MA3252 Linear Programming

Midterm Examination Helpsheet
AY2023/24 Semester 2 . Prepared by Tian Xiao @snoidetx

1 Linear Programming (LP) Problem

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathbb{R}^{n}}(\text { or } \max) & \mathbf{c}^{\top} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{\top} \mathbf{x} \geq b_{i} \text { for some } i ; \\
& \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \text { for some } i \\
& \mathbf{a}_{i}^{\top} \mathbf{x}=b_{i} \text { for some } i ; \\
& x_{j} \geq 0 \text { for some } j \\
& x_{j} \leq 0 \text { for some } j \\
& x_{j} \in \mathbb{R} \text { for some } j
\end{aligned}
$$

where $\mathbf{a}_{i}=\left(a_{i, 1}, a_{i, 1}, \cdots, a_{i, n}\right)^{\top} \in \mathbb{R}^{n}, b_{i} \in \mathbb{R}$.

- The feasible region $P \in \mathbb{R}^{n}$ is a polyhedron.
- An LP problem may have
\triangleright one unique solution; OR
\triangleright one finite optimal cost with multiple optimal solutions; OR
\triangleright unbounded optimal cost with no optimal solution; OR
\triangleright empty feasible set, where optimal cost equals $+\infty$.
Graphical Representation: In $\mathbb{R}^{n},\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x}=b\right\}$ is a hyperplane with normal vector a.
- Vector \mathbf{c} corresponds to the direction of increasing $\mathbf{c}^{\top} \mathbf{x}$.

Standard Form: Minimization + equality + non-negative.

- Maximization objective: $\max \mathbf{c}^{\top} \mathbf{x} \Rightarrow \min -\mathbf{c}^{\top} \mathbf{x}$.
- Inequality constraints: $\mathbf{a}_{i}^{\top} \mathbf{x} \leq / \geq b_{i} \Rightarrow\left\{\begin{array}{l}\mathbf{a}_{i}^{\top} \mathbf{x} \pm s_{i}=b_{i} \\ s_{i} \geq 0\end{array}\right.$ $\triangleright s_{i}$ is slack variable.
- Non-positive variables: $x_{i} \leq 0 \Rightarrow x_{i}^{-} \geq 0$.
- Free variables: $x_{i} \Rightarrow\left(x_{i}^{+}-x_{i}^{-}\right) ; x_{i}^{+}, x_{i}^{-} \geq 0$.

Convex Sets and Convex Functions:

- Convex set: $\forall \mathbf{x}, \mathbf{y} \in S \forall \lambda \in[0,1][\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in S]$.
- Convex combination: $\mathbf{x}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i}$, where $\lambda_{i} \in[0,1]$ s.t. $\sum_{i=1}^{k} \lambda_{i}=1$.
\triangleright Any convex combination of two optimal solutions is also an optimal solution.
- Convex hull: Set of convex combinations.
- Convex function: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} \forall \lambda \in[0,1][f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+$ $(1-\lambda) f(\mathbf{y})]$.
$\triangleright f$ is concave if $-f$ is convex.
\triangleright Affine function $d+\mathbf{c}^{\top} \mathbf{x}$ is both convex and concave.
\triangleright Thm 1.5.1. If $f_{1}, f_{2}, \cdots, f_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex, then $f(\mathbf{x})=$ $\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{m}(\mathbf{x})\right\}$ is also convex.
* Cor 1.5.2. $\max _{i=1,2, \cdots, m}\left\{d_{i}+\mathbf{c}_{i}^{\top} \mathbf{x}\right\}$ is convex.

Example. Reformulate as LP problem:

- $\max \min \left(x_{1}, x_{2}\right) \Rightarrow \max t$ s.t. $t \leq x_{1} ; t \leq x_{2}$.
- $\left|x_{1}-x_{2}\right| \leq 2 \Rightarrow x_{1}-x_{2} \leq 2 ; x_{1}-x_{2} \geq-2$.
- $\min |x| \Rightarrow \min \max (x,-x) \Rightarrow \min t$ s.t. $t \geq x ; t \geq-x$.

