e.9. (P)™in CTx+Ca Y

a2 =

st- AuxtAay=
> (P

Bu X4hss ¥ =
X "E".u- i "1’./9

MA3252 Linear Programming

Final Examination Helpsheet

b
b

| AT R

AY2023/24 Semester 2 - Prepared by Tian Xiao @snoidetz

1 Linear Programming Problem

P) mi ik D b
@z o'x D) gz, P
st. & x>b; fori € My; s p; >0 for i € My;
a.;-rxgbi forie M_; pi <0 forie M_;
p; free for 2 € Mp;

a;-rxzbi for i € Mp; =
p Aj <cjforj € Ny;

z; >0 forj € Ny,
z; <0 forje N_; pTA; 2cj for j € N_;
z; ER for j € Np. pTAj =¢;j for j € Np,

where a; = (a;,1,8i,1,** ,ain)| ER™b; €R.
e The feasible region P € R™ is a polyhedron.
¢ An LP problem may have
> one unique solution; OR
> one finite optimal cost with multiple optimal solutions; OR
> unbounded optimal cost with no optimal solution; OR
> empty feasible set, where optimal cost equals +oc.

o Each variable/constraint in (P) gives a constraint/variable in D.
Graphical Representation: In R®, {x | a' x = b} is a hyperplane with
normal vector a.

e Vector ¢ corresponds to the direction of increasing ¢ x.
Standard Form: Minimization + equality + non-negative.

e Maximization objective: maxc' x = min—c x.

i s

¢ Inequality constraints: a;rx </ =b= {:‘f ;Oi M= 61’-2

L

> 8; is slack variable.
e Non-positive variables: z; <0 =z > 0.
e Free variables: z; = (2 — z; ); =5,z 2 0.
Convex Sets and Convex Functions:
e Convex set: ¥x,y E SYAE[0,1][Ax+(1l-A)y €8] 3
k

. k
e Convex combination: x = 3 A\jx*, where \; € [0,1] s.t. 3 Ay = 1.
i=1 i=1
> Any convex combination of two optimal solutions is also an op-
timal solution.
e Convex hull: Set of convex combinations.
e Convex function: ¥x,y € R* VA € [0,1] [f{dx+ (1 — A)y) < Af(x) +
1=XNf] L
> f is concave if —f is convex.
> Affine function d + ¢ x is both convex and concave.
> Thm 1.5.1. If f1, fo, -, fm : R®™ — R are convex, then f(x) =
max{ f1(3x), fa(x), -, fm(3)} is also convex.
* Cor 1.5.2. _ max {d; + ¢ x} is convex.

i=1,2,- ,m

Ezample. Reformulate as LP problem:
e maxmin(z, z2) = maxt s.t. t < x1;t < T2,
o |1 —wa| £2=>m1 —z9 < 2jz1 — 32 2> 2.
e min || = minmax(z, —z) = mint s.t. t > z;t > —x.

Polyhedra and Extreme Points:
e Polyhedron: {x € R" | Ax < b}.
> A polyhedron is a finite intersection of half-spaces.
> A polyhedron has finite number of vertices/BFS.
e 3 definitions of corner points: Consider a convex set P C R™
> Extreme point: A point x* € P is an extreme point if whenever
points y,z € P and scalar A € (0,1) are such that x* = Ay +
(1 — A)z, we have y = z = x*.
> Vertex: A point x* € P is a verter if there is a ¢ € R™ such
that ¢Tx* > ¢Ty forall y € P\ {x*}.
> Basic feasible solution (BFS): x* is a BFS of a polyhedron if n
linearly independent constraints are active at x* and x* € P.
* Basic solution: A point where n linearly independent con-
straints are active but not necessarily in P.
> Thm 2.1.5. In a non-empty polyhedron, an extreme point, a
vertex and a BFS are equivalent.
e Degenerate: A basic solution (not necessarily feasible) is degenerate
if more than n contraints are active at x*.
Basic Feasible Solutions for Standard Polyhedra:

{x | Ax =b,x > 0},

where A € R™*™ m < n contains m linearly independent rows.
¢ Basic solution for standard polyhedra: x* is a basic solution iff
> the equality constraints Ax* = b hold; AND
> z7 = 0 for n —m indices; AND
> these n binding constraints are linearly independent.
e Thm 2.2.1. A vector x* € R" is a basic solution of the standard
form LP iff
> Ax* = b; AND
> 'Ililhere exists B = {B(1), B(2),--- ,B(m)} C {1,2,++ ,n} such
that
* the columns of Ag = (Ap(1),Ap(2), * »Apm)) are lin-
early independent; AND
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If in addition, x% > 0, then x* is a BFS.
> xp =Ag'b.
> A degenerate basic solution x* has more than n — m zero com-

ponents.

