Linear Programming Problem | $(P) \min_{\mathbf{x} \in \mathbb{R}^n}$ | $\mathbf{c}^{T}\mathbf{x}$ | | (D) $\max_{\mathbf{p} \in \mathbb{R}^m}$ | $\mathbf{p}^{T}\mathbf{b}$ | | |------------------------------------------|----------------------------------------|------------------------------|------------------------------------------|----------------------------------------------|------------------------------| | s.t. | $\mathbf{a}_i^{T}\mathbf{x} \geq b_i$ | for $i \in M_+$; | s.t. | $\mathbf{p}_i \geq 0$ | for $i \in M_+$; | | | $\mathbf{a}_i^{T} \mathbf{x} \leq b_i$ | for $i \in M$; | | $\mathbf{p}_i \leq 0$ | for $i \in M$; | | | 100 | for $i \in M_0$; | | \mathbf{p}_i free | for $i \in M_0$; | | | • | for $j \in N_+$; | | $\mathbf{p}^{T}\mathbf{A}_{j} \leq c_{j}$ | for $j \in N_+$; | | | 5A-735 - 1111- | for $j \in N$; | | $\mathbf{p}^{\top}\mathbf{A}_{j} \geq c_{j}$ | for $j \in N$; | | | | for $j \in N_{\mathbb{R}}$. | | $\mathbf{p}^{T}\mathbf{A}_{j}=c_{j}$ | for $j \in N_{\mathbb{R}}$, | where $\mathbf{a}_i = (a_{i,1}, a_{i,1}, \cdots, a_{i,n})^{\top} \in \mathbb{R}^n, b_i \in \mathbb{R}$. • The feasible region $P \in \mathbb{R}^n$ is a polyhedron. • An LP problem may have > one unique solution; OR > one finite optimal cost with multiple optimal solutions; OR ▷ unbounded optimal cost with no optimal solution; OR ▷ empty feasible set, where optimal cost equals +∞. Each variable/constraint in (P) gives a constraint/variable in D. Graphical Representation: In \mathbb{R}^n , $\{x \mid \mathbf{a}^\top \mathbf{x} = b\}$ is a hyperplane with normal vector a. Vector c corresponds to the direction of increasing c^Tx. Standard Form: Minimization + equality + non-negative. • Maximization objective: $\max \mathbf{c}^{\top} \mathbf{x} \Rightarrow \min - \mathbf{c}^{\top} \mathbf{x}$. • Inequality constraints: $\mathbf{a}_i^{\top}\mathbf{x} \leq / \geq b_i \Rightarrow \begin{cases} \mathbf{a}_i^{\top}\mathbf{x} \pm s_i = b_i \\ s_i \geq 0 \end{cases}$ \triangleright s_i is slack variable. Non-positive variables: x_i ≤ 0 ⇒ x_i⁻ ≥ 0. Free variables: x_i ⇒ (x_i⁺ - x_i⁻); x_i⁺, x_i⁻ ≥ 0. Convex Sets and Convex Functions: • Convex set: $\forall \mathbf{x}, \mathbf{y} \in S \ \forall \lambda \in [0, 1] \ [\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S].$ • Convex combination: $\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$, where $\lambda_i \in [0, 1]$ s.t. $\sum_{i=1}^{k} \lambda_i = 1$. Any convex combination of two optimal solutions is also an op- timal solution. Convex hull: Set of convex combinations. Convex function: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \ \forall \lambda \in [0,1] \ [f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1-\lambda)\mathbf{y}$ $(1-\lambda)f(y)].$ $\Rightarrow f \text{ is } concave \text{ if } -f \text{ is } \text{ convex.}$ $\Rightarrow Affine function d + \mathbf{c}^{\mathsf{T}}\mathbf{x} \text{ is both convex and concave.}$ $\Rightarrow Thm 1.5.1. \text{ If } f_1, f_2, \dots, f_m : \mathbb{R}^n \to \mathbb{R} \text{ are convex, then } f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})\} \text{ is also convex.}$ $= Cor 1.5.2 \quad \text{max} \{d_t + \mathbf{c}^{\mathsf{T}}\mathbf{x}\} \text{ is convex.}$ * Cor 1.5.2. $\max_{i=1,2,\dots,m} \{d_i + \mathbf{c}_i^{\top} \mathbf{x}\}$ is convex. #### Example. Reformulate as LP problem: - $\max \min(x_1, x_2) \Rightarrow \max t \text{ s.t. } t \leq x_1; t \leq x_2.