MA3220 Ordinary Differential Equations

AY2022/23 Semester 1 - Midterm Examination Cheatsheet - Prepared by Tian Xiao @snoidetz

Differential Equations -If M, N, My, N, are continuous in
a simply connected region D C R?, then
the equation M(z,y) + N(z,y)y’ = 0
is an exact equation if and only if

M, = N,.

Solving a separable ODE

y'(t) = PH)Qy)
1
/Q(y)dy—/P(t)dt—i—C

Existence & uniqueness of solutions

Solving a 1st order linear ODE

Y + Pz)y = Q(x)
Let p(z) = el Pz
p(x) = p(x) P(x);

e 1st order linear ODE: If the functions
p and g are continuous on an open inter-
val I : @ < t <  containing the point

)y + ' (2)y = p(z)Q(z)

t = to, then for any yo € R, there ex- ul @ )@

ists a unique solution to the differential p(x)y = /u(x)Q(x) dx
equation ¢’ + p(t)y = g(t) for each ¢ in

quation ' + p(E)y = g({) J 1(@)Q(z) d

I, with initial condition y(t9) = yo. y= W +C
e 1st order non-linear ODE: Consider

the equation y' = f(t,y) with initial Solving a Ist order exact ODE
condition y(tg) = wo. If f and % ,

are both continuous in some rectan- M(z,y) + N(@,y)y’ =0
gle R = (a,5) x (7v,9) containing the Run the test: Is M, = N7
point (tg,yo), then in some :mterv.al w(%y):/M(x,y) dz + g(y)

to — h < t < ty + h contained in

a < t < f, there exists a unique so- Solve dy by ¥, = N(z,y)
lution to the IVP. General solution: ¢ (z,y) = C

e 2nd order linear ODE: If the func-

tons . Euler’s method

ions p, ¢, g are continuous on an open

interval I : a < t < (B containing the 1. Partition the interval [zq,X]

point ¢ = tp, then there exists a unique into a finite number of mesh points
solution to the differential equation
v+ pt)y + q(t)y = g(t) for each t

in I, with initial condition y(to) = o

ro < x1 < -+ < xp, = X. Step size

h — X*:Do

n

d o/ (to) , 2. For each ¢+ = 1,2,--- ,n, y; =
an = Y5- )

yito) ="Yo Yi—1 +y' (i — 1)h.

1st Order ODEs 2nd Order ODEs

Terminologies Superposition principle

e Linearity: An ODE is linear if it For a linear homogenous equation

can be written in the form a,(x)y™ + L(y) =0, if y1 and y, are solutions, then

an_l(x)y(”’l) + -+ ary = P(x). for any constant c¢; and cy, the linear
o Homogeneity: P(z) = 0. c?mbination c1y1 + coyo is also a solu-
tion.
e Convexity: If y’(x) > 0, then y(z) is

concave; otherwise, it is convex. Casel

e Equilibrium solution: y'(x) = 0. " "

e Exact equation: An ODE M(z,y) +
N(z,y)yy = 0 is called an ezact
ODE if there exists a function ¥(z,y)
Such that 24 (ac y) = M(z,y) and

oz

Unstable equilibrium

Case Il

Wronskian and general solution

Let y1 and ys be two solutions of a
2nd order linear homogenous ODE, their
Wronskian is defined as

Y1 Y2
Yi o Y

Wiy, ya](t) := = Y1y — Y2U!

Let y; and yo be two solutions of y” +
p(t)y’ + q(t) = 0 in an interval I, with
Then y(t) =
c1y1 + coys is the general solution in I
if and only if Wy, y2](to) # 0 for some
to e I.

p, q continuous in [.

Abel’s theorem

Let y; and y2 be two solutions of 3" +
p(t)y’ +¢q(t) = 0 in an interval I, with p,
q continuous in I. Then their Wronskian
satisfies

Wiyr, y2)(t) = ce™ [ p(t) dt

for some constant c. As a result, W is
either always 0 or never 0.

Solving a 2nd order linear homogenous ODE

ay’ +by +c=0

Consider the solution to its characteris-
tic equation

ar’ +br+c¢=0

Case I: A >0, r = A or As.

At Aot

Yy = ce + coe
Case II: A <0, r = a £ Si.

y = e*(cy cos Bt + ¢y sin Bt)
Case III: A =0, r =\

y=(c1+ czt)e’\t

Case lll

T

Asymptotically stable

Semi-stable equilibrium

equilibrium

- If an ODE is exact, My = N.



