

Linear Programming Problem

$(P) \min_{\mathbf{x} \in \mathbb{R}^n}$	$\mathbf{c}^{T}\mathbf{x}$		(D) $\max_{\mathbf{p} \in \mathbb{R}^m}$	$\mathbf{p}^{T}\mathbf{b}$	
s.t.	$\mathbf{a}_i^{T}\mathbf{x} \geq b_i$	for $i \in M_+$;	s.t.	$\mathbf{p}_i \geq 0$	for $i \in M_+$;
	$\mathbf{a}_i^{T} \mathbf{x} \leq b_i$	for $i \in M$;		$\mathbf{p}_i \leq 0$	for $i \in M$;
	100	for $i \in M_0$;		\mathbf{p}_i free	for $i \in M_0$;
	•	for $j \in N_+$;		$\mathbf{p}^{T}\mathbf{A}_{j} \leq c_{j}$	for $j \in N_+$;
	5A-735 - 1111-	for $j \in N$;		$\mathbf{p}^{\top}\mathbf{A}_{j} \geq c_{j}$	for $j \in N$;
		for $j \in N_{\mathbb{R}}$.		$\mathbf{p}^{T}\mathbf{A}_{j}=c_{j}$	for $j \in N_{\mathbb{R}}$,

where $\mathbf{a}_i = (a_{i,1}, a_{i,1}, \cdots, a_{i,n})^{\top} \in \mathbb{R}^n, b_i \in \mathbb{R}$.

• The feasible region $P \in \mathbb{R}^n$ is a polyhedron.

• An LP problem may have

> one unique solution; OR

> one finite optimal cost with multiple optimal solutions; OR

▷ unbounded optimal cost with no optimal solution; OR
 ▷ empty feasible set, where optimal cost equals +∞.
 Each variable/constraint in (P) gives a constraint/variable in D.

Graphical Representation: In \mathbb{R}^n , $\{x \mid \mathbf{a}^\top \mathbf{x} = b\}$ is a hyperplane with normal vector a.

Vector c corresponds to the direction of increasing c^Tx.

Standard Form: Minimization + equality + non-negative.

• Maximization objective: $\max \mathbf{c}^{\top} \mathbf{x} \Rightarrow \min - \mathbf{c}^{\top} \mathbf{x}$.

• Inequality constraints: $\mathbf{a}_i^{\top}\mathbf{x} \leq / \geq b_i \Rightarrow \begin{cases} \mathbf{a}_i^{\top}\mathbf{x} \pm s_i = b_i \\ s_i \geq 0 \end{cases}$

 \triangleright s_i is slack variable.

Non-positive variables: x_i ≤ 0 ⇒ x_i⁻ ≥ 0.
Free variables: x_i ⇒ (x_i⁺ - x_i⁻); x_i⁺, x_i⁻ ≥ 0.
Convex Sets and Convex Functions:

• Convex set: $\forall \mathbf{x}, \mathbf{y} \in S \ \forall \lambda \in [0, 1] \ [\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S].$ • Convex combination: $\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$, where $\lambda_i \in [0, 1]$ s.t. $\sum_{i=1}^{k} \lambda_i = 1$.

Any convex combination of two optimal solutions is also an op-

timal solution. Convex hull: Set of convex combinations. Convex function: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \ \forall \lambda \in [0,1] \ [f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1-\lambda)\mathbf{y}$

 $(1-\lambda)f(y)].$ $\Rightarrow f \text{ is } concave \text{ if } -f \text{ is } \text{ convex.}$ $\Rightarrow Affine function d + \mathbf{c}^{\mathsf{T}}\mathbf{x} \text{ is both convex and concave.}$ $\Rightarrow Thm 1.5.1. \text{ If } f_1, f_2, \dots, f_m : \mathbb{R}^n \to \mathbb{R} \text{ are convex, then } f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})\} \text{ is also convex.}$ $= Cor 1.5.2 \quad \text{max} \{d_t + \mathbf{c}^{\mathsf{T}}\mathbf{x}\} \text{ is convex.}$

* Cor 1.5.2. $\max_{i=1,2,\dots,m} \{d_i + \mathbf{c}_i^{\top} \mathbf{x}\}$ is convex.

