MA3220 Ordinary Differential Equations

AY2022/23 Semester 1 · Prepared by Tian Xiao @snoidetx

1 First Order Equation

Separable Equation

Solve the separable ODE y'(x) = P(x)Q(y). The solution is $\int \frac{1}{Q(y)} dy = \int P(x)dx + C$.

Linear Equation (Existence & Uniqueness Theorem)

An ODE is *linear* if it is in the form $a_n(x)y^{(n)} + \cdots + a_1y = P(x)$. It is *homogeneous* if P(x) = 0.

- p and g are cont. on $I = (\alpha, \beta)$ containing x_0 . $\forall y_0 \in \mathbb{R}, \exists$ unique solution to y' + p(x)y = g(x) for each x in I, with IC $y(x_0) = y_0$.

Solve the 1st order linear ODE y' + P(x)y = Q(x). Let $\mu(x) = e^{\int P(x)dx}$. The solution is $y = \frac{\int \mu(x)Q(x)dx}{\mu(x)y} + C$.

Nonlinear Equation (Existence & Uniqueness Theorem)

f and $\frac{\partial f}{\partial y}$ are both cont. in some rectangle $R = (\alpha, \beta) \times (\gamma, \delta)$ containing (x_0, y_0) . In some interval $x_0 - h < x < x_0 + h$ contained in $\alpha < x < \beta$, \exists unique solution to the IVP y' = f(x, y) with IC $y(x_0) - y_0$.

Exact Equation

An ODE M(x, y) + N(x, y)y' = 0 is exact if $\exists \psi(x, y) [\psi_x = M \land \psi_y = n]$. - If an ODE is exact, $M_y = N_x$.

- If M, N, M_y, N_x are cont. in a simply connected region $D \subset \mathbb{R}^2$, then the equation is exact if and only if $M_y = N_x$.

Solve the 1st order exact ODE M(x,y) + N(x,y)y' = 0. $\psi(x,y) = \int M(x,y)dx + g(y).$

Find g(y) by $\psi_y = N(x, y)$. The solution is $\psi(x, y) = C$.

Equilibrium Solution	$\leftarrow \cdot \rightarrow$	$\rightarrow \cdot \leftarrow$	$\leftarrow \cdot \leftarrow \rightarrow \cdot \rightarrow$
	unstable	asympt. stable	semi-stable

Euler's Method $y_i = y_{i-1} + y'_{i-1} \times h.$

2 Second Order Equation

p, q, g are cont. on an open interval $I : \alpha < t < \beta$ containing t_0, \exists unique solution to the IVP y'' + p(t)y' + q(t)y = g(t) for each t in I, with IC $y(t_0) = y_0$ and $y'(t_0) = y'_0$. (Existence & Uniqueness Theorem)

Linear Homogeneous Equation

Superposition Principle y_1, y_2 solutions $\Rightarrow c_1y_1 + c_2y_2$ also solution.

Wronskian: $W[y_1, y_2](t) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1.$

- y_1, y_2 form a fundamental set if $\exists t_0 \in I [W[y_1, y_2](t_0) \neq 0]$. **Abel's Theorem** Let y_1, y_2 be two solutions of y'' + p(t)y' + q(t) = 0with p, q cont. in I. Then $W[y_1, y_2](t) = ce^{-\int p(t)dt}$. As a result, the Wronskian is either always 0 or never 0.

Solve the 2nd order ODE ay'' + by + c = 0. Characteristic equation: $ar^2 + br + c = 0$. Case I Distinct real roots r_1, r_2 : $y = c_1e^{r_1t} + c_2e^{r_2t}$. Case II Repeated real root r: $y = (c_1 + c_2t)e^{rt}$. Case III Complex roots $\lambda \pm \mu i$: $y = e^{\lambda t}(c_1 \cos(\mu t) + c_2 \sin(\mu t))$.

Given one solution $y_1(t)$ of the ODE y''(t)+p(t)y'(t)+q(t)y(t)=0, find another solution $y_2(t)$.