$ - $|x_1 x_2| \le 2 \Rightarrow x_1 x_2 \le 2; x_1 x_2 \ge -2.$ - $\min |x| \Rightarrow \min \max(x, -x) \Rightarrow \min t \text{ s.t. } t \ge x; t \ge -x.$ #### Polyhedra and Extreme Points: Polyhedron: {x ∈ Rⁿ | Ax ≤ b}. A polyhedron is a finite intersection of half-spaces. A polyhedron has finite number of vertices/BFS. 3 definitions of corner points: Consider a convex set P ⊆ Rⁿ, Extreme point: A point x* ∈ P is an extreme point if whenever points y, z ∈ P and scalar λ ∈ (0,1) are such that x* = λy + $(1 - \lambda)\mathbf{z}$, we have $\mathbf{y} = \mathbf{z} = \mathbf{x}^*$. \triangleright Vertex: A point $\mathbf{x}^* \in P$ is a vertex if there is a $\mathbf{c} \in \mathbb{R}^n$ such that $\mathbf{c}^\top \mathbf{x}^* > \mathbf{c}^\top \mathbf{y}$ for all $\mathbf{y} \in P \setminus \{\mathbf{x}^*\}$. \triangleright Basic feasible solution (BFS): \mathbf{x}^* is a BFS of a polyhedron if nlinearly independent constraints are active at x* and x* Basic solution: A point where n linearly independent con-straints are active but not necessarily in P. Thm 2.1.5. In a non-empty polyhedron, an extreme point, a vertex and a BFS are equivalent. Degenerate: A basic solution (not necessarily feasible) is degenerate if more than n contraints are active at x #### Basic Feasible Solutions for Standard Polyhedra: #### $\{x \mid Ax = b, x \geq 0\},\$ where $\mathbf{A} \in \mathbf{R}^{m \times n}, m < n$ contains m linearly independent rows. • Basic solution for standard polyhedra: \mathbf{x}^* is a basic solution iff \mathbf{b} the equality constraints $\mathbf{A}\mathbf{x}^* = \mathbf{b}$ hold; AND \mathbf{b} $\mathbf{x}^*_i = \mathbf{0}$ for n - m indices; AND these n binding constraints are linearly independent. Thm 2.2.1. A vector x* ∈ Rⁿ is a basic solution of the standard form LP iff Ax* = b; AND There exists B = {B(1), B(2), ..., B(m)} ⊂ {1, 2, ..., n} such that * the columns of $\mathbf{A}_B = \left(\mathbf{A}_{B(1)}, \mathbf{A}_{B(2)}, \cdots, \mathbf{A}_{B(m)}\right)$ are linearly independent; AND \triangleright A degenerate basic solution \mathbf{x}^* has more than n-m zero com- Adjacent BFS: Extreme points connected by an edge on the boundary. The corresponding bases share all but one basic column. There are common n − 1 linearly independent constraints that are active at both of them. Optimal Solutions at Extreme Points: • A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if $\exists \mathbf{x}^* \in P \exists \mathbf{d} \neq \mathbf{0} \in \mathbb{R}^n \ \forall \lambda \in \mathbb{R}$ [$\mathbf{x}^* + \lambda \mathbf{d} \in P$]. A polyhedron containing an infinite line does not contain an extreme point. Thm 2.3.1. Let $\mathbf{A} \subseteq \mathbb{R}^{m \times n}, m \ge n$. Suppose $P = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} =$ Thm 2.3.1. Let A ⊆ R^{m > n}, m ≥ n. Suppose P = {x ∈ Rⁿ | Ax = b} ≠ Ø. The following are equivalent: ▷ P does not contain a line; ▷ P has a BFS; ▷ P has n linearly independent constraints. ▷ Implication: Every non-empty bounded polyhedron and every non-empty standard form polyhedron has at least one BFS. Thm 2.3.3. If an LP has a BFS and an optimal solution, then there exists an optimal solution that is a BFS. ▷ Hence, it suffices to check BFS. Hence, it suffices to check BFS. ## The Simplex Method #### Feasible Direction and Reduced Cost: Feasible direction: For a polyhedron P and a point x ∈ P, a vector d is a feasible direction if x + θd ∈ P for some