Example. Reformulate as LP problem:

- $\max \min(x_1, x_2) \Rightarrow \max t \text{ s.t. } t \leq x_1; t \leq x_2.$
- $|x_1 x_2| \le 2 \Rightarrow x_1 x_2 \le 2; x_1 x_2 \ge -2.$
- $\min |x| \Rightarrow \min \max(x, -x) \Rightarrow \min t \text{ s.t. } t \ge x; t \ge -x.$

Polyhedra and Extreme Points:

Polyhedron: {x ∈ Rⁿ | Ax ≤ b}.
A polyhedron is a finite intersection of half-spaces.
A polyhedron has finite number of vertices/BFS.
3 definitions of corner points: Consider a convex set P ⊆ Rⁿ,
Extreme point: A point x* ∈ P is an extreme point if whenever points y, z ∈ P and scalar λ ∈ (0,1) are such that x* = λy +

 $(1 - \lambda)\mathbf{z}$, we have $\mathbf{y} = \mathbf{z} = \mathbf{x}^*$. \triangleright Vertex: A point $\mathbf{x}^* \in P$ is a vertex if there is a $\mathbf{c} \in \mathbb{R}^n$ such that $\mathbf{c}^\top \mathbf{x}^* > \mathbf{c}^\top \mathbf{y}$ for all $\mathbf{y} \in P \setminus \{\mathbf{x}^*\}$. \triangleright Basic feasible solution (BFS): \mathbf{x}^* is a BFS of a polyhedron if nlinearly independent constraints are active at x* and x* Basic solution: A point where n linearly independent con-straints are active but not necessarily in P.

 Thm 2.1.5. In a non-empty polyhedron, an extreme point, a vertex and a BFS are equivalent.
 Degenerate: A basic solution (not necessarily feasible) is degenerate if more than n contraints are active at x

Basic Feasible Solutions for Standard Polyhedra:

$\{x \mid Ax = b, x \geq 0\},\$

where $\mathbf{A} \in \mathbf{R}^{m \times n}, m < n$ contains m linearly independent rows.

• Basic solution for standard polyhedra: \mathbf{x}^* is a basic solution iff \mathbf{b} the equality constraints $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ hold; AND \mathbf{b} $\mathbf{x}^*_i = \mathbf{0}$ for n - m indices; AND

these n binding constraints are linearly independent.
Thm 2.2.1. A vector x* ∈ Rⁿ is a basic solution of the standard form LP iff
Ax* = b; AND
There exists B = {B(1), B(2), ..., B(m)} ⊂ {1, 2, ..., n} such that

* the columns of $\mathbf{A}_B = \left(\mathbf{A}_{B(1)}, \mathbf{A}_{B(2)}, \cdots, \mathbf{A}_{B(m)}\right)$ are linearly independent; AND

 \triangleright A degenerate basic solution \mathbf{x}^* has more than n-m zero com-

 Adjacent BFS: Extreme points connected by an edge on the boundary.

The corresponding bases share all but one basic column.
 There are common n − 1 linearly independent constraints that are active at both of them.

Optimal Solutions at Extreme Points:

• A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if $\exists \mathbf{x}^* \in P \exists \mathbf{d} \neq \mathbf{0} \in \mathbb{R}^n \ \forall \lambda \in \mathbb{R}$ [$\mathbf{x}^* + \lambda \mathbf{d} \in P$]. A polyhedron containing an infinite line does not contain an extreme point.

Thm 2.3.1. Let $\mathbf{A} \subseteq \mathbb{R}^{m \times n}, m \ge n$. Suppose $P = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} =$

Thm 2.3.1. Let A ⊆ R^{m > n}, m ≥ n. Suppose P = {x ∈ Rⁿ | Ax = b} ≠ Ø. The following are equivalent:
▷ P does not contain a line;
▷ P has a BFS;
▷ P has n linearly independent constraints.
▷ Implication: Every non-empty bounded polyhedron and every non-empty standard form polyhedron has at least one BFS.
Thm 2.3.3. If an LP has a BFS and an optimal solution, then there exists an optimal solution that is a BFS.
▷ Hence, it suffices to check BFS.

Hence, it suffices to check BFS.

