MA3252 Linear Programming

Midterm Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

1 Linear Programming (LP) Problem

$$\min_{\mathbf{x}\in\mathbb{R}^n} (\text{or max}) \quad \mathbf{c}^{\top}\mathbf{x}$$

s.t.
$$\mathbf{a}_i^{\top}\mathbf{x} \ge b_i \text{ for some } i;$$
$$\mathbf{a}_i^{\top}\mathbf{x} \le b_i \text{ for some } i;$$
$$\mathbf{a}_i^{\top}\mathbf{x} = b_i \text{ for some } i;$$
$$x_j \ge 0 \text{ for some } j;$$
$$x_j \le 0 \text{ for some } j;$$
$$x_j \in \mathbb{R} \text{ for some } j,$$

where $\mathbf{a}_i = (a_{i,1}, a_{i,1}, \cdots, a_{i,n})^\top \in \mathbb{R}^n, b_i \in \mathbb{R}.$

- The feasible region $P \in \mathbb{R}^n$ is a polyhedron.
- An LP problem may have
 - \triangleright one unique solution; OR
 - ▷ one finite optimal cost with multiple optimal solutions; OR
 - ▷ unbounded optimal cost with no optimal solution; OR
 - \triangleright empty feasible set, where optimal cost equals $+\infty$.

Graphical Representation: In \mathbb{R}^n , $\{\mathbf{x} \mid \mathbf{a}^\top \mathbf{x} = b\}$ is a hyperplane with normal vector a.

• Vector **c** corresponds to the direction of increasing $\mathbf{c}^{\top}\mathbf{x}$.

Standard Form: Minimization + equality + non-negative.

- Maximization objective: $\max \mathbf{c}^{\top} \mathbf{x} \Rightarrow \min -\mathbf{c}^{\top} \mathbf{x}$.
- Inequality constraints: $\mathbf{a}_i^\top \mathbf{x} \le / \ge b_i \Rightarrow \begin{cases} \mathbf{a}_i^\top \mathbf{x} \pm s_i = b_i \\ s_i \ge 0 \end{cases}$
- \triangleright s_i is *slack* variable.
- Non-positive variables: $x_i \leq 0 \Rightarrow x_i^- \geq 0$.
- Free variables: $x_i \Rightarrow (x_i^+ x_i^-); x_i^+, x_i^- \ge 0.$

Convex Sets and Convex Functions:

- Convex set: $\forall \mathbf{x}, \mathbf{y} \in S \ \forall \lambda \in [0, 1] \ [\lambda \mathbf{x} + (1 \lambda) \mathbf{y} \in S].$
- Convex combination: x = ∑_{i=1}^k λ_ixⁱ, where λ_i ∈ [0, 1] s.t. ∑_{i=1}^k λ_i = 1.
 ▷ Any convex combination of two optimal solutions is also an op
 - timal solution.
- Convex hull: Set of convex combinations.
- Convex function: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \ \forall \lambda \in [0, 1] \ [f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) +$ $(1-\lambda)f(\mathbf{y})].$
 - \triangleright f is concave if -f is convex.
 - \triangleright Affine function $d + \mathbf{c}^{\top} \mathbf{x}$ is both convex and concave.
 - \triangleright Thm 1.5.1. If $f_1, f_2, \cdots, f_m : \mathbb{R}^n \to \mathbb{R}$ are convex, then $f(\mathbf{x}) =$ $\max\{f_1(\mathbf{x}), f_2(\mathbf{x}), \cdots, f_m(\mathbf{x})\} \text{ is also convex.} \\ * \text{ Cor 1.5.2. } \max_{i=1,2,\cdots,m} \{d_i + \mathbf{c}_i^\top \mathbf{x}\} \text{ is convex.}$

Example. Reformulate as LP problem:

- $\max \min(x_1, x_2) \Rightarrow \max t \text{ s.t. } t \le x_1; t \le x_2.$
- $|x_1 x_2| \le 2 \Rightarrow x_1 x_2 \le 2; x_1 x_2 \ge -2.$
- $\min |x| \Rightarrow \min \max(x, -x) \Rightarrow \min t \text{ s.t. } t \ge x; t \ge -x.$

