MA3220 Ordinary Differential Equations

AY2022/23 Semester 1 - Prepared by Tian Xiao @snoidetz

1 First Order Equation

Separable Equation

Solve the separable ODE y/'(z) = P(z)Q(y).
The solution is [ Q ydy = J P(z)dz + C.

| ETEVa DI IENA TN sl (Existence & Uniqueness Theorem)

An ODE is linear if it is in the form a, (z)y(™ + --- + a1y = P(x). It is
homogeneous if P(z) = 0.

- p and g are cont. on I = (e, ) containing zo. Vyo € R, 3 unique
solution to y’' + p(z)y = g(z) for each z in I, with IC y(zo) = yo.

Solve the 1st order linear ODE y’ + P(z)y = Q(z).

Let p(z) = ef P(®)dT The solution is y = ”(:z# +C.

INFYSY ATV MO PIERA T}l (Existence & Uniqueness Theorem)

f and %i are both cont. in some rectangle R =

(e, B) X (7y,0) containing
(z0,Y0). In some interval zo — h < z < ¢ + h contained in o < x < 8, 3
unique solution to the IVP y’ = f(z,y) with IC y(zo) — yo.

Exact Equation

An ODE M (z,y) + N(z,y)y’ = 0 is ezact if I(z,y) [Ya = M Ay = n].
- If an ODE is exact, My = Ng.
- If M,N, My, Ny are cont. in a simply connected region D C R2,
then the equation is exact if and only if My = Ng.

Solve the 1st order exact ODE M(z,y) + N(z,y)y’ = 0.

Wz y) = / M(z,y)dz + g(y).

Find g(y) by ¥y = N(z,y). The solution is ¢ (z,y) =
— = —

Equilibrium Solution unstable | asympt. stable

=
semi-stable

Euler’s Method FERTESEEETRINE

2 Second Order Equation

P, q, g are cont. on an open interval I : & < t <  containing to, 3 unique
solution to the IVP y"” + p(t)y’ + q(t)y = g(¢) for each t in I, with IC
y(to) = yo and y'(to) = . (Existence & Uniqueness Theorem)

Linear Homogeneous Equation

Superposition Principle yi, y2 solutions = c1y1 + c2y2 also solution.

Wronskian: Wy, y2](t) = z/l y2 = y1Y5 — Y2y
1 5

- y1,y2 form a fundamental set if 3ty € T [W[yl, y2|(to) # O].
Abel’s Theorem Let y1,y2 be two solutions of ¥/ + p(t)y’ + ¢(t) = 0
with p,q cont. in I. Then Wy1,ya](t) = ce= /Pt Ag a result, the
Wronskian is either always 0 or never 0.

Solve the 2nd order ODE ay” + by + ¢ = 0.

Characteristic equation: ar? + br 4+ ¢ = 0.

Case I Distinct real roots r1,r2: y = c1e"? 4+ coe™2?

Case II Repeated real root r: y = (c1 + cot)e”*

Case III Complex roots X £ pi: y = e (cy cos(ut) 4 c2 sin(ut)).

y'(t)+q)y(t) =0,

Given one solution y; (t) of the ODE y"(t)+p(t)
find another solution y2(t).

Method I Abel’s Theorem: Solve yo from y1y) — yoy = e~ J P(D)dt,
Method IT Reduction of order. Let y2(t) = wv(t)yi(t) and solve
y1(t)v” (t) + (2y1 (t) + p(t)y1(t))v' () = 0. Solve by letting u(t) = v'(¢).

Linear Nonhomogeneous Equation

Find the particular solution of the ODE ay” + by’ + cy = g(t).
Make the right guess: degree-n polynomial — degree-n polyno-
mial; CeFt — AeFt; Csin(kt) or Ccoskt — Asin(kt) + B cos(kt);
sum/product of terms = sum/product of their respective guesses. We
handle exceptions by multiplying ¢ to our guess when our guess solves
the corresponding homogeneous equation (sum = do for each term;
product = multiply the whole).

Find the general solution of the ODE y” + p(t)y’ + q(t)y = g(¢).

(1) yz(t>9(t dt + ¢
Variation of parameters: { 1) fy‘:vt[y; %/2 p 1
u2(t) = [ Wiy %+ e

The general solution is Y (¢) = w1 (t)y1(t) + u2(t)y2(t).