The Simplex Method

Feasible Direction and Reduced Cost:

Feasible direction: For a polyhedron P and a point x ∈ P, a vector d is a feasible direction if x + θd ∈ P for some θ > 0.
For standard polyhedra, Ad = 0.
Clm †. Let x = (x_B, x_N) with x_B ≥ 0, x_N = 0 be a BFS. A direction

d moving from x to an adjacent BFS is of the form $\mathbf{d}^j = (\mathbf{d}_B^j, \mathbf{d}_N^j)$ for some $j \in N$, where

 $\triangleright \mathbf{d}_{N}^{j} = \mathbf{e}_{j}$ where $e_{j,j} = 1$ and $e_{j,i} = 0$ for $i \in N \setminus \{j\}$; AND

 $j \in \{1, 2, \dots, n\}$, the reduced cost \bar{c}_j of variable x_j is defined by

 $\bar{c}_j = c_j - \mathbf{c}_B^{\dagger} \mathbf{A}_B^{-1} \mathbf{A}_j.$

▷ For $j \in B$, $\bar{c}_j = 0$. ▷ If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is the unique optimal

solution. \triangleright A direction \mathbf{d}^j is an improving direction if $\bar{c}_j < 0$.

▶ Change in cost in any direction d:

 $\mathbf{c}^{\top}\mathbf{d} = \mathbf{c}_{B}^{\top}\mathbf{d}_{B} + \mathbf{c}_{N}^{\top}\mathbf{d}_{N} = -\mathbf{c}_{B}^{\top}\mathbf{A}_{B}^{-1}\mathbf{A}_{N}\mathbf{d}_{N} + \mathbf{c}_{N}^{\top}\mathbf{d}_{N}.$

Clm. Let x be a BFS with basis B. Any feasible direction at x can be represented as

$$\sum_{j \in N} \lambda_j \mathbf{d}^j \text{ for } \lambda_j \ge 0.$$

 Degenerate: A BFS is degenerate if some element of x_B is zero. A BFS is non-degenerate if $x_B = A_B^{-1}b > 0$.

Thm 3.1.6. (Optimality conditions) Consider a BFS x associated with basis matrix \mathbf{A}_B , and let $\bar{\mathbf{c}}$ be corresponding vector of reduced

 $> \text{ If } \bar{c} \ge 0, \text{ then } \mathbf{x} \text{ is optimal.}$ $> \text{ If } \mathbf{x} \text{ is optimal and non-degenerate, then } \bar{c} \ge 0.$

Special Cases:

Some x_{B(k)} = 0 at optimum ⇒ degenerate solution.

• Some nonbasic $\bar{c}_j = 0$ at optimum:

a X3 enter b $u \le 0 \Rightarrow \text{unbounded optimum set};$ b $u \le 0 \Rightarrow \text{unbounded optimum set};$ b Otherwise \Rightarrow alternate optimum.
b $u \le 0 \text{ and } \bar{c}_j < 0 \Rightarrow \text{unbounded problem.}$ b Some $y_i > 0$ at optimum for auxiliary problem \Rightarrow infeasible.

Simplex Method:

① Start with basis B and its basic columns A_B and BFS x. Check that x is indeed a BFS.

② Compute reduced costs $\bar{c}_j = c_j - c_B^{\mathsf{T}} \mathbf{A}_B^{-1} \mathbf{A}_j$ for all $j \in N$. \triangleright If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is optimal. END.

 \triangleright Otherwise, choose some j for which $\bar{c}_j < 0$. 3 Compute $\mathbf{d}_B^j = -\mathbf{A}_B^{-1}\mathbf{A}_j$ (see Clm \dagger .).

 \triangleright If $\mathbf{d}_B^j \ge 0$, then problem is unbounded. END.

 $\qquad \qquad \triangleright \ \, \text{Otherwise, let} \,\, \theta^* = \min \left\{ \left. \frac{x_i}{-d_i^j} \,\, \right| \,\, i \in B, d_i < 0 \right\}.$ $\qquad \qquad \text{(4)} \,\, \text{Let} \,\, l \in B \,\, \text{be such that} \,\, \theta^* = \left. \frac{x_l}{-d_l^j} \,\, \right| \,\, \text{The corresponding} \,\, x_l \,\, \text{is the} \,\,$ leaving variable.

(5) Form a new basis $\bar{B} = (B \setminus \{l\}) \cup \{j\}$.

(a) The other basic variables are $x_i + \theta^* d_i^j$ for $i \neq l$.

(b) The entering variable x_j assumes $\theta^* = \frac{x_l}{-d_l^j}$. Go to Step (1).

Big-M Method:

① Multiply constraints by -1 to make $b \ge 0$ as needed.