> If n = m+ 1, then there are at most two BFSs.
e Adjacent BFS: Extreme points connected by an edge on the bound-
ary.

> The corresponding bases share all but one basic column.

> There are common n — 1 linearly independent constraints that

are active at both of them.

Optimal Solutions at Extreme Points:

e A polyhedron P C R™ coniains a lineif 3x* e P3d A0 e R™ VA €
R [x* 4+ Ad € P|. A polyhedron containing an infinite line does not
contain an extreme point.

e Thm 2.3.1. Let A CR™*™ m > n. Suppose P={x€R" | Ax =
b} # 0. The following are equivalent:

> P does not contain a line;

> P has a BFS;

> P has n linearly independent constraints.

> Implication: Every non-empty bounded polyhedron and every
non-empty standard form polyhedron has at least one BFS.

¢ Thm 2.3.3. If an LP has a BFS and an optimal solution, then there
exists an optimal solution that is a BFS.

> Hence, it suffices to check BFS.

1.1 The Simplex Method

Feasible Direction and Reduced Cost:

® Feasible direction: For a polyhedron P and a point x € P, a vector
d is a feasible direction if x + 6d € P for some 8 > 0.

> For standard polyhedra, Ad = 0.
Clm f. Let x = (xg,%xy) with xg > 0,%y = 0 be a BFS. A direction
d moving from x to an adjacent BFS is of the form d7 = (dJB= d?v)

for some j € N, where
> d), = e; whereej; =1 and ej; =0 fori € N \ {j}; AND

b d) = -AZ'A;
e Reduced cost: Let x be a basic solution. Let ¢ = (cg,ey). For each
a; j€{1,2,--,n}, the reduced cost &; of variable z; is defined by

ti=¢j— c;AEIAj.
>Forje B, g =0
> If & > 0 for all § € N, then current BFS is the unique optimal
solution. .
> A direction d? is an improving direction if ¢; < 0.
> Change in cost in any direction d:
c'd=cldpg+ecfdy = —cJAZ'Andy +cfdy.
Clm. Let x be a BFS with basis B. Any feasible direction at x can
be represented as
3" Ayd for A > 0.
JEN
Degenerate: A BFS is degenerate if some element of xg is zero. A
BFS is non-degenerate if xg = Aglb > 0.
Thm 3.1.6. (Optimality conditions) Consider a BFS x associated
with basis matrix A g, and let € be corresponding vector of reduced
costs.
> If € > 0, then x is optimal.
> If x is optimal and non-degenerate, then € > 0.
Special Cases:
e Some xg() = 0 at optimum = degenerate solution.

. Some nonbasic g; = 0 at optimum: &
m ‘)¢ u < 0 = unbounded optimum set; x'J entes
> Otherwise = alternate Dptimum.—) 0(1'1' = CoNV

> u <0 and & < 0 = unbounded problem.
> Some y; > 0 at optimum for auxiliary problem = infeasible.
Simplex Method:
(@ Start with basis B and its basic columns Ag and BFS x.
t Check that x is indeed a BFS.
(@ Compute reduced costs &; = ¢; — c;AEIAj for all j € V.
& If ¢; > 0 for all j € N, then current BFS is optimal. END.
> Otherwise, choose some j for which & < 0.
® Compute‘dfg —AEIAJ; (see Clm 1t.).
> If d'}; > 0, then problem is unbounded. END.

> Otherwise, let 6* = miu{—:‘;’? ’ 1€ B,d; < O}.
(@ Let I € B be such that 8*

—x;T. The corresponding z; is the
—dj
leaving variable.

® Form a new basis B = (B\ {I}) U {i}.
The other basic variables are z; + 8*d] for i # L.
(@ The entering variable x; assumes §* = ?‘”;?— Go to Step @

Big-M Method:

(® Multiply constraints by —1 to make b > 0 as needed.

(@ Add artificial variables y1,y2,** ,¥m to constraints without posi-
tive slack. C\?P\‘d 12 noy Sloec +o0 =

Apply simplex method on LP with cost mine x+ M ¥ y;, where
y=1

M > 0 is treated as some algebraic variable.

fBes., pess)




Tableau Method:
(@ Start from basis B and its basic columns A g (preferably I, and the
corresponding BFS x = (xp, %) (check)).