2 Geometry of Linear Programming

Polyhedra and Extreme Points:

- Polyhedron: $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x} \leq \mathbf{b}\right\}$.
\triangleright A polyhedron is a finite intersection of half-spaces.
\triangleright A polyhedron has finite number of vertices/BFS.
- 3 definitions of corner points: Consider a convex set $P \subseteq \mathbb{R}^{n}$,
\triangleright Extreme point: A point $\mathbf{x}^{*} \in P$ is an extreme point if whenever points $\mathbf{y}, \mathbf{z} \in P$ and scalar $\lambda \in(0,1)$ are such that $\mathbf{x}^{*}=\lambda \mathbf{y}+$ $(1-\lambda) \mathbf{z}$, we have $\mathbf{y}=\mathbf{z}=\mathbf{x}^{*}$.
\triangleright Vertex: A point $\mathbf{x}^{*} \in P$ is a vertex if there is a $\mathbf{c} \in \mathbb{R}^{n}$ such that $\mathbf{c}^{\top} \mathbf{x}^{*}>\mathbf{c}^{\top} \mathbf{y}$ for all $\mathbf{y} \in P \backslash\left\{\mathbf{x}^{*}\right\}$.
\triangleright Basic feasible solution (BFS): \mathbf{x}^{*} is a $B F S$ of a polyhedron if n linearly independent constraints are active at \mathbf{x}^{*} and $\mathbf{x}^{*} \in P$.
* Basic solution: A point where n linearly independent constraints are active but not necessarily in P.
\triangleright Thm 2.1.5. In a non-empty polyhedron, an extreme point, a vertex and a BFS are equivalent.
- Degenerate: A basic solution (not necessarily feasible) is degenerate if more than n contraints are active at \mathbf{x}^{*}.

Basic Feasible Solutions for Standard Polyhedra:

$$
\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\}
$$

where $\mathbf{A} \in \mathbf{R}^{m \times n}, m<n$ contains m linearly independent rows.

- Basic solution for standard polyhedra: \mathbf{x}^{*} is a basic solution iff \triangleright the equality constraints $\mathbf{A x} \mathbf{x}^{*}=\mathbf{b}$ hold; AND
$\triangleright x_{i}^{*}=0$ for $n-m$ indices; AND
\triangleright these n binding constraints are linearly independent.
- Thm 2.2.1. A vector $\mathbf{x}^{*} \in \mathbb{R}^{n}$ is a basic solution of the standard form LP iff
$\triangleright \mathbf{A x}^{*}=\mathbf{b} ; \mathrm{AND}$
\triangleright There exists $B=\{B(1), B(2), \cdots, B(m)\} \subset\{1,2, \cdots, n\}$ such that
$*$ the columns of $\mathbf{A}_{B}=\left(\mathbf{A}_{B(1)}, \mathbf{A}_{B(2)}, \cdots, \mathbf{A}_{B(m)}\right)$ are linearly independent; AND
* $x_{i}^{*}=0$ for $i \in N=\{1,2, \cdots, n\} \backslash B$.

If in addition, $\mathbf{x}_{B}^{*} \geq \mathbf{0}$, then \mathbf{x}^{*} is a BFS.
$\triangleright \mathbf{x}_{B}^{*}=\mathbf{A}_{B}^{-1} \mathbf{b}$.
$\triangleright \mathrm{A}^{B}$ degenerate basic solution \mathbf{x}^{*} has more than $n-m$ zero components.
\triangleright If $n=m+1$, then there are at most two BFSs.

- Adjacent BFS: Extreme points connected by an edge on the boundary.
\triangleright The corresponding bases share all but one basic column.
\triangleright There are common $n-1$ linearly independent constraints that are active at both of them.

Optimal Solutions at Extreme Points:

- A polyhedron $P \subseteq \mathbb{R}^{n}$ contains a line if $\exists \mathbf{x}^{*} \in P \exists \mathbf{d} \neq \mathbf{0} \in \mathbb{R}^{n} \forall \lambda \in$ $\mathbb{R}\left[\mathbf{x}^{*}+\lambda \mathbf{d} \in P\right]$. A polyhedron containing an infinite line does not contain an extreme point.
- Thm 2.3.1. Let $\mathbf{A} \subseteq \mathbb{R}^{m \times n}, m \geq n$. Suppose $P=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x}=\right.$ $\mathbf{b}\} \neq \emptyset$. The following are equivalent:
$\triangleright P$ does not contain a line;
$\triangleright P$ has a BFS;
$\triangleright P$ has n linearly independent constraints.
\triangleright Implication: Every non-empty bounded polyhedron and every non-empty standard form polyhedron has at least one BFS.
- Thm 2.3.3. If an LP has a BFS and an optimal solution, then there exists an optimal solution that is a BFS.
\triangleright Hence, it suffices to check BFS.