<u>Method I</u> Abel's Theorem: Solve y_2 from $y_1y'_2 - y_2y'_1 = e^{-\int p(t)dt}$. <u>Method II</u> Reduction of order. Let $y_2(t) = v(t)y_1(t)$ and solve $y_1(t)v''(t) + (2y'_1(t) + p(t)y_1(t))v'(t) = 0$. Solve by letting u(t) = v'(t).

Linear Nonhomogeneous Equation

Find the particular solution of the ODE ay'' + by' + cy = g(t). Make the right guess: degree-*n* polynomial \rightarrow degree-*n* polynomial; $Ce^{kt} \rightarrow Ae^{kt}$; $C\sin(kt)$ or $C\cos kt \rightarrow A\sin(kt) + B\cos(kt)$; sum/product of terms \Rightarrow sum/product of their respective guesses. We handle exceptions by multiplying *t* to our guess when our guess solves the corresponding homogeneous equation (sum \Rightarrow do for each term; product \Rightarrow multiply the whole).

Find the general solution of the ODE y'' + p(t)y' + q(t)y = g(t). Variation of parameters: $\begin{cases} u_1(t) = -\int \frac{y_2(t)g(t)}{W[y_1,y_2](t)} dt + c_1 \\ u_2(t) = \int \frac{y_1(t)g(t)}{W[y_1,y_2](t)} dt + c_2 \end{cases}$ The general solution is $Y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$.

Power Series Solution

Ratio test: $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| < 1 \Rightarrow \text{converge}; > 1 \Rightarrow \text{diverge}.$

Convergence radius: $|x - x_0| > \rho \Rightarrow$ diverge; $< \rho \Rightarrow$ converge. - If f polynomial, convergence radius of power series of $\frac{1}{f(x)}$ centered

at x_0 = distance between x_0 and the nearest complex roots of f(x). - f, g analytic at t_0 , radius = $\rho \Rightarrow fg, f + g$ analytic at t_0 , radius = ρ .

Find series solution of $P(x)y'' + Q(x)$	$(x)y' + R(x)y = 0$ centered at x_0
(y'' + p(x	y' + q(x) = 0
x_0 ordinary? yes? p,q analytic at x_0	$\begin{cases} y = \sum_{\substack{n=0\\n=0}}^{\infty} a_n (x-x_0)^n \Rightarrow y(x_0) = 0 \\ y' = \sum_{\substack{n=0\\n=0}}^{\infty} na_n (x-x_0)^{n-1} \Rightarrow y'(x_0) = a_1 \end{cases}$ shift of summation index
no?	$y'' = \sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2} \Rightarrow y^{(n)}(x_0) = n!a_n$ Convergence radius is at least the minimum of p and q .
$\begin{array}{c c} & yes?\\ \hline x_0 \text{ regular?} & yes?\\ \hline \lim_{x \to x_0} (x - x_0) \frac{Q(x)}{P(x)}\\ \lim_{x \to x_0} (x - x_0)^2 \frac{R(x)}{P(x)}\\ \text{both finite} \end{array}$	$ \begin{array}{l} \mbox{Frobenius method} & Get \ the \ indicial \ equation \ F(r)=0 \ for \ a_0 \neq 0, \\ y=\sum\limits_{n=0}^{\infty}a_n(x-x_0)^{n+r} & r_1>r_2, \ then \ \exists \ Frobenius \ sol. \ w.r.t. \ r_1; \\ y'=\sum\limits_{n=0}^{\infty}a_n(n+r)(x-x_0)^{n+r-1} \\ y''=\sum\limits_{\infty}^{\infty}a_n(n+r)(n+r-1)(x-x_0)^{n+r-2} \end{array} $

Solve the Euler equation $(x - x_0)^2 y'' + \alpha (x - x_0)y' + \beta y = 0$. Indicial equation: $F(r) = r^2 + (\alpha - 1)r + \beta = 0$.

