that for any λ, the space of eigenfunctions is onedimensional (simple).
Let y_{1}, y_{2} be two eigenfunctions corresponding to λ.
$W\left[y_{1}, y_{2}\right](0)=\left|\begin{array}{ll}y_{1}(0) & y_{2}(0) \\ y_{1}^{\prime}(0) & y_{2}^{\prime}(0)\end{array}\right|=0$. By Abel's theorem, $W \equiv 0$.
Hence y_{1} and y_{2} are linearly dependent. The space is one-dimensional.
Fourier sine series: Any function f on $[0, \pi]$ can be expressed as $f(x)=$ $c_{1} \sin (x)+c_{2} \sin (2 x)+\ldots$. Here $c_{n}=\frac{\int_{0}^{\pi} f(x) \sin (n x) d x}{\int_{0}^{\pi} \sin (n x)^{2} d x}$.

Sturm-Liouville Boundary Value Problem

Sturm-Liouville BVP: $\left(p(x) y^{\prime}\right)^{\prime}-q(x) y+\lambda r(x) y=0$ on $[\alpha, \beta]$ with homogeneous boundary conditions that are separated:

$$
\begin{aligned}
a_{1} y^{\prime}(\alpha)+a_{2} y(\alpha) & =0 \\
b_{1} y^{\prime}(\beta)+b_{2} y(\beta) & =0
\end{aligned}
$$

Here a_{1}, a_{2} are not both $0, b_{1}, b_{2}$ are not both 0 .
$\left(p(x) y^{\prime}\right)^{\prime}=p(x) y^{\prime \prime}+p^{\prime}(x) y^{\prime}$.
Let $L[y]=-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y$, the equation becomes $L[y]=\lambda r(x) y$. The operator L is self-adjoint in the sense that $(L u, v)=(u, L v)$ for any u, v satisfying the BC. Here the inner product is given by $(u, v)=\int_{\alpha}^{\beta} u(x) \bar{v}(x) d x$.
Regular Sturm-Liouville BVP: If p, p^{\prime}, q, r are cont. on $[\alpha, \beta]$, and $p(x)>0, r(x)>0$ on $[\alpha, \beta]$, the SL BVP is regular; otherwise it is singular.

All eigenvalues to regular Sturm-Liouville BVP must be real.
Prove that if $q \geq 0$ and $-\left.p y^{\prime} \bar{y}\right|_{\alpha} ^{\beta} \geq 0$, then $\lambda \geq 0$.
$(L[y], y)=\int_{\alpha}^{\beta}-\left(p(x) y^{\prime}\right)^{\prime} \bar{y} d x+\int_{\alpha}^{\beta} q(x)|y|^{2} d x=\int_{\alpha}^{\beta} p(x)\left|y^{\prime}\right|^{2} d x-$ $\left.p y^{\prime} \bar{y}\right|_{\alpha} ^{\beta}+\int_{\alpha}^{\beta} q(x)|y|^{2} d x=(\lambda r(x) y, y)=\int_{\alpha}^{\beta} \lambda r(x)|y|^{2} d x$. Hence $\lambda \geq 0$.

- Eigenfunctions ϕ_{m}, ϕ_{n} from different eigenvalues $\lambda_{m} \neq \lambda_{n}$ are orthogonal with respect to the weight function $r(x)$. That is, ϕ_{m}, ϕ_{n} satisfy $\int_{\alpha}^{\beta} r(x) \phi_{m}(x) \phi_{n}(x) d x=0$.
- There is only 1 eigenfunction for each eigenvalue (simple).
- Infinite sequence $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots . \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