Geometry of Linear Programming $\mathbf{2}$

Polyhedra and Extreme Points:

- Polyhedron: $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}.$
 - ▷ A polyhedron is a finite intersection of half-spaces.
- A polyhedron has finite number of vertices/BFS. • 3 definitions of corner points: Consider a convex set $P \subseteq \mathbb{R}^n$,
- \triangleright Extreme point: A point $\mathbf{x}^* \in P$ is an *extreme point* if whenever points $\mathbf{y}, \mathbf{z} \in P$ and scalar $\lambda \in (0, 1)$ are such that $\mathbf{x}^* = \lambda \mathbf{y} + \mathbf{y}$ $(1-\lambda)\mathbf{z}$, we have $\mathbf{y} = \mathbf{z} = \mathbf{x}^*$.

- \triangleright Vertex: A point $\mathbf{x}^* \in P$ is a *vertex* if there is a $\mathbf{c} \in \mathbb{R}^n$ such that $\mathbf{c}^{\top} \mathbf{x}^* > \mathbf{c}^{\top} \mathbf{y}$ for all $\mathbf{y} \in P \setminus {\mathbf{x}^*}$. \triangleright Basic feasible solution (BFS): \mathbf{x}^* is a *BFS* of a polyhedron if *n*
- **linearly independent** constraints are active at \mathbf{x}^* and $\mathbf{x}^* \in P$. * Basic solution: A point where *n* linearly independent constraints are active but not necessarily in P.
- ▷ Thm 2.1.5. In a non-empty polyhedron, an extreme point, a vertex and a BFS are equivalent.
- Degenerate: A basic solution (not necessarily feasible) is degenerate if more than n contraints are active at \mathbf{x}^* .

Basic Feasible Solutions for Standard Polyhedra:

$$\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}\},\$$

where $\mathbf{A} \in \mathbf{R}^{m \times n}$, m < n contains m linearly independent rows.

- Basic solution for standard polyhedra: \mathbf{x}^* is a basic solution iff \triangleright the equality constraints $Ax^* = b$ hold; AND
 - $\triangleright x_i^* = 0$ for n m indices; AND
 - $\triangleright\,$ these n binding constraints are linearly independent.
- Thm 2.2.1. A vector $\mathbf{x}^* \in \mathbb{R}^n$ is a basic solution of the standard form LP iff
 - $\triangleright \mathbf{Ax}^* = \mathbf{b}$: AND
 - \triangleright There exists $B = \{B(1), B(2), \cdots, B(m)\} \subset \{1, 2, \cdots, n\}$ such that
 - * the columns of $\mathbf{A}_B = (\mathbf{A}_{B(1)}, \mathbf{A}_{B(2)}, \cdots, \mathbf{A}_{B(m)})$ are linearly independent; AND
 - * $x_i^* = 0$ for $i \in N = \{1, 2, \dots, n\} \setminus B$. If in addition, $\mathbf{x}_B^* \geq \mathbf{0}$, then \mathbf{x}^* is a BFS.
 - $\triangleright \mathbf{x}_B^* = \mathbf{A}_B^{-1} \mathbf{b}.$
 - \triangleright A degenerate basic solution \mathbf{x}^* has more than n m zero components.
 - \triangleright If n = m + 1, then there are at most two BFSs.
- Adjacent BFS: Extreme points connected by an edge on the boundary.
 - ▷ The corresponding bases share all but one basic column.
 - There are common n-1 linearly independent constraints that ⊳ are active at both of them.