Power Series Solution

Ratio test: lim ‘M
n—oo | an

|z — zo| < 1 = converge; > 1 = diverge.
Convergence radius: |z — xzg| > p = diverge; < p = converge
- If f polynomial, convergence radius of power series of f( )

at zg = distance between zg and the nearest complex roots of f(z).
- f, g analytic at tg, radius = p = fg, f + g analytic at tg, radius = p.

centered

I Find series solution of P(x)y" + Q(x)y’ + R(x)y = 0 centered at x,

0" +p@)y" +4qx) =0)
yes?

* shift of summation index
y= > an(z—z0)" = y(zo) =0
n=0
=

Y = 3 nan(z —wo)" ! = ¢/ (x0) = a1
n=1

p,q analytic at x,
)

Y’ = 3 n(n—1)an( —20)" 2 =y (20) = nlan
n=2

Convergence radius is at least the minimum of p and q.

? : - -
Yes? | Frobenius method Get the indicial equation F(r) = 0 for ag # 0.
y= i": an(@ — 20)™+" 1 > 13, then 3 Frobenius sol. w.r.t. ry;

Q=) v= nE T

lim (z 20) Fizy n=0 ifry =1y, # Z, 3 Frobenius sol. w.r.t. rp.

=
R(z) Yy =3 an(n+r)(z —ao)"t 1
n=0

xo regular?

Jim (@~ 20)° pay

>
both finite Yy’ =3 an(n+r)(n+r—1)(z —20)"t" 2
n=0

Solve the Euler equation (z — x0)%y” + a(x — xo)y’ + By = 0.
Indicial equation: F(r) =12 4 (a — 1)r + 3 = 0.

Case I Distinct real roots r1,r2: y = c1|x — xo|™ + c2|x — zo|"2.
Case IT Repeated real root r: y = ci|z — zo|" + c2|z — zo|" In |z — 0]
Case III Complex roots A + pi: y = |x — x| (c1 cos(uln |z — xo]) +
cosin(pIn |z — zol)).

3 System of Equations

2y (t) = Fi(t, @1, ,on)

A general 1st order system is in the form
zh (t) = Fn(t,z1, - ,ZTn)
- Autonomous: Every Fj only depends on z1,--- ,zy and not t.
- Linear: Every Fj is linear: F; = p;j1(t)z1 + - - + pin(£)zn + gi(t).
- Homogeneous: The system is linear and every g;(¢t) = 0.
- Matrix form of linear system: x'(¢t) = P(¢)z + g(t)-

p11(t) pin(t)] [2(t)

I Bl : : S B I
zn (1) n1(t) prn(t)] Len(t) gn (1)
- All components of P(¢) and g(¢) are cont. in some open interval I,

to € I, then 3 unique solution x(t) to the IVP x/(t) = P(t)z + g(t) with
x(to) = xo for all t € I. (Existence & Uniqueness Theorem)

Linear Homogeneous System of Equations

Superposition Principle Consider the system x’(t) = P(¢)x, if x1(¢)
and x2(t) are both solutions, then their linear combination Cixy(t) +
Cax2(t) is also a solution for any constant C1,Cs.

General solution: If every solution can be written in some linear combi-
nation of x1 (¢) and x2(t), then they form a fundamental set of solutions.
C1x1(t) + Cax2(t) is the general solution.

Wronskian: W[x™@), ... x(M](t) = det [x<1) )y, x(m(t)] .
- P(t) is cont. in (a, B). If 3to € (o, B) [W[x<1>,--. ,x(M](to) # o],

then x(1, ..., x(™) form a fundamental set of solutions for t € (e, B).
Abel’s Theorem In («, ), W is either identically zero or never zero.

4
dt

z1(t) g1(t)

Solve x’ = Ax. A has distinct eigenvalues.
If A has n distinct eigenvalues r1,--- ,7, and corresponding linearly
independent eigenvectors v(1) ... v(") then the general solution is:

x(t) =

If A has a complex eigenvalue r = A+ pi and corresponding eigenvector
a + bi, then the fundamental set of solutions is:

CrvWemnt 4oy Cpv(Mernt,

xM (1) = eM(acos(ut) — bsin(ut));
x@ () = e* (b cos(ut) + asin(ut)).