Add artificial variables y_1, y_2, \cdots, y_m to constraints without positive slack. apply to no slack too

(3) Apply simplex method on LP with cost min $\mathbf{c}^{\top}\mathbf{x} + M \sum_{j=1}^{m} y_{i}$, where

 $M \gg 0$ is treated as some algebraic variable.

Tableau Method:

(1) Start from basis B and its basic columns A_B (preferably I, and the corresponding BFS $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ (check)).

Basic	$x_j, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution
C	c_j	$c_{B(1)}$	$c_{B(2)}$	
ē	$c_j - \mathbf{c}_B^{T} \mathbf{A}_B^{-1} \mathbf{A}_j$	0	0	Obj: $-\mathbf{c}_B^{T}\mathbf{x}_B$
B(1)	$-d_1^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_1$	1	0	$x_{B(1)}$
B(2)	$-d_2^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_2$	0	1	$x_{B(2)}$

② Choose some j such that $c_j < 0$. At that column, for all $-d_i^j > 0$, $i \in B$, calculate $\frac{x_i}{-d_i^j}$ and pick the smallest one i^* (0 is also considered).

③ i* leaves and j enters. Normalize the row where this happens such that the cell $(x_j, x_j) = 1$.

Perform row operations to all rows including \(\bar{c}\) such that the column of x_i is all 0 but one 1.

(5) If all $\bar{c} \geq 0$, END; else, return to (2) again.

Two-Phase Method:

Phase I: Find BFS using auxiliary LP.

Multiply constraints by -1 to make b ≥ 0 as needed.

 \bigcirc Add artificial variables y_1, y_2, \dots, y_m to constraints without positive slack. apply to no slock too

3 Apply simplex method on auxiliary LP with cost min $\sum_{i=1}^{m} y_i$.

4 If the optimal cost in auxiliary LP is:

> zero: A BFS to original LP is found.

positive: Original LP is infeasible. END.

Phase II: Solve original LP.

Take BFS found in Phase I to start Phase II.

② Use cost coefficients of original LP to compute reduced costs.

Apply simplex method to original LP.

Either finds an optimum, or detects unboundedness.

The Dual Simplex Method

Thm. 4.1.5. The dual of the dual is the primal.
Weak Duality Thm. If x is feasible in (P) and p is feasible in (D), then p^Tb ≤ c^Tx and thus sup p^Tb ≤ inf c^Tx.

p feasible

Col. If feasible and p^Tb = c^Tx, then x and p optimal.

Col. Unboundedness in one implies infeasibility in another.

* (P) and (D) can be both infeasible.
Strong Duality Thm. If an LP has an optimum, so does its dual, and both optimal solution to (D) is p^T = c^T_BA⁻¹_B, where B is an optimal basis for (P)

optimal basis for (P).

▷ If there is a basis B_0 s.t. $\mathbf{A}_{B_0} = \mathbf{I}$, then an optimal solution to (D) is $\mathbf{p}^\top = \mathbf{c}_{B_0}^\top - \bar{\mathbf{c}}_{B_0}^\top$.

• Complementary Slackness Thm. If \mathbf{x} is feasible in (P) and \mathbf{p} is

feasible in (D), then both are optimal if and only if

$$p_i \left(\mathbf{a}_i^{\top} \mathbf{x} - b_i \right) = 0 \text{ for all } i;$$

 $\left(c_j - \mathbf{p}^{\top} \mathbf{A}_j \right) x_j = 0 \text{ for all } j.$

▶ Prop. If x is feasible, then x is optimal iff ∃p CS.
 Dual Simplex Method: Nonnegative c and only ≤ constraints.

① Start from basis B and its basic columns A_B (preferably I, and the corresponding BFS $x = (x_B, x_N)$ (check))

Basic	$x_j, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution
ē	c_{j}	0	0	Obj: 0
B(1)	A_{1j}	1	0	b_1
B(2)	A_{2i}	0	1	b ₂

(2) Choose some i such that b_i < 0. At that row, for all columns j that are negative (neg), calculate \(\frac{\bar{c}_j}{|\text{neg}|}\) and pick the smallest one j*.
 (3) i leaves and j* enters. Normalize the row where this happens such

that the cell $(x_{j^*}, x_{j^*}) = 1$.

Perform row operations to all rows including \(\bar{c}\) such that the column of x_i is all 0 but one 1.