 $\begin{array}{l} \underline{\textbf{Case I}} \text{ Distinct real roots } r_1, r_2: \ y = c_1 |x - x_0|^{r_1} + c_2 |x - x_0|^{r_2}.\\ \underline{\textbf{Case II}} \text{ Repeated real root } r: \ y = c_1 |x - x_0|^r + c_2 |x - x_0|^r \ln |x - x_0|.\\ \underline{\textbf{Case III}} \text{ Complex roots } \lambda \pm \mu i: \ y = |x - x_0|^{\lambda} (c_1 \cos(\mu \ln |x - x_0|) + c_2 \sin(\mu \ln |x - x_0|)). \end{array}$

3 System of Equations

A general 1st order system is in the form $\begin{cases} x_1'(t) = F_1(t, x_1, \cdots, x_n) \\ \cdots \end{cases}$

$$\begin{cases} x'_n(t) = F_n(t, x_1, \cdots, x_n) \end{cases}$$

- Autonomous: Every F_i only depends on x_1, \dots, x_n and not t.

- Linear: Every F_i is linear: $F_i = p_{i1}(t)x_1 + \cdots + p_{in}(t)x_n + g_i(t)$.
- Homogeneous: The system is linear and every $g_i(t) \equiv 0$.
- Matrix form of linear system: $\mathbf{x}'(t) = \mathbf{P}(t)x + \mathbf{g}(t)$.

$$\frac{d}{dt} \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} = \begin{bmatrix} p_{11}(t) & \cdots & p_{1n}(t) \\ \vdots & \vdots & \vdots \\ p_{n1}(t) & \cdots & p_{nn}(t) \end{bmatrix} \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} g_1(t) \\ \vdots \\ g_n(t) \end{bmatrix}$$

- All components of $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are cont. in some open interval I, $t_0 \in I$, then \exists unique solution $\mathbf{x}(t)$ to the IVP $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t)$ with $\mathbf{x}(t_0) = \mathbf{x}_0$ for all $t \in I$. (Existence & Uniqueness Theorem)

Linear Homogeneous System of Equations

Superposition Principle Consider the system $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}$, if $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ are both solutions, then their linear combination $C_1\mathbf{x}_1(t) + C_2\mathbf{x}_2(t)$ is also a solution for any constant C_1, C_2 .

General solution: If every solution can be written in some linear combination of $\mathbf{x_1}(t)$ and $\mathbf{x_2}(t)$, then they form a fundamental set of solutions. $C_1\mathbf{x_1}(t) + C_2\mathbf{x_2}(t)$ is the general solution.

Wronskian:
$$W[\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}](t) = \det \left[\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t) \right].$$

-
$$\mathbf{P}(t)$$
 is cont. in (α, β) . If $\exists t_0 \in (\alpha, \beta) \left[W[\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(n)}](t_0) \neq 0 \right]$,

then $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}$ form a fundamental set of solutions for $t \in (\alpha, \beta)$. **Abel's Theorem** In (α, β) , W is either identically zero or never zero.

Solve $\mathbf{x}' = \mathbf{A}\mathbf{x}$. A has distinct eigenvalues.

If **A** has *n* distinct eigenvalues r_1, \dots, r_n and corresponding linearly independent eigenvectors $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}$, then the general solution is:

$$\mathbf{x}(t) = C_1 \mathbf{v}^{(1)} e^{r_1 t} + \dots + C_n \mathbf{v}^{(n)} e^{r_n t}$$

If **A** has a complex eigenvalue $r = \lambda + \mu i$ and corresponding eigenvector $\mathbf{a} + \mathbf{b}i$, then the fundamental set of solutions is:

$$\mathbf{x}^{(1)}(t) = e^{\lambda t} (\mathbf{a} \cos(\mu t) - \mathbf{b} \sin(\mu t));$$

$$\mathbf{x}^{(2)}(t) = e^{\lambda t} (\mathbf{b} \cos(\mu t) + \mathbf{a} \sin(\mu t)).$$

Fundamental matrix: For $\mathbf{x}'(t) = \mathbf{P}(t)x$, suppose $\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)$ form a fundamental set of solutions. Then the $n \times n$ matrix $\Psi(t) = [\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)]$ is called a *fundamental matrix* for the system.