θ > 0. For standard polyhedra, Ad = 0. Clm †. Let x = (x_B, x_N) with x_B ≥ 0, x_N = 0 be a BFS. A direction d moving from x to an adjacent BFS is of the form $\mathbf{d}^j = (\mathbf{d}_B^j, \mathbf{d}_N^j)$ for some $j \in N$, where $\triangleright \mathbf{d}_{N}^{j} = \mathbf{e}_{j}$ where $e_{j,j} = 1$ and $e_{j,i} = 0$ for $i \in N \setminus \{j\}$; AND $j \in \{1, 2, \dots, n\}$, the reduced cost \bar{c}_j of variable x_j is defined by $\bar{c}_j = c_j - \mathbf{c}_B^{\dagger} \mathbf{A}_B^{-1} \mathbf{A}_j.$ ▷ For $j \in B$, $\bar{c}_j = 0$. ▷ If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is the unique optimal solution. \triangleright A direction \mathbf{d}^j is an improving direction if $\bar{c}_j < 0$. ▶ Change in cost in any direction d: $\mathbf{c}^{\top}\mathbf{d} = \mathbf{c}_{B}^{\top}\mathbf{d}_{B} + \mathbf{c}_{N}^{\top}\mathbf{d}_{N} = -\mathbf{c}_{B}^{\top}\mathbf{A}_{B}^{-1}\mathbf{A}_{N}\mathbf{d}_{N} + \mathbf{c}_{N}^{\top}\mathbf{d}_{N}.$ Clm. Let x be a BFS with basis B. Any feasible direction at x can be represented as $$\sum_{j \in N} \lambda_j \mathbf{d}^j \text{ for } \lambda_j \ge 0.$$ Degenerate: A BFS is degenerate if some element of x_B is zero. A BFS is non-degenerate if $x_B = A_B^{-1}b > 0$. Thm 3.1.6. (Optimality conditions) Consider a BFS x associated with basis matrix \mathbf{A}_B , and let $\bar{\mathbf{c}}$ be corresponding vector of reduced $> \text{ If } \bar{c} \ge 0, \text{ then } \mathbf{x} \text{ is optimal.}$ $> \text{ If } \mathbf{x} \text{ is optimal and non-degenerate, then } \bar{c} \ge 0.$ # Special Cases: Some x_{B(k)} = 0 at optimum ⇒ degenerate solution. • Some nonbasic $\bar{c}_j = 0$ at optimum: a X3 enter b $u \le 0 \Rightarrow \text{unbounded optimum set};$ b $u \le 0 \Rightarrow \text{unbounded optimum set};$ b Otherwise \Rightarrow alternate optimum. b $u \le 0 \text{ and } \bar{c}_j < 0 \Rightarrow \text{unbounded problem.}$ b Some $y_i > 0$ at optimum for auxiliary problem \Rightarrow infeasible. Simplex Method: ① Start with basis B and its basic columns A_B and BFS x. Check that x is indeed a BFS. ② Compute reduced costs $\bar{c}_j = c_j - c_B^{\mathsf{T}} \mathbf{A}_B^{-1} \mathbf{A}_j$ for all $j \in N$. \triangleright If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is optimal. END. \triangleright Otherwise, choose some j for which $\bar{c}_j < 0$. 3 Compute $\mathbf{d}_B^j = -\mathbf{A}_B^{-1}\mathbf{A}_j$ (see Clm \dagger .). \triangleright If $\mathbf{d}_B^j \ge 0$, then problem is unbounded. END. $\qquad \qquad \triangleright \ \, \text{Otherwise, let} \,\, \theta^* = \min \left\{ \left. \frac{x_i}{-d_i^j} \,\, \right| \,\, i \in B, d_i < 0 \right\}.$ $\qquad \qquad \text{(4)} \,\, \text{Let} \,\, l \in B \,\, \text{be such that} \,\, \theta^* = \left. \frac{x_l}{-d_l^j} \,\, \right| \,\, \text{The corresponding} \,\, x_l \,\, \text{is the} \,\,$ leaving variable. **(5)** Form a new basis $\bar{B} = (B \setminus \{l\}) \cup \{j\}$. (a) The other basic variables are $x_i + \theta^* d_i^j$ for $i \neq l$. (b) The entering variable x_j assumes $\theta^* = \frac{x_l}{-d_l^j}$. Go to Step (1). ## Big-M Method: ① Multiply constraints by -1 to make $b \ge 0$ as needed. Add artificial variables y_1, y_2, \cdots, y_m to constraints without positive slack. apply to no slack too (3) Apply simplex method on LP with cost min $\mathbf{c}^{\top}\mathbf{x} + M \sum_{j=1}^{m} y_{i}$, where $M \gg 0$ is treated as some