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1 Linear Programming (LP) Problem

min
x∈Rn

(or max) c⊤x

s.t. a⊤
i x ≥ bi for some i;

a⊤
i x ≤ bi for some i;

a⊤
i x = bi for some i;

xj ≥ 0 for some j;

xj ≤ 0 for some j;

xj ∈ R for some j,

where ai = (ai,1, ai,1, · · · , ai,n)⊤ ∈ Rn, bi ∈ R.

• The feasible region P ∈ Rn is a polyhedron.
• An LP problem may have

▷ one unique solution; OR
▷ one finite optimal cost with multiple optimal solutions; OR
▷ unbounded optimal cost with no optimal solution; OR
▷ empty feasible set, where optimal cost equals +∞.

Graphical Representation: In Rn, {x | a⊤x = b} is a hyperplane with
normal vector a.

• Vector c corresponds to the direction of increasing c⊤x.

Standard Form: Minimization + equality + non-negative.

• Maximization objective: max c⊤x ⇒ min−c⊤x.

• Inequality constraints: a⊤
i x ≤ / ≥ bi ⇒

{
a⊤
i x± si = bi

si ≥ 0
.

▷ si is slack variable.
• Non-positive variables: xi ≤ 0 ⇒ x−

i ≥ 0.

• Free variables: xi ⇒ (x+
i − x−

i );x+
i , x−

i ≥ 0.

Convex Sets and Convex Functions:

• Convex set: ∀x,y ∈ S ∀λ ∈ [0, 1] [λx+ (1− λ)y ∈ S].

• Convex combination: x =
k∑

i=1
λix

i, where λi ∈ [0, 1] s.t.
k∑

i=1
λi = 1.

▷ Any convex combination of two optimal solutions is also an op-
timal solution.

• Convex hull: Set of convex combinations.
• Convex function: ∀x,y ∈ Rn ∀λ ∈ [0, 1] [f(λx+ (1− λ)y) ≤ λf(x) +

(1− λ)f(y)].
▷ f is concave if −f is convex.
▷ Affine function d+ c⊤x is both convex and concave.
▷ Thm 1.5.1. If f1, f2, · · · , fm : Rn → R are convex, then f(x) =

max{f1(x), f2(x), · · · , fm(x)} is also convex.
∗ Cor 1.5.2. max

i=1,2,··· ,m
{di + c⊤i x} is convex.

Example. Reformulate as LP problem:
• maxmin(x1, x2) ⇒ max t s.t. t ≤ x1; t ≤ x2.
• |x1 − x2| ≤ 2 ⇒ x1 − x2 ≤ 2;x1 − x2 ≥ −2.
• min |x| ⇒ minmax(x,−x) ⇒ min t s.t. t ≥ x; t ≥ −x.

2 Geometry of Linear Programming

Polyhedra and Extreme Points:

• Polyhedron: {x ∈ Rn | Ax ≤ b}.
▷ A polyhedron is a finite intersection of half-spaces.
▷ A polyhedron has finite number of vertices/BFS.

• 3 definitions of corner points: Consider a convex set P ⊆ Rn,
▷ Extreme point: A point x∗ ∈ P is an extreme point if whenever

points y, z ∈ P and scalar λ ∈ (0, 1) are such that x∗ = λy +
(1− λ)z, we have y = z = x∗.

▷ Vertex: A point x∗ ∈ P is a vertex if there is a c ∈ Rn such
that c⊤x∗ > c⊤y for all y ∈ P \ {x∗}.

▷ Basic feasible solution (BFS): x∗ is a BFS of a polyhedron if n
linearly independent constraints are active at x∗ and x∗ ∈ P .

∗ Basic solution: A point where n linearly independent con-
straints are active but not necessarily in P .

▷ Thm 2.1.5. In a non-empty polyhedron, an extreme point, a
vertex and a BFS are equivalent.

• Degenerate: A basic solution (not necessarily feasible) is degenerate
if more than n contraints are active at x∗.

Basic Feasible Solutions for Standard Polyhedra:

{x | Ax = b,x ≥ 0},

where A ∈ Rm×n,m < n contains m linearly independent rows.

• Basic solution for standard polyhedra: x∗ is a basic solution iff
▷ the equality constraints Ax∗ = b hold; AND
▷ x∗

i = 0 for n−m indices; AND
▷ these n binding constraints are linearly independent.

• Thm 2.2.1. A vector x∗ ∈ Rn is a basic solution of the standard
form LP iff

▷ Ax∗ = b; AND
▷ There exists B = {B(1), B(2), · · · , B(m)} ⊂ {1, 2, · · · , n} such

that
∗ the columns of AB =

(
AB(1),AB(2), · · · ,AB(m)

)
are lin-

early independent; AND
∗ x∗

i = 0 for i ∈ N = {1, 2, · · · , n} \B.
If in addition, x∗

B ≥ 0, then x∗ is a BFS.

▷ x∗
B = A−1

B b.
▷ A degenerate basic solution x∗ has more than n−m zero com-

ponents.
▷ If n = m+ 1, then there are at most two BFSs.

• Adjacent BFS: Extreme points connected by an edge on the bound-
ary.

▷ The corresponding bases share all but one basic column.
▷ There are common n − 1 linearly independent constraints that

are active at both of them.

Optimal Solutions at Extreme Points:

• A polyhedron P ⊆ Rn contains a line if ∃x∗ ∈ P ∃d ̸= 0 ∈ Rn ∀λ ∈
R [x∗ + λd ∈ P ]. A polyhedron containing an infinite line does not
contain an extreme point.