, | Basic zy, 7€ N Zg) | ZTm(2) Solution
€ & ¢B(1) | ©B(2)
c cj—cLAD'A, 0 0 Obj: —cLxg
B(1) | —a{=(a7'a,) | 1 | o Z501)
B(2) | —di= (A;lAJ-)Q 0 1 £8()

@ Choose some j such that Ej < 0. At that column, for all —dg >
0,i € B, calculate -Zi- and pick the smallest one i* (0 is also

E
considered).
(@ i* leaves and j enters. Normalize the row where this happens such
that the cell (zj,z;) = 1.
(@ Perform row operations to all rows including € such that the column
of z; is all 0 but one 1.
@ If all € > 0, END; else, return to (2) again.
Two-Phase Method:
Phase I: Find BFS using auxiliary Tp.
(® Multiply constraints by —1 to make b > 0 as needed.
@ Add artificial variables y1,¥2, - ,¥m to constraints without posi-
tive slack. p.Pplg e Mo Sisek +O0 -

® Apply simplex method on auxiliary LP with cost min 3" ;.
y=1

(@) If the optimal cost in auxiliary LP is:
> zero: A BFS to original LP is found.
> positive: Original LP is infeasible. END.

Phase II: Solve original LP.
@ Take BFS found in Phase I to start Phase II.
(@ Use cost coefficients of original LP to compute reduced costs.
(@ Apply simplex method to original LP.
> Either finds an optimum, or detects unboundedness.

1.2 The Dual Simplex Method

Thm. 4.1.5. The dual of the dual is thelg
Weak Duality Thm. If x is feasible in (P) and p is feasible in (D),
thenp ' b<c'xandthus sup p'b< inf c'x
p feasible x feasible
b Col. If feasible and pT b = ¢ x, then x and p optimal.
> Col. Unboundedness in one implies infeasibility in another.
* (P) and (11?) can be both infeasible.
Strong Duality Thm. If an LP has an optimum, so does its dual,
and both optimal objective values are equal. _
> An optimal solution to (D) is pl = céAEl, where B is an
optimal basis for (P).
> If there is a basis Bp s.t. Ap, = I, then an optimal solution to
(D)isp’ :cgo - ;u.
Complementary Slackness Thm. If x is feasible in (P) and p is
feasible in (D), then both are optimal if and only if

® rimal.

€

2.1 The Network Simplex Method
Feasible Tree Solution and Reduced Cost:

o If lm_.,- n;)nbasic and not optimal, use primal simplex method.
Change in Nonbasic Column of A: a;; = a;; + 4.

e Optimality: Only &; + &; — dp;. Feasibility not affected.

¢ If not optimal, use primal simplex method.
Add a New Variable: Add ¢,1 and A4,

¢ Check optimality at (x*,0).

e If not optimal, continue primal simplex method by adding a new
¥ ] to the final tableau.
n+1
Add a New Constraint: Add a;;+1x gl SR

e Check if the original solution is feasible.

e If not feasible, add new constraint to the bottom of the final tableau.

Use row operations to make (xp,Tn+1) a basic solution. Use dual
simplex method to solve new problem.

; En+
column AEIA

2 Network Flow Problem

. T
mu}, (:Tx Tz — Ty =by
x€eR 0Ty S w2

s.t. Ax = b at all vertices;

@ T+ ria=b

0 <2y <ty

0 < x < u at all edges.

e Flow-outs — Flow-ins = Supply b.
e Network has feasible flow = >  b; = 0.
# Formulation of minimum cost How problem.
Shortest Path Problem: Find the shortest path from s to ¢,
D Tb max -
(D) mex P Jgx. Po—p
s.t.

(P) min ¢'x
xeR™

Pi —pj < cij,

V(i,5) € E.

st. Ax=Db;
x> 0.

o by=1;b =—1;b_y—: =0.

e x € {0,1}" is equivalent as x > 0 if no negative cycle.
Maximum Flow Problem: Find the maximnum flow from s to t.

ATp<e
p free.

s.t.

(P) max v D) min uw'z | min 3wz
s.t. Ax = dy; st. dly=1;| st y-— v < z5 &
x < zEATy; z; 2 0V(i,7) € E;
x20. =0 Ys — % = 1.

® dg = lgdt = —l;d_s_.f =il
e The dual is the minimum cut capacity problem.
¢ Thm. The maximum flow is equal to the capacity of the min cut.