Optimal Solutions at Extreme Points:

- A polyhedron $P \subseteq \mathbb{R}^n$ contains a line if $\exists \mathbf{x}^* \in P \; \exists \mathbf{d} \neq \mathbf{0} \in \mathbb{R}^n \; \forall \lambda \in$ $\mathbb{R} [\mathbf{x}^* + \lambda \mathbf{d} \in P]$. A polyhedron containing an infinite line does not contain an extreme point.
- Thm 2.3.1. Let $\mathbf{A} \subseteq \mathbb{R}^{m \times n}, m \ge n$. Suppose $P = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} =$ \mathbf{b} $\neq \emptyset$. The following are equivalent:
 - $\triangleright~P$ does not contain a line;
 - \triangleright *P* has a BFS;
 - \triangleright P has n linearly independent constraints.
 - ▷ Implication: Every non-empty bounded polyhedron and every non-empty standard form polyhedron has at least one BFS.
- Thm 2.3.3. If an LP has a BFS and an optimal solution, then there exists an optimal solution that is a BFS.
 - ▷ Hence, it suffices to check BFS.

The Simplex Method 3

Feasible Direction and Reduced Cost:

- Feasible direction: For a polyhedron P and a point $\mathbf{x} \in P$, a vector d is a feasible direction if $\mathbf{x} + \theta \mathbf{d} \in P$ for some $\theta > 0$. \triangleright For standard polyhedra, $\mathbf{Ad}=\mathbf{0}.$
- Clm †. Let $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ with $\mathbf{x}_B \ge 0, \mathbf{x}_N = 0$ be a BFS. A direction d moving from **x** to an adjacent BFS is of the form $\mathbf{d}^{j} = \left(\mathbf{d}_{B}^{j}, \mathbf{d}_{N}^{j}\right)$ for some $j \in N$, where

$$\triangleright \mathbf{d}_N^j = \mathbf{e}_j \text{ where } e_{j,j} = 1 \text{ and } e_{j,i} = 0 \text{ for } i \in N \setminus \{j\}; \text{ AND}$$
$$\triangleright \mathbf{d}_N^j = -\mathbf{A}_N^{-1}\mathbf{A}_j.$$

• Reduced cost: Let \mathbf{x} be a basic solution. Let $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$. For each $j \in \{1, 2, \dots, n\}$, the reduced cost \bar{c}_j of variable x_j is defined by $\mathbf{h}^{\top} \mathbf{A}_{\mathbf{p}}^{-1} \mathbf{A}_{j}.$

$$\bar{c}_j = c_j - \mathbf{c}_B^{\mathsf{T}} \mathbf{A}_B^{\mathsf{T}} \mathbf{A}_B$$

- \triangleright For $j \in B$, $\bar{c}_j = 0$. ▷ If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is the unique optimal solution.
- \triangleright A direction \mathbf{d}^j is an improving direction if $\bar{c}_j < 0$.
- ▷ Change in cost in any direction **d**:
- $\mathbf{c}^{\top}\mathbf{d} = \mathbf{c}_B^{\top}\mathbf{d}_B + \mathbf{c}_N^{\top}\mathbf{d}_N = -\mathbf{c}_B^{\top}\mathbf{A}_B^{-1}\mathbf{A}_N\mathbf{d}_N + \mathbf{c}_N^{\top}\mathbf{d}_N.$
- Clm. Let \mathbf{x} be a BFS with basis B. Any feasible direction at \mathbf{x} can be represented as

$$\sum_{j \in N} \lambda_j \mathbf{d}^j \text{ for } \lambda_j \ge 0.$$

• Degenerate: A BFS is degenerate if some element of \mathbf{x}_B is zero. A BFS is non-degenerate if $\mathbf{x}_B = \mathbf{A}_B^{-1}\mathbf{b} > \mathbf{0}$.

- Thm 3.1.6. (Optimality conditions) Consider a BFS x associated with basis matrix \mathbf{A}_B , and let $\mathbf{\bar{c}}$ be corresponding vector of reduced costs.
 - \triangleright If $\bar{\mathbf{c}} \geq \mathbf{0}$, then \mathbf{x} is optimal.
 - \triangleright If **x** is optimal and non-degenerate, then $\bar{\mathbf{c}} \ge \mathbf{0}$.

