MA3220 Ordinary Differential Equations

AY2022/23 Semester 1. Midterm Examination Cheatsheet. Prepared by Tian Xiao @snoidetx

Differential Equations

Solving a separable ODE

$$
\begin{aligned}
y^{\prime}(t) & =P(t) Q(y) \\
\int \frac{1}{Q(y)} d y & =\int P(t) d t+C
\end{aligned}
$$

Existence \& uniqueness of solutions

- 1st order linear ODE: If the functions p and g are continuous on an open interval $I: \alpha<t<\beta$ containing the point $t=t_{0}$, then for any $y_{0} \in \mathbb{R}$, there exists a unique solution to the differential equation $y^{\prime}+p(t) y=g(t)$ for each t in I, with initial condition $y\left(t_{0}\right)=y_{0}$.
- 1st order non-linear ODE: Consider the equation $y^{\prime}=f(t, y)$ with initial condition $y\left(t_{0}\right)=y_{0}$. If f and $\frac{\partial f}{\partial y}$ are both continuous in some rectangle $R=(\alpha, \beta) \times(\gamma, \delta)$ containing the point $\left(t_{0}, y_{0}\right)$, then in some interval $t_{0}-h<t<t_{0}+h$ contained in $\alpha<t<\beta$, there exists a unique solution to the IVP.
- 2nd order linear ODE: If the functions p, q, g are continuous on an open interval $I: \alpha<t<\beta$ containing the point $t=t_{0}$, then there exists a unique solution to the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ for each t in I, with initial condition $y\left(t_{0}\right)=y_{0}$ and $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$.

1st Order ODEs

Terminologies

- Linearity: An ODE is linear if it can be written in the form $a_{n}(x) y^{(n)}+$ $a_{n-1}(x) y^{(n-1)}+\cdots+a_{1} y=P(x)$.
- Homogeneity: $P(x)=0$.
- Convexity: If $y^{\prime \prime}(x)>0$, then $y(x)$ is concave; otherwise, it is convex.
- Equilibrium solution: $y^{\prime}(x)=0$.
- Exact equation: An ODE $M(x, y)+$ $N(x, y) y^{\prime}=0$ is called an exact $O D E$ if there exists a function $\psi(x, y)$ such that $\frac{\partial \psi}{\partial x}(x, y)=M(x, y)$ and $\frac{\partial \psi}{\partial y}(x, y)=N(x, y)$.
- If an ODE is exact, $M_{y}=N_{x}$.
- If M, N, M_{y}, N_{x} are continuous in a simply connected region $D \subset \mathbb{R}^{2}$, then the equation $M(x, y)+N(x, y) y^{\prime}=0$ is an exact equation if and only if $M_{y}=N_{x}$.

Solving a 1st order linear ODE

$$
\begin{aligned}
y^{\prime}+P(x) y & =Q(x) \\
\text { Let } \mu(x) & =e^{\int P(x) d x}, \\
\mu^{\prime}(x) & =\mu(x) P(x) ; \\
\mu(x) y^{\prime}+\mu^{\prime}(x) y & =\mu(x) Q(x) \\
\mu(x) y & =\int \mu(x) Q(x) d x \\
y & =\frac{\int \mu(x) Q(x) d x}{\mu(x) y}+C
\end{aligned}
$$

Solving a 1st order exact ODE

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

Run the test: Is $M_{y}=N_{x}$?

$$
\psi(x, y)=\int M(x, y) d x+g(y)
$$

Solve $d y$ by $\psi_{y}=N(x, y)$
General solution: $\psi(x, y)=C$

Euler's method

1. Partition the interval $\left[x_{0}, X\right]$ into a finite number of mesh points $x_{0}<x_{1}<\cdots<x_{n}=X$. Step size $h=\frac{X-x_{0}}{n}$.
2. For each $i=1,2, \cdots, n, y_{i}=$ $y_{i-1}+y^{\prime}(i-1) h$.