- $\Psi'(t) = \mathbf{P}(t)\Psi(t).$
- General solution: $\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{c}$.
- Solution to IVP with $\mathbf{x}(t_0) = \mathbf{x}_0$: $\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}(t_0)^{-1}\mathbf{x}_0 = \mathbf{\Phi}(t)\mathbf{x}_0$. - The matrix $\mathbf{\Phi}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}(t_0)^{-1}$ is also a fundamental matrix and it

- The matrix $\Psi(t) = \Psi(t)\Psi(t_0)^{-1}$ is also a fundamental matrix and it satisfies $\Phi(t_0) = \mathbf{I}$.

$$-\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Matrix exponential:
$$e^{\mathbf{B}} = \mathbf{I} + \mathbf{B} + \frac{\mathbf{B}^2}{2!} + \dots + \frac{\mathbf{B}^n}{n!} + \dots$$

- $e^{\mathbf{At}} = \mathbf{I} + \mathbf{At} + \frac{\mathbf{A}^2 t^2}{2!} + \dots + \frac{\mathbf{A}^n t^n}{n!} + \dots$

Multiplicity of eigenvalues: The algebraic multiplicity of a repeated eigenvalue is its times of repetition; the geometric multiplicity of a repeated eigenvalue is the number of its corresponding eigenvector.

Jordan form: If \mathbf{A} has an eigenvalue r with algebraic multiplicity mand geometric multiplicity p, then **J** has m number of r in its diagonal and a total of p Jordan blocks with diagonal entry r.

Nonlinear Autonomous System

Autonomous system: $\mathbf{x}'(t) = \mathbf{f}(\mathbf{x})$.

- Critical point (equilibrium solution): $\mathbf{f}(\mathbf{x}_0) = \mathbf{0}$.

- Stability: A critical point \mathbf{x}_0 is *stable* if for any $\epsilon > 0$, there is a $\delta > 0$ such that for every solution satisfying the initial condition, $||\mathbf{x}(0) - \mathbf{x}_0|| < \epsilon$ for all t > 0; a stable critical point \mathbf{x}_0 is asymptotically stable if there exists some $\delta < 0$ such that every initial data satisfying $||\mathbf{x}(0) - \mathbf{x}_0|| < \delta$ leads to $\lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_0$.

Linearization: Consider $\begin{cases} x'(t) = F(x, y) \\ y'(t) = G(x, y) \end{cases}$ with equilibrium point

 (x_0, y_0) . The corresponding linear system is $\mathbf{x}' = \mathbf{J}(\mathbf{x}_0)\mathbf{x}$:

$$\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} F_x(x_0, y_0) & F_y(x_0, y_0) \\ G_x(x_0, y_0) & G_y(x_0, y_0) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- For a 2 × 2 autonomous system $\mathbf{x}'(t) = \mathbf{f}(\mathbf{x})$ with critical point \mathbf{x}_0 , if $\mathbf{J}(\mathbf{x}_0)$ has distinct eigenvalues and both eigenvalues have non-zero real parts, then the critical point \mathbf{x}_0 must have the same type and stability as in the linear system.

Boundary Value Problems 4

Eigenvalue Problem

Homogeneous boundary condition: $\begin{cases} a_1y(\alpha) + a_2y'(\alpha) = 0\\ b_1y(\beta) + b_2y'(\beta) = 0 \end{cases}$

- The BVP is homogeneous if both equation and boundary condition are homogeneous. Any homogeneous BVP has only constant zero solution $y \equiv 0$ or infinitely many solutions.