(5) If all $b \ge 0$, END; else, return to (2) again.

1.3 Sensitivity Analysis

if AB=I, AB' is just observed from Phase II: Solve original LP.

• Feasibility: $\mathbf{A}_{B}^{-1}\mathbf{b} \geq 0$. • Optimality: $\mathbf{c}^{\top} - \mathbf{c}_{B}^{\top}\mathbf{A}_{B}^{-1}\mathbf{A} \geq 0$. Change in b: $b_{i} = b_{i} + \delta$.

• Optimality: $\mathbf{c}^{+} - \mathbf{c}_{B}^{+} \mathbf{A}_{B}^{-} \mathbf{A} \geq 0$.

• Hange in b: $b_{i} = b_{i} + \delta$.

• Feasibility is checked by $\mathbf{x}_{B}^{*} + \delta(\mathbf{A}_{B}^{-1} \mathbf{e}_{i}) \geq 0$; optimality not affected.

If not feasible, use dual simplex method.
Dual p_i is the marginal cost of b_i. When b_i changes δ, the optimal cost changes by δp_i.

Change in c: $c_j = c_j + \delta_j$.

• Optimality: If x_j nonbasic $\bar{c}_j \leftarrow \bar{c}_j + \delta_j$; else for all $i \in N$, $\bar{c}_i \leftarrow \bar{c}_j + \delta_j$ $\bar{c}_i - \delta_j \mathbf{e}_i^{\top} \mathbf{A}_B^{-1} \mathbf{A}_i$. Feasibility not affected.

If x_j nonbasic and not optimal, use primal simplex method.

Change in Nonbasic Column of A: $a_{ij} = a_{ij} + \delta$.

• Optimality: Only $\bar{c}_j \leftarrow \bar{c}_j - \delta p_i$. Feasibility not affected. • If not optimal, use primal simplex method. Add a New Variable: Add c_{n+1} and A_{n+1} .

Check optimality at (x*,0).
If not optimal, continue primal simplex method by adding a new column $\begin{bmatrix} \bar{c}_{n+1} \\ \mathbf{A}_B^{-1} \mathbf{A}_{n+1} \end{bmatrix}$ to the final tableau.

Add a New Constraint: Add $\mathbf{a}_{m+1}^{\top}\mathbf{x} \leq b_{m+1}$.

The check if the original solution is feasible. If not feasible, add new constraint to the bottom of the final tableau. Use row operations to make (x_B, x_{n+1}) a basic solution. Use dual simplex method to solve new problem.

Network Flow Problem

 $\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x}$ s.t. Ax = b at all vertices; $0 \le x \le u$ at all edges.

• Flow-outs – Flow-ins = Supply b.
• Network has feasible flow
$$\Rightarrow \sum b_i = 0$$
.
• Formulation of minimum cost flow problem.

Shortest Path Problem: Find the shortest path from s to t .

(P) $\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top}\mathbf{x}$ | (D) $\max_{\mathbf{p} \in \mathbb{R}^m} \mathbf{p}^{\top}\mathbf{b}$ | $\max_{\mathbf{p} \in \mathbb{R}^m} p_s - p_t$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$; | s.t. $\mathbf{A}^{\top}\mathbf{p} \leq \mathbf{c}$; | s.t. $p_i - p_j \leq c_{ij}$, $\forall (i,j) \in E$.

• $b_s = 1; b_t = -1; b_{-s-t} = 0.$ • $\mathbf{x} \in \{0, 1\}^n$ is equivalent as $\mathbf{x} \ge \mathbf{0}$ if no negative cycle.

Maximum Flow Problem: Find the maximum flow from s to t.

(P) $\max_{\mathbf{z} \in \mathbb{R}^m} v$ (D) $\min_{\mathbf{z} \in \mathbb{R}^m} \mathbf{u}^{\top} \mathbf{z}$ $\min_{\mathbf{z} \in \mathbb{R}^m} \sum_{\mathbf{z} \in \mathbb{R}^m} u_{ij} z_{ij}$

$x \in \mathbb{R}^n$		$z \in \mathbb{R}^m$		$z \in \mathbb{R}^m$	Z 217217
s.t.	$\mathbf{A}\mathbf{x} = \mathbf{d}v;$	s.t.	$\mathbf{d}^{T}\mathbf{y}=1;$	s.t.	$y_i - y_j \leq z_{ij} \&$
	$x \le u$;		$z \ge A^{\top}y$;		$z_{ij} \geq 0 \ \forall (i,j) \in E;$
	$x \ge 0$.		$z \ge 0.$		$y_s-y_t=1.$

 $d_s=1; d_t=-1; d_{-s-t}=0.$ The dual is the minimum cut capacity problem. Thm. The maximum flow is equal to the capacity of the min cut.