algebraic variable. Tableau Method: (1) Start from basis B and its basic columns A_B (preferably I, and the corresponding BFS $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ (check)). | Basic | $x_j, j \in N$ | $x_{B(1)}$ | $x_{B(2)}$ | Solution | |-------|---------------------------------------------------------|------------|------------|--------------------------------------| | C | c_j | $c_{B(1)}$ | $c_{B(2)}$ | | | ē | $c_j - \mathbf{c}_B^{T} \mathbf{A}_B^{-1} \mathbf{A}_j$ | 0 | 0 | Obj: $-\mathbf{c}_B^{T}\mathbf{x}_B$ | | B(1) | $-d_1^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_1$ | 1 | 0 | $x_{B(1)}$ | | B(2) | $-d_2^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_2$ | 0 | 1 | $x_{B(2)}$ | ② Choose some j such that $c_j < 0$. At that column, for all $-d_i^j > 0$, $i \in B$, calculate $\frac{x_i}{-d_i^j}$ and pick the smallest one i^* (0 is also considered). ③ i* leaves and j enters. Normalize the row where this happens such that the cell $(x_j, x_j) = 1$. Perform row operations to all rows including \(\bar{c}\) such that the column of x_i is all 0 but one 1. (5) If all $\bar{c} \geq 0$, END; else, return to (2) again. #### Two-Phase Method: Phase I: Find BFS using auxiliary LP. Multiply constraints by -1 to make b ≥ 0 as needed. \bigcirc Add artificial variables y_1, y_2, \dots, y_m to constraints without positive slack. apply to no slock too 3 Apply simplex method on auxiliary LP with cost min $\sum_{i=1}^{m} y_i$. 4 If the optimal cost in auxiliary LP is: > zero: A BFS to original LP is found. positive: Original LP is infeasible. END. Phase II: Solve original LP. Take BFS found in Phase I to start Phase II. ② Use cost coefficients of original LP to compute reduced costs. Apply simplex method to original LP. Either finds an optimum, or detects unboundedness. ## The Dual Simplex Method Thm. 4.1.5. The dual of the dual is the primal. Weak Duality Thm. If x is feasible in (P) and p is feasible in (D), then p^Tb ≤ c^Tx and thus sup p^Tb ≤ inf c^Tx. p feasible Col. If feasible and p^Tb = c^Tx, then x and p optimal. Col. Unboundedness in one implies infeasibility in another. * (P) and (D) can be both infeasible. Strong Duality Thm. If an LP has an optimum, so does its dual, and both optimal solution to (D) is p^T = c^T_BA⁻¹_B, where B is an optimal basis for (P) optimal basis for (P). ▷ If there is a basis B_0 s.t. $\mathbf{A}_{B_0} = \mathbf{I}$, then an optimal solution to (D) is $\mathbf{p}^\top = \mathbf{c}_{B_0}^\top - \bar{\mathbf{c}}_{B_0}^\top$. • Complementary Slackness Thm. If \mathbf{x} is feasible in (P) and \mathbf{p} is feasible in (D), then both are optimal if and only if $$p_i \left(\mathbf{a}_i^{\top} \mathbf{x} - b_i \right) = 0 \text{ for all } i;$$ $\left(c_j - \mathbf{p}^{\top} \mathbf{A}_j \right) x_j = 0 \text{ for all } j.$ ▶ Prop. If x is feasible, then x is optimal iff ∃p CS. Dual Simplex Method: Nonnegative c and only ≤ constraints. ① Start from basis B and its basic columns A_B (preferably I, and the corresponding BFS $x = (x_B, x_N)$ (check)) | Basic | $x_j, j \in N$ | $x_{B(1)}$ | $x_{B(2)}$ | Solution | |-------|----------------|------------|------------|----------------| | ē | c_{j} | 0 | 0 | Obj: 0 | | B(1) | A_{1j} | 1 | 0 | b_1 | | B(2) | A_{2i} | 0 | 1 | b ₂ | (2) Choose some i such that b_i < 0. At that row, for all columns j that are negative (neg), calculate \(\frac{\bar{c}_j}{|\text{neg}|}\) and pick the smallest one j*. (3) i