Eigenvalue problem: $Ly + \lambda y = 0$ with homogeneous BC. Here Ly =

y'' + p(x)y' + q(x)y. We are to find all $\lambda \in \mathbb{C}$ such that the BVP has a nontrivial solution.

- **Eigenvalue:** λ such that the BVP has a nontrivial solution.
- **Eigenfunction:** Nontrivial solution y corresponding to λ .

Solve $y'' + \lambda y = 0$ with $y(0) = y(\pi) = 0$. Characteristic equation: $r^2 + \lambda = 0 \Rightarrow r = \pm \sqrt{\lambda}$. <u>**Case I**</u> $\lambda > 0$. There are two complex roots $r = \pm \sqrt{\lambda}i$. General solution: $y(x) = C_1 \cos(\sqrt{\lambda}x) + C_2 \sin(\sqrt{\lambda}x).$ We have $\begin{cases} y(0) = C_1 = 0\\ y(\pi) = C_2 \sin(\sqrt{\lambda}\pi) = 0 \Rightarrow \sqrt{\lambda} = n \text{ for some } n \in \mathbb{N}^+. \end{cases}$ Hence $y(x) = \sin(nx)$ is the corresponding eigenfunction for $\lambda = n^2$. **<u>Case II</u>** $\lambda = 0$. There is one repeated root r = 0. General solution: $y(x) = C_1 + C_2 x$. We have $\begin{cases} y(0) = C_1 = 0\\ y(\pi) = C_2 \pi = 0 \Rightarrow C_2 = 0 \end{cases}$ (only trivial solution). <u>**Case III**</u> $\lambda < 0$. There is two real roots $r = \pm \sqrt{-\lambda} = \pm \sqrt{\mu}$. General solution: $y(x) = C_1 e^{\sqrt{\mu}x} + C_2 e^{-\sqrt{\mu}x}$. We have $\begin{cases} y(0) = C_1 + C_2 = 0 \Rightarrow C_1 = -C_2\\ y(\pi) = C_1 e^{\sqrt{\mu}\pi} + C_2 e^{-\sqrt{\mu}x} = 0 \Rightarrow C_1 (e^{\sqrt{\mu}\pi} - e^{-\sqrt{\mu}x}) = 0. \end{cases}$ Since $e^{\sqrt{\mu}\pi} - e^{-\sqrt{\mu}x} > 0$, there is only trivial solution. Inner product: $(u, v) = \int_a^b u(x)v(x)dx$. - u and v are orthogonal if their inner product is zero. **Prove** $\lambda > 0$ without using explicit solutions. $\begin{aligned} y'' + \lambda y &= 0 \Rightarrow -y'' = \lambda y. \text{ Assume } y \text{ is nontrivial with eigenvalue } \lambda. \\ \text{Here } (-y'', y) &= \int_0^\pi -y''(x)y(x)dx = \int_0^\pi y'(x)^2 dx - y'y\Big|_0^\pi = \\ \int_0^\pi y'(x)^2 dx - (y'(\pi)y(\pi) - y'(0)y(0)). \text{ Hence, } \int_0^\pi y'^2 dx = \lambda \int_0^\pi y^2 dx. \\ \text{Note that LHS} &\geq 0, \text{ RHS} > 0. \text{ If LHS} = 0, \text{ then } y' \equiv 0, \text{ hence } y \equiv 0, \\ \text{which is trivial. Hence LHS} > 0. \lambda = \frac{\text{LHS}}{\text{RHS}} > 0. \end{aligned}$ Prove that eigenfunctions corresponding to different eigenvalues must be mutually orthogonal. Assume y_1 , y_2 are nontrivial eigenfunctions corresponding to $\lambda_1 \neq \lambda_2$.