2nd Order ODEs

Superposition principle
For a linear homogenous equation $L(y)=0$, if y_{1} and y_{2} are solutions, then for any constant c_{1} and c_{2}, the linear combination $c_{1} y_{1}+c_{2} y_{2}$ is also a solution.

Wronskian and general solution
Let y_{1} and y_{2} be two solutions of a 2nd order linear homogenous ODE, their Wronskian is defined as
$W\left[y_{1}, y_{2}\right](t):=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$
Let y_{1} and y_{2} be two solutions of $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t)=0$ in an interval I, with p, q continuous in I. Then $y(t)=$ $c_{1} y_{1}+c_{2} y_{2}$ is the general solution in I if and only if $W\left[y_{1}, y_{2}\right]\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$.

Abel's theorem

Let y_{1} and y_{2} be two solutions of $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t)=0$ in an interval I, with p, q continuous in I. Then their Wronskian satisfies

$$
W\left[y_{1}, y_{2}\right](t)=c e^{-\int p(t) d t}
$$

for some constant c. As a result, W is either always 0 or never 0 .

Solving a 2nd order linear homogenous ODE

$$
a y^{\prime \prime}+b y^{\prime}+c=0
$$

Consider the solution to its characteristic equation

$$
a r^{2}+b r+c=0
$$

Case I: $\Delta>0, r=\lambda_{1}$ or λ_{2}.

$$
y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}
$$

Case II: $\Delta<0, r=\alpha \pm \beta i$.

$$
y=e^{\alpha t}\left(c_{1} \cos \beta t+c_{2} \sin \beta t\right)
$$

Case III: $\Delta=0, r=\lambda$.

$$
y=\left(c_{1}+c_{2} t\right) e^{\lambda t}
$$

Case I Case II

Finding another solution

- Abel's theorem: Plug in the value of $y_{1}(t), y_{1}^{\prime}(t)$ and $c e^{-\int p(t) d t}$ and solve for y_{2}. Set $c=1$ for convenience.

Example: Find another solution y_{2} of the $O D E y^{\prime \prime}+4 y^{\prime}+4 y=0$ given $y_{1}(t)=$ $e^{-2 t}$.

By Abel's Theorem,

$$
\begin{aligned}
\left|\begin{array}{cc}
e^{-2 t} & y_{2}(t) \\
-2 e^{-2 t} & y_{2}^{\prime}(t)
\end{array}\right|=e^{-\int 4 d t} & =e^{-4 t} \\
e^{-2 t} y_{2}^{\prime}(t)+2 e^{-2 t} y_{2}(t) & =e^{-4 t} \\
y_{2}^{\prime}(t)+2 y_{2}(t) & =e^{-2 t} \\
y_{2}(t)=t e^{-2 t} &
\end{aligned}
$$

- Reduction of order: Let $y_{2}(t)=$ $v(t) y_{1}(t)$ and plug in to the ODE.

$$
\begin{aligned}
y^{\prime \prime}(t) & +p(t) y^{\prime}(t)+q(t) y=0 \\
\text { Let } y_{2}(t) & =v(t) y_{1}(t) \\
y_{2}^{\prime} & =v y_{1}^{\prime}+v^{\prime} y_{1} \\
y_{2}^{\prime \prime} & =v y_{1}^{\prime \prime}+2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1} \\
v y_{1}^{\prime \prime} & +2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1} \\
+p v y_{1}^{\prime} & +p v^{\prime} y_{1}+q v y_{1}=0 \\
y_{1} v^{\prime \prime} & +\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
\end{aligned}
$$

Let $u=v^{\prime}$ and this becomes a 1 st order ODE.