3 The Simplex Method

Feasible Direction and Reduced Cost:

- Feasible direction: For a polyhedron P and a point $\mathbf{x} \in P$, a vector d is a feasible direction if $\mathbf{x}+\theta \mathbf{d} \in P$ for some $\theta>0$.
\triangleright For standard polyhedra, $\mathbf{A d}=\mathbf{0}$.
- $\operatorname{Clm} \dagger$. Let $\mathbf{x}=\left(\mathbf{x}_{B}, \mathbf{x}_{N}\right)$ with $\mathbf{x}_{B} \geq 0, \mathbf{x}_{N}=0$ be a BFS. A direction d moving from \mathbf{x} to an adjacent BFS is of the form $\mathbf{d}^{j}=\left(\mathbf{d}_{B}^{j}, \mathbf{d}_{N}^{j}\right)$ for some $j \in N$, where
$\triangleright \mathbf{d}_{N}^{j}=\mathbf{e}_{j}$ where $e_{j, j}=1$ and $e_{j, i}=0$ for $i \in N \backslash\{j\} ;$ AND
$\triangleright \mathbf{d}_{B}^{j}=-\mathbf{A}_{B}^{-1} \mathbf{A}_{j}$.
- Reduced cost: Let \mathbf{x} be a basic solution. Let $\mathbf{c}=\left(\mathbf{c}_{B}, \mathbf{c}_{N}\right)$. For each $j \in\{1,2, \cdots, n\}$, the reduced cost \bar{c}_{j} of variable x_{j} is defined by

$$
\bar{c}_{j}=c_{j}-\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \mathbf{A}_{j}
$$

\triangleright For $j \in B, \bar{c}_{j}=0$.
\triangleright If $\bar{c}_{j} \geq 0$ for all $j \in N$, then current BFS is the unique optimal solution.
\triangleright A direction \mathbf{d}^{j} is an improving direction if $\bar{c}_{j}<0$.
\triangleright Change in cost in any direction \mathbf{d} :

$$
\mathbf{c}^{\top} \mathbf{d}=\mathbf{c}_{B}^{\top} \mathbf{d}_{B}+\mathbf{c}_{N}^{\top} \mathbf{d}_{N}=-\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \mathbf{A}_{N} \mathbf{d}_{N}+\mathbf{c}_{N}^{\top} \mathbf{d}_{N}
$$

- Clm. Let \mathbf{x} be a BFS with basis B. Any feasible direction at \mathbf{x} can be represented as

$$
\sum_{j \in N} \lambda_{j} \mathbf{d}^{j} \text { for } \lambda_{j} \geq 0
$$

- Degenerate: A BFS is degenerate if some element of \mathbf{x}_{B} is zero. A BFS is non-degenerate if $\mathbf{x}_{B}=\mathbf{A}_{B}^{-1} \mathbf{b}>\mathbf{0}$.
- Thm 3.1.6. (Optimality conditions) Consider a BFS x associated with basis matrix \mathbf{A}_{B}, and let $\overline{\mathbf{c}}$ be corresponding vector of reduced costs.
\triangleright If $\overline{\mathbf{c}} \geq \mathbf{0}$, then \mathbf{x} is optimal.
\triangleright If \mathbf{x} is optimal and non-degenerate, then $\overline{\mathbf{c}} \geq \mathbf{0}$.