Assume y_1, y_2 are nontrivial eigenfunctions corresponding $1 \le 1, \gamma$ We have $\begin{cases} -y_1'' = \lambda_1 y_1 \Rightarrow (-y_1'', y_2) = \lambda_1 (y_1, y_2) & 1 \\ -y_2'' = \lambda_2 y_2 \Rightarrow (-y_2'', y_1) = \lambda_2 (y_2, y_1) & 2 \end{cases}$ (1) - (2), we have $\int_0^{\pi} -y_1'' y_2 + y_2'' y_1 dx = (\lambda_1 - \lambda_2) \int_0^{\pi} y_1 y_2 dx$. LHS = $\int_0^{\pi} \overline{(y_1' y_2' - y_2' y_1')} dx - \overline{(y_1' y_2' - y_2' y_1)} \Big|_0^{\pi} = 0$. Hence RHS = 0. Since $\lambda_1 \neq \lambda_2$, $\int_0^{\pi} y_1 y_2 dx = 0 \Rightarrow (y_1, y_2) = 0$. They are orthogonal.

Prove that for any λ , the space of eigenfunctions is onedimensional (simple).

Let y_1, y_2 be two eigenfunctions corresponding to λ . $W[y_1, y_2](0) = \begin{vmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{vmatrix} = 0.$ By Abel's theorem, $W \equiv 0.$

Hence y_1 and y_2 are linearly dependent. The space is one-dimensional. Fourier sine series: Any function f on $[0, \pi]$ can be expressed as f(x) =

 $c_1 \sin(x) + c_2 \sin(2x) + \dots$ Here $c_n = \frac{\int_0^\pi f(x) \sin(nx) dx}{\int_0^\pi \sin(nx)^2 dx}$.

Sturm-Liouville Boundary Value Problem

Sturm-Liouville BVP: $(p(x)y')' - q(x)y + \lambda r(x)y = 0$ on $[\alpha, \beta]$ with homogeneous boundary conditions that are separated:

$$a_1 y'(\alpha) + a_2 y(\alpha) = 0$$
$$b_1 y'(\beta) + b_2 y(\beta) = 0$$

Here a_1, a_2 are not both 0, b_1, b_2 are not both 0.

- (p(x)y')' = p(x)y'' + p'(x)y'.- Let L[y] = -(p(x)y')' + q(x)y, the equation becomes $L[y] = \lambda r(x)y$. The operator L is self-adjoint in the sense that (Lu, v) = (u, Lv)for any u, v satisfying the BC. Here the inner product is given by $(u, v) = \int_{\alpha}^{\beta} u(x)\bar{v}(x)dx.$

Regular Sturm-Liouville BVP: If p, p', q, r are cont. on $[\alpha, \beta]$, and p(x) > 0, r(x) > 0 on $[\alpha, \beta]$, the SL BVP is regular; otherwise it is singular.

- All eigenvalues to regular Sturm-Liouville BVP must be real.

Prove that if $q \ge 0$ and $-py'\bar{y}\Big|_{\alpha}^{\beta} \ge 0$, then $\lambda \ge 0$. $(L[y], y) = \int_{\alpha}^{\beta} -(p(x)y')'\bar{y}dx + \int_{\alpha}^{\beta} q(x)|y|^2dx = \int_{\alpha}^{\beta} p(x)|y'|^2dx - \int_{\alpha}^{\beta} p(x)|y'|^2dx$ $py'\bar{y}\Big|^{\beta} + \int_{\alpha}^{\beta} q(x)|y|^2 dx = (\lambda r(x)y, y) = \int_{\alpha}^{\beta} \lambda r(x)|y|^2 dx.$ Hence $\lambda \ge 0.$

- Eigenfunctions ϕ_m, ϕ_n from different eigenvalues $\lambda_m \neq \lambda_n$ are orthogonal with respect to the weight function r(x). That is, ϕ_m, ϕ_n satisfy $\int_{\alpha}^{\beta} r(x)\phi_m(x)\phi_n(x)dx = 0.$

- There is only 1 eigenfunction for each eigenvalue (simple).

- Infinite sequence $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$. $\lambda_n \to \infty$ as $n \to \infty$.