Simplex Method:

- (1) Start with basis B and its basic columns A_B and BFS \mathbf{x} .
- \triangleright Check that ${\bf x}$ is indeed a BFS.
- (2) Compute reduced costs $\bar{c}_j = c_j c_B^{\top} \mathbf{A}_B^{-1} \mathbf{A}_j$ for all $j \in N$. \triangleright If $\bar{c}_j \ge 0$ for all $j \in N$, then current BFS is optimal. END.
- ▷ Otherwise, choose some j for which c̄_j < 0.
 ③ Compute d^j_B = -A⁻¹_BA_j (see Clm †.).
 - \triangleright If $\mathbf{d}_B^j \geq \mathbf{0}$, then problem is unbounded. END.
- $\triangleright \text{ Otherwise, let } \theta^* = \min \left\{ \frac{x_i}{-d_i^j} \middle| i \in B, d_i < 0 \right\}.$ (4) Let $l \in B$ be such that $\theta^* = \frac{x_l}{-d_l^j}$. The corresponding x_l is the leaving variable.
- (5) Form a new basis $\overline{B} = (B \setminus \{l\}) \cup \{j\}$.
- (6) The other basic variables are $x_i + \theta^* d_i^j$ for $i \neq l$.
- $\overline{\mathcal{O}}$ The entering variable x_j assumes $\theta^* = \frac{x_l}{-d_i^j}$. Go to Step (1).

Big-M Method:

- (i) Multiply constraints by -1 to make $\mathbf{b} \ge \mathbf{0}$ as needed.
- Add artificial variables y_1, y_2, \cdots, y_m to constraints without posi-(2)tive slack.
- (3) Apply simplex method on LP with cost min $\mathbf{c}^{\top}\mathbf{x} + M \sum_{i=1}^{m} y_i$, where
 - $M\gg 0$ is treated as some algebraic variable.

Tableau Method:

(1) Start from basis B and its basic columns \mathbf{A}_B (preferably I, and the corresponding BFS $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$ (check)).

Basic	$x_j, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution
С	c_j	$c_{B(1)}$	$c_{B(2)}$	
$\bar{\mathbf{c}}$	$c_j - \mathbf{c}_B^{\top} \mathbf{A}_B^{-1} \mathbf{A}_j$	0	0	Obj: $-\mathbf{c}_B^\top \mathbf{x}_B$
B(1)	$-d_1^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_1$	1	0	$x_{B(1)}$
B(2)	$-d_2^j = \left(\mathbf{A}_B^{-1}\mathbf{A}_j\right)_2$	0	1	$x_{B(2)}$

- (2) Choose some \overline{j} such that j < 0. At that column, for all $-d_i^j > 0, i \in B$, calculate $\frac{x_i}{-d_i^j}$ and pick the smallest one i^* (0 is also considered).
- (3) i^* leaves and j enters. Normalize the row where this happens such that the cell $(x_i, x_j) = 1$.
- Perform row operations to all rows including $\bar{\mathbf{c}}$ such that the column (4) of x_j is all 0 but one 1.
- (5) If all $\bar{\mathbf{c}} \geq \mathbf{0}$, END; else, return to (2) again.

Two-Phase Method:

- Phase I: Find BFS using auxiliary LP.
- (i) Multiply constraints by -1 to make $\mathbf{b} \geq \mathbf{0}$ as needed.
- (2) Add artificial variables y_1, y_2, \dots, y_m to constraints without positive slack.
- (3) Apply simplex method on auxiliary LP with cost min $\sum_{i=1}^{m} y_i$.
- (4) If the optimal cost in auxiliary LP is: \triangleright zero: A BFS to original LP is found.
 - \triangleright positive: Original LP is infeasible. END.

Phase II: Solve original LP.

- (1) Take BFS found in Phase I to start Phase II.
- (2) Use cost coefficients of original LP to compute reduced costs.
- (3) Apply simplex method to original LP.
 - ▷ Either finds an optimum, or detects unboundedness.