Simplex Method:

(1) Start with basis B and its basic columns \mathbf{A}_{B} and BFS x. \square Check that \mathbf{x} is indeed a BFS.
(2) Compute reduced costs $\bar{c}_{j}=c_{j}-\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \mathbf{A}_{j}$ for all $j \in N$.
\triangleright If $\bar{c}_{j} \geq 0$ for all $j \in N$, then current BFS is optimal. END.
\triangleright Otherwise, choose some j for which $\bar{c}_{j}<0$.
(3) Compute $\mathbf{d}_{B}^{j}=-\mathbf{A}_{B}^{-1} \mathbf{A}_{j}$ (see $\mathbf{C l m} \dagger$.).
\triangleright If $\mathbf{d}_{B}^{j} \geq \mathbf{0}$, then problem is unbounded. END.
\triangleright Otherwise, let $\theta^{*}=\min \left\{\left.\frac{x_{i}}{-d_{i}^{j}} \right\rvert\, i \in B, d_{i}<0\right\}$.
(4) Let $l \in B$ be such that $\theta^{*}=\frac{x_{l}}{-d_{l}^{j}}$. The corresponding x_{l} is the leaving variable.
(5) Form a new basis $\bar{B}=(B \backslash\{l\}) \cup\{j\}$.
(6) The other basic variables are $x_{i}+\theta^{*} d_{i}^{j}$ for $i \neq l$.
(7) The entering variable x_{j} assumes $\theta^{*}=\frac{x_{l}}{-d_{l}^{j}}$. Go to Step (1).

Big-M Method:

(1) Multiply constraints by -1 to make $\mathbf{b} \geq \mathbf{0}$ as needed.
(2) Add artificial variables $y_{1}, y_{2}, \cdots, y_{m}$ to constraints without positive slack.
(3) Apply simplex method on LP with cost $\min \mathbf{c}^{\top} \mathbf{x}+M \sum_{y=1}^{m} y_{i}$, where $M \gg 0$ is treated as some algebraic variable.

Tableau Method:

(1) Start from basis B and its basic columns \mathbf{A}_{B} (preferably \mathbf{I}, and the corresponding BFS $\mathbf{x}=\left(\mathbf{x}_{B}, \mathbf{x}_{N}\right)$ (check)).

Basic	$x_{j}, j \in N$	$x_{B(1)}$	$x_{B(2)}$	Solution
\mathbf{c}	c_{j}	$c_{B(1)}$	$c_{B(2)}$	
$\overline{\mathbf{c}}$	$c_{j}-\mathbf{c}_{B}^{\top} \mathbf{A}_{B}^{-1} \mathbf{A}_{j}$	0	0	$\mathrm{Obj}:-\mathbf{c}_{B}^{\top} \mathbf{x}_{B}$
$B(1)$	$-d_{1}^{j}=\left(\mathbf{A}_{B}^{-1} \mathbf{A}_{j}\right)_{1}$	1	0	$x_{B(1)}$
$B(2)$	$-d_{2}^{j}=\left(\mathbf{A}_{B}^{-1} \mathbf{A}_{j}\right)_{2}$	0	1	$x_{B(2)}$

(2) Choose some j such that $j<0$. At that column, for all $-d_{i}^{j}>0, i \in$ B, calculate $\frac{x_{i}}{-d_{i}^{j}}$ and pick the smallest one i^{*} (0 is also considered).
(3) i^{*} leaves and j enters. Normalize the row where this happens such that the cell $\left(x_{j}, x_{j}\right)=1$.
(4) Perform row operations to all rows including $\overline{\mathbf{c}}$ such that the column of x_{j} is all 0 but one 1 .
(5) If all $\overline{\mathbf{c}} \geq \mathbf{0}$, END; else, return to (2) again.

Two-Phase Method:

Phase I: Find BFS using auxiliary LP.
(1) Multiply constraints by -1 to make $\mathbf{b} \geq \mathbf{0}$ as needed.
(2) Add artificial variables $y_{1}, y_{2}, \cdots, y_{m}$ to constraints without positive slack.
(3) Apply simplex method on auxiliary LP with cost min $\sum_{y=1}^{m} y_{i}$.
(4) If the optimal cost in auxiliary LP is:
\triangleright zero: A BFS to original LP is found.
\triangleright positive: Original LP is infeasible. END.
Phase II: Solve original LP.
(1) Take BFS found in Phase I to start Phase II.
(2) Use cost coefficients of original LP to compute reduced costs.
(3) Apply simplex method to original LP.
\triangleright Either finds an optimum, or detects unboundedness.