Prow prows
Tree solution: Ax = 1;; @ A spanning tree.

L)
Feasible tree scS%tion: Tree solution x with x > 0. )
Thm. 7.1.1. The columns corresponding to n — 1 arcs form a basis

of A iff these arcs form a spanning tree.
Dual vector: Given basis B, p! = chEI.

Reduced cost: &' =¢! —p'A.
> Let p, = 0 for the truncated node n. Then &;; =cij — (pi —pj)

forall (i) EF AP - Vi< Lis V(L3261

Truncated matrix: Ax = b by removing any row from A.

Pi (a;rx = b{) = (Q for all 4;

e
cj — pTAj) x; = 0 for all 5. i’l \’Q
> Prop. If x is feasible, then x is optimal iff dp CS. /' \e A,}
Dual Simplex Method: Nonnegative ¢ and only < constraints. 4

@ Start from basis B and its basic columns A g (preferably I, and the |,
corresponding BFS x = (xp,xx) (check)).

Basic | z;,j €N | xg(1) | Tp(ey | Solution
¢ €j 0 0 Obj: 0

B(1) Ayg 1 0 by

B(2) Aoy 0 1 b

@ Choose some 7 such that b; < 0. At that row, for all columns j that

(@ Start with a spanning|tree T, feasible tree solution x.
@ Compute dual vector p and &;; = ¢;j —p; +p; for all arcs (i,45) ¢ T.
> If g; > 0 for all (i,j) € E, then current x optimal. END.
> Otherwise, choose some (i, 3) for which &;; < 0.
(® Follow the flow update scheme:
> Enter (i,7) gives a unique cycle. Identify the cycle.
> Orientate the cycle s.t. (4,7) is a forward arc.
> Let Cf and Cj be sets of forward and backward arcs in cycle.

> If Cp # 0, set 8~ min_ xy, attained by arc (p, g).
(k,1)EC,

> If Cy = 0, then 6* = oo, so objective is —oo.
> Update x in cycle: if in Cf add #7; if in Cp minus 6%,
@ Form a new tree T = (T'\ {p,q}) U {(,4)} and go to Step @

are negative (neg), calculate chg—g and pick the smallest one j*.

Two-Phase Method:

(® i leaves and j* enters. Normalize the row where this happens such
that the cell (z;=,z;+) = 1.

(@ Perform row operations to all rows including ¢ such that the column
of x; is all 0 but one 1.

®) If all b > 0, END; else, return to (2) again.

T\{ P\&'—ll Agl ..S )w&'\‘

1.3 Sensitivity Analysis

Phase I: Find initial BFS. b i SWPPO demand
@ For any i € V'\ {n}, if b; > 0/b; < 0 and (i,n)/(n,i) & E, create
an artificial are (i,n)/(n, ).
@ Initial basis B = {(i,n) if b; > 0 or (n,i) if b <0|i€ V\ {n}}.
Initial low @i, = b; when b; > 0 and zpn; = —b; when b; < 0.
@ Solve this using the Simplex method. i\
wie ouwariliory LP.C
actibictal | othen

o5t ¢
Phase II: Solve original LP.

. ved ‘\"""
o Feasibility: A5'b > 0. Xg -A\3| } oloyes
e Optimality: ¢! — cEAElA > 0.

\i mqﬁm\ ™
Change in b: b; = b; + 6.

e Feasibility is checked by xF +6(AEle,-) > 0; optimality not affected.
e If not feasible, use dual simplex method.
e Dual p; is the marginal cost of b;. When b; changes 4, the optimal
cost changes by dp;.
Change in ¢: ¢; = ¢; +d;.
e Optimality: If z; nonbasic ; + & + d;; else for all i € N, & +
& — Jje}AglAi. Feasibility not affected.

MC

Integrality:

. Thm. 7.3.1. Consider an uncapacitated network flow problem
where underlying graph is connected. Then

(© For every basis matrix A g, ;&El has integer entries.

@ If b is integral, then every primal basic solution x is integral.
(® If c is integral, then every dual basic solution p is integral.
> Col. Consider an uncapacitated network flow problem and as-
sume that the optimal cost is finite, then
(D If b is integral, then there is an integral optimal flow vector.
@ If c is integral, then there is an integral optimal solution to

the dual problem. I e
en mih ot sln Ky, %y >0 D R =G 3
Xyg =0 2 Fr=F £ (Cx
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