• Thm 2.3.1. Let A ⊆ Rm×n,m ≥ n. Suppose P = {x ∈ Rn | Ax =
b} ̸= ∅. The following are equivalent:

▷ P does not contain a line;
▷ P has a BFS;
▷ P has n linearly independent constraints.
▷ Implication: Every non-empty bounded polyhedron and every

non-empty standard form polyhedron has at least one BFS.
• Thm 2.3.3. If an LP has a BFS and an optimal solution, then there

exists an optimal solution that is a BFS.
▷ Hence, it suffices to check BFS.

3 The Simplex Method

Feasible Direction and Reduced Cost:

• Feasible direction: For a polyhedron P and a point x ∈ P , a vector
d is a feasible direction if x+ θd ∈ P for some θ > 0.

▷ For standard polyhedra, Ad = 0.
• Clm †. Let x = (xB ,xN ) with xB ≥ 0,xN = 0 be a BFS. A direction

d moving from x to an adjacent BFS is of the form dj =
(
dj
B ,dj

N

)
for some j ∈ N , where

▷ dj
N = ej where ej,j = 1 and ej,i = 0 for i ∈ N \ {j}; AND

▷ dj
B = −A−1

B Aj .
• Reduced cost: Let x be a basic solution. Let c = (cB , cN ). For each

j ∈ {1, 2, · · · , n}, the reduced cost c̄j of variable xj is defined by

c̄j = cj − c⊤BA−1
B Aj .

▷ For j ∈ B, c̄j = 0.
▷ If c̄j ≥ 0 for all j ∈ N , then current BFS is the unique optimal

solution.
▷ A direction dj is an improving direction if c̄j < 0.
▷ Change in cost in any direction d:

c⊤d = c⊤BdB + c⊤NdN = −c⊤BA−1
B ANdN + c⊤NdN .

• Clm. Let x be a BFS with basis B. Any feasible direction at x can
be represented as ∑

j∈N

λjd
j for λj ≥ 0.

• Degenerate: A BFS is degenerate if some element of xB is zero. A
BFS is non-degenerate if xB = A−1

B b > 0.
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• Thm 3.1.6. (Optimality conditions) Consider a BFS x associated
with basis matrix AB , and let c̄ be corresponding vector of reduced
costs.

▷ If c̄ ≥ 0, then x is optimal.
▷ If x is optimal and non-degenerate, then c̄ ≥ 0.

Simplex Method:

1 Start with basis B and its basic columns AB and BFS x.
▷ Check that x is indeed a BFS.

2 Compute reduced costs c̄j = cj − c⊤BA−1
B Aj for all j ∈ N .

▷ If c̄j ≥ 0 for all j ∈ N , then current BFS is optimal. END.
▷ Otherwise, choose some j for which c̄j < 0.

3 Compute dj
B = −A−1

B Aj (see Clm †.).
▷ If dj

B ≥ 0, then problem is unbounded. END.

▷ Otherwise, let θ∗ = min

{
xi

−d
j
i

∣∣∣∣ i ∈ B, di < 0

}
.

4 Let l ∈ B be such that θ∗ = xl

−d
j
l

. The corresponding xl is the

leaving variable.
5 Form a new basis B̄ = (B \ {l}) ∪ {j}.
6 The other basic variables are xi + θ∗dji for i ̸= l.

7 The entering variable xj assumes θ∗ = xl

−d
j
l

. Go to Step 1 .

Big-M Method:

1 Multiply constraints by −1 to make b ≥ 0 as needed.
2 Add artificial variables y1, y2, · · · , ym to constraints without posi-

tive slack.

3 Apply simplex method on LP with cost min c⊤x+M
m∑

y=1
yi, where

M ≫ 0 is treated as some algebraic variable.

Tableau Method:

1 Start from basis B and its basic columns AB (preferably I, and the
corresponding BFS x = (xB ,xN ) (check)).

Basic xj , j ∈ N xB(1) xB(2) Solution

c cj cB(1) cB(2)

c̄ cj − c⊤BA−1
B Aj 0 0 Obj: −c⊤BxB

B(1) −dj1 =
(
A−1

B Aj

)
1

1 0 xB(1)

B(2) −dj2 =
(
A−1

B Aj

)
2

0 1 xB(2)

2 Choose some j such that j < 0. At that column, for all −dji > 0, i ∈
B, calculate xi

−d
j
i

and pick the smallest one i∗ (0 is also considered).

3 i∗ leaves and j enters. Normalize the row where this happens such
that the cell (xj , xj) = 1.

4 Perform row operations to all rows including c̄ such that the column
of xj is all 0 but one 1.

5 If all c̄ ≥ 0, END; else, return to 2 again.

Two-Phase Method:

Phase I: Find BFS using auxiliary LP.
1 Multiply constraints by −1 to make b ≥ 0 as needed.
2 Add artificial variables y1, y2, · · · , ym to constraints without posi-

tive slack.

3 Apply simplex method on auxiliary LP with cost min
m∑

y=1
yi.

4 If the optimal cost in auxiliary LP is:
▷ zero: A BFS to original LP is found.
▷ positive: Original LP is infeasible. END.

Phase II: Solve original LP.
1 Take BFS found in Phase I to start Phase II.
2 Use cost coefficients of original LP to compute reduced costs.
3 Apply simplex method to original LP.

▷ Either finds an optimum, or detects unboundedness.

2