leaves and j* enters. Normalize the row where this happens such that the cell $(x_{j^*}, x_{j^*}) = 1$. Perform row operations to all rows including \(\bar{c}\) such that the column of x_i is all 0 but one 1. (5) If all $b \ge 0$, END; else, return to (2) again. ## 1.3 Sensitivity Analysis if AB=I, AB' is just observed from Phase II: Solve original LP. • Feasibility: $\mathbf{A}_{B}^{-1}\mathbf{b} \geq 0$. • Optimality: $\mathbf{c}^{\top} - \mathbf{c}_{B}^{\top}\mathbf{A}_{B}^{-1}\mathbf{A} \geq 0$. Change in b: $b_{i} = b_{i} + \delta$. • Optimality: $\mathbf{c}^{+} - \mathbf{c}_{B}^{+} \mathbf{A}_{B}^{-} \mathbf{A} \geq 0$. • Hange in b: $b_{i} = b_{i} + \delta$. • Feasibility is checked by $\mathbf{x}_{B}^{*} + \delta(\mathbf{A}_{B}^{-1} \mathbf{e}_{i}) \geq 0$; optimality not affected. If not feasible, use dual simplex method. Dual p_i is the marginal cost of b_i. When b_i changes δ, the optimal cost changes by δp_i. Change in c: $c_j = c_j + \delta_j$. • Optimality: If x_j nonbasic $\bar{c}_j \leftarrow \bar{c}_j + \delta_j$; else for all $i \in N$, $\bar{c}_i \leftarrow \bar{c}_j + \delta_j$ $\bar{c}_i - \delta_j \mathbf{e}_i^{\top} \mathbf{A}_B^{-1} \mathbf{A}_i$. Feasibility not affected. If x_j nonbasic and not optimal, use primal simplex method. Change in Nonbasic Column of A: $a_{ij} = a_{ij} + \delta$. • Optimality: Only $\bar{c}_j \leftarrow \bar{c}_j - \delta p_i$. Feasibility not affected. • If not optimal, use primal simplex method. Add a New Variable: Add c_{n+1} and A_{n+1} . Check optimality at (x*,0). If not optimal, continue primal simplex method by adding a new column $\begin{bmatrix} \bar{c}_{n+1} \\ \mathbf{A}_B^{-1} \mathbf{A}_{n+1} \end{bmatrix}$ to the final tableau. Add a New Constraint: Add $\mathbf{a}_{m+1}^{\top}\mathbf{x} \leq b_{m+1}$. The check if the original solution is feasible. If not feasible, add new constraint to the bottom of the final tableau. Use row operations to make (x_B, x_{n+1}) a basic solution. Use dual simplex method to solve new problem. ## Network Flow Problem $\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x}$ s.t. Ax = b at all vertices; $0 \le x \le u$ at all edges. • Flow-outs – Flow-ins = Supply b. • Network has feasible flow $$\Rightarrow \sum b_i = 0$$. • Formulation of minimum cost flow problem. Shortest Path Problem: Find the shortest path from s to t . (P) $\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top}\mathbf{x}$ | (D) $\max_{\mathbf{p} \in \mathbb{R}^m} \mathbf{p}^{\top}\mathbf{b}$ | $\max_{\mathbf{p} \in \mathbb{R}^m} p_s - p_t$ s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$; | s.t. $\mathbf{A}^{\top}\mathbf{p} \leq \mathbf{c}$; | s.t. $p_i - p_j \leq c_{ij}$, $\forall (i,j) \in E$. • $b_s = 1; b_t = -1; b_{-s-t} = 0.$ • $\mathbf{x} \in \{0, 1\}^n$ is equivalent as $\mathbf{x} \ge \mathbf{0}$ if no negative cycle. Maximum Flow Problem: Find the maximum flow from s to t. (P) $\max_{\mathbf{z} \in \mathbb{R}^m} v$ (D) $\min_{\mathbf{z} \in \mathbb{R}^m} \mathbf{u}^{\top} \mathbf{z}$ $\min_{\mathbf{z} \in \mathbb{R}^m} \sum_{\mathbf{z} \in \mathbb{R}^m} u_{ij} z_{ij}$ | $x \in \mathbb{R}^n$ | | $z \in \mathbb{R}^m$ | | $z \in \mathbb{R}^m$ | Z 217217 | |----------------------|---------------------------------------|----------------------|-------------------------------|----------------------|----------------------------------------| | s.t. | $\mathbf{A}\mathbf{x} = \mathbf{d}v;$ | s.t. | $\mathbf{d}^{T}\mathbf{y}=1;$ | s.t. | $y_i - y_j \leq z_{ij} \&$ | | | $x \le u$; | | $z \ge A^{\top}y$; | | $z_{ij} \geq 0 \ \forall (i,j) \in E;$ | | | $x \ge 0$. | | $z \ge 0.