Fundamental matrix: For x/(t) = P(t)x, suppose x(1(t), - ) (t)
form a fundamental set of solutions. Then the n X n matrix \Il(t) =
[xD(2),--- ,x™) ()] is called a fundamental matriz for the system.

- W (t) = P(t)¥(t).

- General solution: x(t) = ¥(¢)c.

- Solution to IVP with x(t0) = xo: x(t) =

- The matrix ®(t) = ¥(t)¥(to) !
satisfies ®(¢p) = L

a b7 4 [d -
e d T ad—bc |—¢c a |’

2 n
=I+B+ 5+ +Br 4.
.+An'tn+...

n!

\I/(t)\l’(to)flxo = ®(t)xo.
is also a fundamental matrix and it

Matrix exponential: B
_eAt —




Multiplicity of eigenvalues: The algebraic multiplicity of a repeated
eigenvalue is its times of repetition; the geometric multiplicity of a re-
peated eigenvalue is the number of its corresponding eigenvector.
Jordan form: If A has an eigenvalue r with algebraic multiplicity m
and geometric multiplicity p, then J has m number of r in its diagonal
and a total of p Jordan blocks with diagonal entry r.

Solve x’ = Ax. A has repeated eigenvalue.
If A has repeated eigenvalue r with only one eigenvector v, then the
Jordan form is:
r 1
[

Find w such that (A — rI)w = v. The general solution is:

x(t) = Cre"tv + Cae™t (vt + w).

y" + p(x)y’ + g(x)y. We are to find all A € C such that the BVP has a
nontrivial solution.

- Eigenvalue: A\ such that the BVP has a nontrivial solution.

- Eigenfunction: Nontrivial solution y corresponding to .

Solve y” + Ay = 0 with y(0) = y(x) = 0.

Characteristic equation: 72 + A =0 = r = £v/\.

Case I X\ > 0. There are two complex roots r = v/ \i.

General solution: y(z) = C1 cos(vVAz) + Ca sin(v/Az).
y(0)=C1=0

y(m) = Casin(v/Ar) = 0 = VX = n for some n € Nt.
Hence y(z) = sin(nz) is the corresponding eigenfunction for A = n?2.
Case II A = 0. There is one repeated root r = 0.

General solution: y(z) = Cq + Cax.

We have {

Nonhomogeneous System of Equations

Solve x'(t) = P(t)x + g(t).
Using variation of parameters, the solution is:

x(t) = W(t) (/ T (Dg(b)dt + c) .

Nonlinear Autonomous System

Autonomous system: x/(t) = f(x).

- Critical point (equilibrium solution): f(xg) = 0.

- Stability: A critical point xq is stable if for any € > 0, thereisa d > 0
such that for every solution satisfying the initial condition, ||x(0)—x¢|| < €
for all t > 0; a stable critical point xg is asymptotically stable if there ex-
ists some § < 0 such that every initial data satisfying ||x(0) — x¢|| < ¢
leads to tl_l}r[olo x(t) = xo.

o' (t) = F(z,y)
y'(t) = G(z,y)
(z0,90). The corresponding linear system is x’ = J(xg)x:

[z’(t)} . {Fz(xo,yo) Fy(xo,yo)} {x]

Linearization: Consider { with equilibrium point

Y ()] T |Gz(zo,y0) Gy(zo,v0)] |v

- For a 2 X 2 autonomous system x'(¢) = f(x) with critical point xg,
if J(xo) has distinct eigenvalues and both eigenvalues have non-zero real
parts, then the critical point xo must have the same type and stability as
in the linear system.

4 Boundary Value Problems

Eigenvalue Problem

! — O
Homogeneous boundary condition: {aly(a) +azy'(a)

biy(B8) + b2y’ (B) =0

- The BVP is homogeneous if both equation and boundary condition
are homogeneous. Any homogeneous BVP has only constant zero solution
y = 0 or infinitely many solutions.
Eigenvalue problem: Ly + Ay = 0 with homogeneous BC. Here Ly =