The Network Simplex Method 2.1

Feasible Tree Solution and Reduced Cost:

• Truncated matrix: $\mathbf{\tilde{A}}\mathbf{x} = \mathbf{\tilde{b}}$ by removing any row from A. • Tree solution: $\mathbf{\tilde{D}}\mathbf{\tilde{A}}\mathbf{x} = \mathbf{\tilde{b}}$; $\mathbf{\tilde{Q}}$ A spanning tree. • Feasible tree solution: Tree solution \mathbf{x} with $\mathbf{x} \geq \mathbf{0}$. • Thm. 7.1.1. The columns corresponding to n-1 arcs form a basis of A iff these arcs form a spanning tree.

• Dual vector: Given basis B, $\mathbf{p}^{\top} = \mathbf{c}_B^{\top} \tilde{\mathbf{A}}_B^{-1}$.

• Reduced cost: $\bar{\mathbf{c}}^{\top} = \mathbf{c}^{\top} - \mathbf{p}^{\top} \tilde{\mathbf{A}}$. • Let $p_n = 0$ for the truncated node n. Then $\bar{c}_{ij} = c_{ij} - (p_i - p_j)$ for all $(i,j) \notin \mathbb{T}$.

① Start with a spanning tree T, feasible tree solution x.

② Compute dual vector \mathbf{p} and $\bar{c}_{ij} = c_{ij} - p_i + p_j$ for all arcs $(i, j) \notin T$. \triangleright If $\bar{c}_{ij} \geq 0$ for all $(i,j) \in E$, then current \mathbf{x} optimal. END.

 \triangleright Otherwise, choose some (i, j) for which $\bar{c}_{ij} < 0$.

3 Follow the flow update scheme:

 \triangleright Enter (i, j) gives a unique cycle. Identify the cycle.

 \triangleright Orientate the cycle s.t. (i, j) is a forward arc.

 \triangleright Let C_f and C_b be sets of forward and backward arcs in cycle.

ightharpoonup If $C_b \neq \emptyset$, set $\theta^* = \min_{(k,l) \in C_b} x_{kl}$, attained by arc (p,q).

 \triangleright If $C_b = \emptyset$, then $\theta^* = \infty$, so objective is $-\infty$.

 \triangleright Update \mathbf{x} in cycle: if in C_f add θ^* ; if in C_b minus θ^* .

(4) Form a new tree $T = (T \setminus \{p, q\}) \cup \{(i, j)\}$ and go to Step (2).

Two-Phase Method:

P is both

Phase I: Find initial BFS. b is supply demand

① For any $i \in V \setminus \{n\}$, if $b_i \geq 0/b_i < 0$ and $(i,n)/(n,i) \notin E$, create an artificial arc (i, n)/(n, i).

② Initial basis $B = \{(i, n) \text{ if } b_i \geq 0 \text{ or } (n, i) \text{ if } b_i < 0 \mid i \in V \setminus \{n\}\}.$ ③ Initial flow $x_{in} = b_i$ when $b_i \geq 0$ and $x_{ni} = -b_i$ when $b_i < 0$.

Solve this using the Simplex method.

use auxiliary LP cost c artificial: 1 others: 0

Integrality:

Thm. 7.3.1. Consider an uncapacitated network flow problem where underlying graph is connected. Then ality not affected.

(a) For every basis matrix \tilde{A}_B , \tilde{A}_B^{-1} has integer entries.

(b) If b is integral, then every primal basic solution x is integral.

(c) If b is integral, then every dual basic solution p is integral.

(d) If c is integral, then every dual basic solution p is integral.

(e) Col. Consider an uncapacitated network flow problem and assume that the optimal cost is finite, then

(f) If b is integral, then there is an integral optimal solution to

If b is integral, then there is an integral optimal flow vector.

(a) If c is integral, then there is an integral optimal solution to the dual problem.

(iven Min cost sin xij, $xij > 0 \Rightarrow R-Pj = Cij$

Other Xrs = 0 => Pr-Ps = Crs