$ | | $y_s-y_t=1.$ | | | | | | | | $d_s=1; d_t=-1; d_{-s-t}=0.$ The dual is the minimum cut capacity problem. Thm. The maximum flow is equal to the capacity of the min cut. #### The Network Simplex Method 2.1 Feasible Tree Solution and Reduced Cost: • Truncated matrix: $\mathbf{\tilde{A}}\mathbf{x} = \mathbf{\tilde{b}}$ by removing any row from A. • Tree solution: $\mathbf{\tilde{D}}\mathbf{\tilde{A}}\mathbf{x} = \mathbf{\tilde{b}}$; $\mathbf{\tilde{Q}}$ A spanning tree. • Feasible tree solution: Tree solution \mathbf{x} with $\mathbf{x} \geq \mathbf{0}$. • Thm. 7.1.1. The columns corresponding to n-1 arcs form a basis of A iff these arcs form a spanning tree. • Dual vector: Given basis B, $\mathbf{p}^{\top} = \mathbf{c}_B^{\top} \tilde{\mathbf{A}}_B^{-1}$. • Reduced cost: $\bar{\mathbf{c}}^{\top} = \mathbf{c}^{\top} - \mathbf{p}^{\top} \tilde{\mathbf{A}}$. • Let $p_n = 0$ for the truncated node n. Then $\bar{c}_{ij} = c_{ij} - (p_i - p_j)$ for all $(i,j) \notin \mathbb{T}$. ① Start with a spanning tree T, feasible tree solution x. ② Compute dual vector \mathbf{p} and $\bar{c}_{ij} = c_{ij} - p_i + p_j$ for all arcs $(i, j) \notin T$. \triangleright If $\bar{c}_{ij} \geq 0$ for all $(i,j) \in E$, then current \mathbf{x} optimal. END. \triangleright Otherwise, choose some (i, j) for which $\bar{c}_{ij} < 0$. 3 Follow the flow update scheme: \triangleright Enter (i, j) gives a unique cycle. Identify the cycle. \triangleright Orientate the cycle s.t. (i, j) is a forward arc. \triangleright Let C_f and C_b be sets of forward and backward arcs in cycle. ightharpoonup If $C_b \neq \emptyset$, set $\theta^* = \min_{(k,l) \in C_b} x_{kl}$, attained by arc (p,q). \triangleright If $C_b = \emptyset$, then $\theta^* = \infty$, so objective is $-\infty$. \triangleright Update \mathbf{x} in cycle: if in C_f add θ^* ; if in C_b minus θ^* . (4) Form a new tree $T = (T \setminus \{p, q\}) \cup \{(i, j)\}$ and go to Step (2). #### Two-Phase Method: P is both # Phase I: Find initial BFS. b is supply demand ① For any $i \in V \setminus \{n\}$, if $b_i \geq 0/b_i < 0$ and $(i,n)/(n,i) \notin E$, create an artificial arc (i, n)/(n, i). ② Initial basis $B = \{(i, n) \text{ if } b_i \geq 0 \text{ or } (n, i) \text{ if } b_i < 0 \mid i \in V \setminus \{n\}\}.$ ③ Initial flow $x_{in} = b_i$ when $b_i \geq 0$ and $x_{ni} = -b_i$ when $b_i < 0$. Solve this using the Simplex method. use auxiliary LP cost c artificial: 1 others: 0 Integrality: Thm. 7.3.1. Consider an uncapacitated network flow problem where underlying graph is connected. Then ality not affected. (a) For every basis matrix \tilde{A}_B , \tilde{A}_B^{-1} has integer entries. (b) If b is integral, then every primal basic solution x is integral. (c) If b is integral, then every dual basic solution p is integral. (d) If c is integral, then every dual basic solution p is integral. (e) Col. Consider an uncapacitated network flow problem and assume that the optimal cost is finite, then (f) If b is integral, then there is an integral optimal solution to If b is integral, then there is an integral optimal flow vector. (a) If c is integral, then there is an integral optimal solution to the dual problem. (iven Min cost sin xij, $xij > 0 \Rightarrow R-Pj = Cij$ Other Xrs = 0 => Pr-Ps = Crs