0)=C1=0
We have y(0) ! (only trivial solution).
r1 >0,72 <0 ri>r2 >0 r1 <rg <0 y(r)=Car=0=C2=0
E \-/ Case III )\ < 0. There is two real roots 7 = v -\ = £,/1.
< v
% ! v v General solution: y(x) = C1eVF® + Cae™ VT,
éo We have y(O)ch-‘rCQ:O:}Cl:—CQ
] y(m) = C1eVP™ 4+ Cae™ VI =0 = Ci(eVHT™ — e VIT) = (.
f /—\ Since eVF™ — e~ VET > (), there is only trivial solution.
o
.E v2 v v, b
A saddle point nodal source nodal sink Inner product: (u,v) = [, u(:):)v(ac)dz )
|| (unstable) (unstable) (asympt. stable) - u and v are orthogonal if their inner product is zero.
(3] A=0 A>0 A<0 Prove X\ > 0 without using explicit solutions.
= y"" + Ay =0 = —y” = \y. Assume y is nontrivial with eigenvalue \.
> ™
gg)n Here (_y//7y) — foﬂ' —y”(x)y(i)dﬁl? — foﬂ' y’(:c)2d:c _ y/y 0 =
tf: fow Y (x)%dx — (y’(ﬁ)ﬁ(q()\— y'(0)7€Q)). Hence, foﬂ y'2dx = )\fow y2dz.
< Note that LHS > 0, RHS > 0. If LHS = 0, then 3’ = 0, hence y = 0,
§ which is trivial. Hence LHS > 0. A = % > 0.
g ' 3 . Prove that eigenfunctions corresponding to different eigenval-
B center spiral source spiral sink ues must be mutually orthogonal.
é (stable) (unstable) (asympt. stable) Assume y1, y2 are nontrivial eigenfunctions corresponding to A1 # Asa.
8 r}O,lv r<0,1v r>0,2v r<0,2v We have —yi = Xy1 = (=), y2) = M (y1,92) @
5 \ \ . 5 = Xoy2 = (—y,y1) = Ay, 91) @
> 1 121
g . ) DO — @), we have [ —y{y2 + yyyrde = (A1 — A2) [y y1yads.
o ™
= N\ LHS = [ (gi75—wb4))de — (y1y3—%u1)| = 0. Hence RHS = 0.
3 e+ vt Vs 195 Since A1 # Aa, fOTr y1y2dx = 0 = (y1,y2) = 0. They are orthogonal.
E improper node | improper node star star
L] unstable stable unstable asympt. stable Prove that for any )\, the space of eigenfunctions is one-

dimensional (simple).
Let y1,y2 be two eigenfunctions corresponding to A.

Wiy1, 2] (0) = [T M = 0. By Abel’s theorem, W = 0.
)= [ 7] = o0y

Hence y1 and y2 are linearly dependent. The space is one-dimensional.

Fourier sine series: Any function f on [0, 7] can be expressed as f(z) =

c1 sin(x) + c2 sin(2z) + .... Here ¢, = w
J§ sin(nz)2dz

Sturm-Liouville Boundary Value Problem

Sturm-Liouville BVP: (p(z)y’) — q(z)y + A\r(z)y = 0 on [a, 8] with
homogeneous boundary conditions that are separated:

a1y (@) + azy(a) = 0
by (8) + bay(B) = 0

Here aj, a9 are not both 0, by, bs are not both 0.

- (p(2)y') = p(x)y" +p'(2)y'.

- Let Lly] = —(p(2)y’)’ + q(z)y, the equation becomes L[y] = Ar(z)y.
The operator L is self-adjoint in the semnse that (Lu,v) = (u,Lv)
for any wu,v satisfying the BC. Here the inner product is given by
(u,v) = ff u(z)v(x)dz.

Regular Sturm-Liouville BVP: If p,p’,q,r are cont. on [a, ], and
p(x) > 0,r7(x) > 0 on [e, ], the SL BVP is regular; otherwise it is
singular.

- All eigenvalues to regular Sturm-Liouville BVP must be real.

B
Prove that if ¢ > 0 and —py’y| >0, then A > 0.
«@

(Llishy) = JL =@y gde + [ a@lylPde =[] p(@)y|?de ~
. + ff q(@)|y|?dz = (\r(2)y,y) = f(f Ar(z)|y|?dz. Hence A > 0.

Y’y

- Eigenfunctions ¢m,¢n from different eigenvalues A\, # A\, are
orthogonal with respect to the weight function r(z). That is, ¢m,Pn
satisfy ff r(2)pm (x)Pn (x)dz = 0.

- There is only 1 eigenfunction for each eigenvalue (simple).

- Infinite sequence \1 < Ao < --- < Ap < -++. Ap — 00 as N — 0.