2nd order linear non-homogenous ODE

Solve this simultaneous equation and we get the following result:

$$
\left\{\begin{array}{l}
u_{1}(t)=-\int \frac{y_{2}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{1} \\
u_{2}(t)=\int \frac{y_{1}(t) g(t)}{W\left[y_{1}, y_{2}\right](t)} d t+c_{2}
\end{array}\right.
$$

- Using power series: A power series centered at x_{0} is an infinite series of the form $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. Guess $y=f(x)$ and plug into the ODE:

$$
\begin{aligned}
y & =a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2} \cdots \\
& =\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \\
y^{\prime} & =a_{1}+2 a_{2}\left(x-x_{0}\right)+3 a_{3}\left(x-x_{0}\right)^{2} \cdots
\end{aligned}
$$

$$
=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}
$$

$y^{\prime \prime}=2 a_{2}+6 a_{3}\left(x-x_{0}\right)+12 a_{4}\left(x-x_{0}\right)^{2}$.

$$
=\sum_{n=2}^{\infty} n(n-1) a_{n}\left(x-x_{0}\right)^{n-2}
$$

Use shift of summation index to get a recurrence relation.

Apply the initial condition:

$$
\begin{aligned}
y\left(x_{0}\right) & =a_{0} \\
y^{\prime}\left(x_{0}\right) & =a_{1} \\
\ldots & \\
y^{(n)}\left(x_{0}\right) & =n!a_{n}
\end{aligned}
$$

- Making the right guess:

$g(t)$	guess
$C e^{k t}$	$A e^{k t}$
$C \sin k t$ or $C \cos k t$	$A \sin k t+B \cos k t$
degree- n polynomial	$A_{n} x^{n}+A_{n-1} x^{n-1}+\cdots+A_{1} x+A_{0}$
sum of different types of terms	sum of their respective guesses
product of different types of terms	product of their respective guesses

- We handle exceptions by multiplying t to our guess when our guess solves the corresponding homogenous equation.
- Variation of parameters: For the equation $y^{\prime \prime}+p(t) y+q(t) y=g(t)$, let the general solution be $Y(t)=$ $u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, where y_{1} and y_{2} are the solutions to the corresponding homogenous equation. Set $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$, so that $Y^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}$ and $Y^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}$. Plug this into the ODE and we get:

$$
\left\{\begin{array}{l}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t)
\end{array}\right.
$$

- Convergence radius: Every power series has a convergence radius ρ (can be 0 , positive or infinity), such that when $\left|x-x_{0}\right|>\rho$, the series diverges and when $\left|x-x_{0}\right|<\rho$, the series converges absolutely. If $f(x)$ is a polynomial, the power series of the function $\frac{1}{f(x)}$ centered at x_{0} has its convergence radius equal to the distance between x_{0} and the nearest complex roots of $f(x)$.
- Ratio test for convergence: Consider the expression

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|\left|x-x_{0}\right|
$$

If the value <1, the series converges ab-
solutely at x; if the value $=1$, the test is inconclusive; if the value >1, the series diverges.

- A point t_{0} is called an ordinary point if both $p(t)$ and $q(t)$ are analytic at t_{0}; otherwise it is called a singular point. If t_{0} is an ordinary point, then the ODE has a series solution centered at t_{0} :
$y(t)=\sum_{n=0}^{\infty} a_{n}\left(t-t_{0}\right)^{n}=a_{0} y_{1}(t)+a_{1} y_{2}(t)$
Here y_{1} and y_{2} form a fundamental set of solutions, and their convergence radius is at least the minimum of the convergence radius of p and q.

Other Useful Facts

- Integration by parts:

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

- Taylor series:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

- If f has a Taylor series expansion at x_{0} with a radius of convergence $\rho>0$, then f is said to be analytic at x_{0}.
- Being analytic implies being differentiable for arbitrarily many times.
- If f and g are analytic at x_{0} with a radius of convergence ρ, then $f g$ and $f+g$ are also analytic at x_{0} with a radius of convergence ρ.
- Inflection point: $y^{\prime \prime}(t)=0$.

Good luck!