Finding another solution

e Abel’s theorem: Plug in the value of

y1(t), v (t) and ce= /P 4t and solve for
ya. Set ¢ =1 for convenience.

Ezample:

the ODE v +4y' +4y = 0 given y1(t) =
e 2t

By Abel’s Theorem,

e ya(t) | —[4dt _ -4t
o2t gy | € =e
€ yz( )
ey (t) + 26Xy (t) = e
Yo (t) + 2ya(t) = e
yo(t) = te™

e Reduction of order: Let yoft) =
v(t)y1(t) and plug in to the ODE.

y'(t) +p)y'(t) + a(t)y =0
Let ya(t) = v(t)y1(t).
Yys = vy) + 'y
Yy = vy +20"y; + 0"y
Uyl + 20 y1 =+ U”yl
+puy) +pv'yr +quys =0
y1v” 4 (241 +py)v’ =0

Let u = v’ and this becomes a 1st order
ODE.

2nd order linear non-homogenous ODE

e Making the right guess:

Find another solution yo of

Solve this simultaneous equation and we
get the following result:

_ y2(t)g(t)
t - _f Wi@/l(ﬂ!z (t) dt+ e
y1(t)g(t
(1) = [ sl At + e

e Using power series:

centered at xg is an infinite series of the
(o]

form f(z) = > an(z — z0)™

n=0
y = f(x) and plug into the ODE:

Guess

y = ag + a1 (x — x0) + az(x — z0)? - - -

o0
= Z an(z — )"
n=0

y' = a1 + 2ax(x — o) + 3az(z — xo)2 e

oo
= Z nap(r — )"
n=1

" = 2ay + 6as(x — x0) + 12a4(x — x0)?

= Z n(n — 1)an(z — x0)" >

n=2

Use shift of summation index to get a
recurrence relation.

Apply the initial condition:

y(l’o) = aop

Y (o) = a1

Y™ (z0) = nlay,

H g(t) guess H
Cekt Aekt
C'sinkt or C cos kt Asinkt + B cos kt

degree-n polynomial

Apa™ 4+ Ay gzt

+ Ajx+ A

sum of different types of terms

sum of their respective guesses

product of different types of terms

product of their respective guesses

- We handle exceptions by multi-
plying ¢ to our guess when our guess
solves the corresponding homogenous

equation.
e Variation of parameters: For the
equation y” + p(t)y + q(t)y = g(1),

let the general solution be Y(t) =
ur(t)y1(t) + u2(t)y2(t), where y; and
yo are the solutions to the corre-
Set
whyrtubye = 0, so that Y = uyy)+uayh
and Y = ujy) + wiyl + upys + u2ys.
Plug this into the ODE and we
get:

sponding homogenous equation.

{ullyl + uhys =0
uhyy +usys = g(t)

- Convergence radius: Every power
series has a convergence radius p (can be
0, positive or infinity), such that when
|z—x0| > p, the series diverges and when
|z — x| < p, the series converges abso-
lutely. If f(z) is a polynomial, the power
series of the function ﬁ centered at
zo has its convergence radius equal to
the distance between xy and the nearest
complex roots of f(x).

- Ratio test for convergence: Con-

sider the expression

An+1
an

lim

n—oo

|x — x|

If the value < 1, the series converges ab-

A power series

solutely at x; if the value = 1, the test is
inconclusive; if the value > 1, the series
diverges.

- A point tg is called an ordinary
point if both p(t) and ¢(¢) are analytic
at to; otherwise it is called a singular
point. If tg is an ordinary point, then
the ODE has a series solution centered
at p:

= Z an(t—to)" = aoy1 (t)+a1y2(t)
n=0

Here y; and y, form a fundamental
set of solutions, and their convergence
radius is at least the minimum of the
convergence radius of p and q.

""Other Useful Facts

e Integration by parts:

/uv’dx:uv—/vu’dx

e Taylor series:

_ ["(a) n
f@ =31 —a
n=0
- If f has a Taylor series expan-
sion at xg with a radius of convergence
p > 0, then f is said to be analytic at

Zo-

- Being analytic implies being dif-
ferentiable for arbitrarily many times.

- If f and g are analytic at xy with
a radius of convergence p, then fg and
f + g are also analytic at zy with a
radius of convergence p.

e Inflection point: ¢”(t) = 0.

Good luck!



