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1 Linear Programming (LP) Problem

min (or max) c'x
x€R™

s.t. a;rx > b; for some i;

a;rx < b; for some i;

a] x = b; for some i;

x; > 0 for some j;
z; <0 for some j;

z; € R for some j,

where a; = (ai,1,ai1, + ,a;n)' €R" b €R.

e The feasible region P € R" is a polyhedron.
e An LP problem may have
> one unique solution; OR
> one finite optimal cost with multiple optimal solutions; OR
> unbounded optimal cost with no optimal solution; OR
> empty feasible set, where optimal cost equals +oo.

Graphical Representation: In R?, {x | a’ x = b} is a hyperplane with
normal vector a.

e Vector ¢ corresponds to the direction of increasing ¢! x.

0 “\Z1

Standard Form: Minimization + equality + non-negative.

T ; T

e Maximization objective: maxc' x = min—c'x.

T —
. . a/ xts; =b;
e Inequality constraints: a;rx </>b=> B ¢ ‘
s; >0
> s; is slack variable.
e Non-positive variables: z; < 0=z, > 0.

—x; );x+ z; >0.

e Free variables: z; = (:pl T

Convex Sets and Convex Functions:
e Convex set: Vx,y € SV € [0 1] [Ax+ (1 -Ny € S].

e Convex combination: x = Z Aix?, where A; € [0,1] s.t. Z A =1
=1 =1
> Any convex comblnatlon of two optimal solutions is also an op-

timal solution.
e Convex hull: Set of convex combinations.
e Convex function: Vx,y € R*"VA € [0,1] [f(Ax+ (1 = N)y) < Af(x) +
(1= N ).
> f is concave if —f is convex.
> Affine function d+ ¢ x is both convex and concave.
> Thm 1.5.1. If f1, fo, -+, fm : R™ — R are convex, then f(x) =
max{ f1(x), f2(x), -, fm(x)} is also convex.

x Cor 1.5.2. max {d; + ¢] x} is convex.
i=1,2. m

Ezample. Reformulate as LP problem:
e maxmin(zi,x2) = maxts.t. t < x1;t < xa.
° \xl 7:B2‘ <2=x1 —x22 < 2521 —x2 > —2.
e min |z| = minmax(x, —z) = mint s.t. t > x;¢t > —x.

2 Geometry of Linear Programming

Polyhedra and Extreme Points:

e Polyhedron: {x € R" | Ax < b}.
> A polyhedron is a finite intersection of half-spaces.
> A polyhedron has finite number of vertices/BFS.
e 3 definitions of corner points: Consider a convex set P C R™,
> Extreme point: A point x* € P is an extreme point if whenever
points y,z € P and scalar A € (0,1) are such that x* = \y +
(1 =Xz, we have y = z = x*.

> Vertex: A point x* € P is a vertez if there is a ¢ € R™ such
that cTx* > cTy forally € P\ {x*}.
> Basic feasible solution (BFS): x* is a BFS of a polyhedron if n
linearly independent constraints are active at x* and x* € P.
* Basic solution: A point where n linearly independent con-
straints are active but not necessarily in P.
> Thm 2.1.5. In a non-empty polyhedron, an extreme point, a
vertex and a BFS are equivalent.
e Degenerate: A basic solution (not necessarily feasible) is degenerate
if more than n contraints are active at x*.

Basic Feasible Solutions for Standard Polyhedra:

where A € R™*™ m < n contains m linearly independent rows.

e Basic solution for standard polyhedra: x* is a basic solution iff
> the equality constraints Ax* = b hold; AND
> x} = 0 for n —m indices; AND
> these n binding constraints are linearly independent.
e Thm 2.2.1. A vector x* € R" is a basic solution of the standard
form LP iff
> Ax* = b; AND
> There exists B = {B(1), B(2),---,
that
* the columns of Ap = (AB(l), Ap),
early independent; AND
* 2 =0forie N={1,2,---,n}\ B.
If in addition, x3; > 0, then x* is a BFS.
> x5 = Ag'b.
> A degenerate basic solution x* has more than n — m zero com-
ponents.
> If n = m + 1, then there are at most two BFSs.
e Adjacent BFS: Extreme points connected by an edge on the bound-
ary.
> The corresponding bases share all but one basic column.
> There are common n — 1 linearly independent constraints that
are active at both of them.

B(m)} C {1,2,--- ,n} such

, AB(m)) are lin-

Optimal Solutions at Extreme Points:

e A polyhedron P C R"™ contains a line if 3Ix* € P 3d #0 € R" VA €
R [x* + Ad € P]. A polyhedron containing an infinite line does not
contain an extreme point.

e Thm 2.3.1. Let A CR™*" m > n. Suppose P = {x € R" | Ax =
b} # (. The following are equivalent:

> P does not contain a line;

> P has a BFS;

> P has n linearly independent constraints.

> Implication: Every non-empty bounded polyhedron and every
non-empty standard form polyhedron has at least one BFS.

e Thm 2.3.3. If an LP has a BFS and an optimal solution, then there
exists an optimal solution that is a BF'S.

> Hence, it suffices to check BFS.

3 The Simplex Method

Feasible Direction and Reduced Cost:

e Feasible direction: For a polyhedron P and a point x € P, a vector

d is a feasible direction if x + 0d € P for some 6 > 0.
> For standard polyhedra, Ad = 0.

e Clm }. Let x = (xp,xn) withxp > 0,xx5 = 0 be a BFS. A direction
d moving from x to an adjacent BFS is of the form d7 = (dg37 dg\,)
for some j € N, where

> d;\, =e; whereej; =1and e;j; =0 forie N\ {j}; AND
> dy =-AR'A;.

e Reduced cost: Let x be a basic solution. Let ¢ = (¢, cy). For each
j€{1,2,---,n}, the reduced cost ¢; of variable x; is defined by

Cj =¢j — CgABlAJ‘.
> For j € B, ¢; =0.
> If &; > 0 for all j € N, then current BFS is the unique optimal
solution. ‘
> A direction d’ is an improving direction if ¢; < 0.
> Change in cost in any direction d:
c'd=cfdp+cldy = —cFAZ ' Andy +cldn.

e Clm. Let x be a BFS with basis B. Any feasible direction at x can

be represented as
> Ajd? for A; > 0.
JEN

e Degenerate: A BFS is degenerate if some element of xp is zero. A

BFS is non-degenerate if xg = Aglb > 0.



e Thm 3.1.6. (Optimality conditions) Consider a BFS x associated

with basis matrix A g, and let ¢ be corresponding vector of reduced
costs.

> If € > 0, then x is optimal.
> If x is optimal and non-degenerate, then ¢ > 0.

Simplex Method:

@ Start with basis B and its basic columns Ap and BFS x.
> Check that x is indeed a BFS.
@ Compute reduced costs ¢; = c; — chglAj for all j € N.
> If ¢; > 0 for all j € N, then current BFS is optimal. END.
> Otherwise, choose some j for which ¢; < 0.
® Compute d% = —AZ*A; (see Clm f.).
> If d%; > 0, then problem is unbounded. END.

> Otherwise, let §* = min j;j ‘ i€ B,d; < 0}.
@ Let I € B be such that 6* = _m—éj
1

The corresponding x; is the
leaving variable.

® Form a new basis B = (B \ {{}) U {j}.

The other basic variables are z; + 0*d? for i # 1.

@ The entering variable z; assumes 6* = _x—é{ Go to Step (D).

Big-M Method:

(@® Multiply constraints by —1 to make b > 0 as needed.
(@ Add artificial variables y1,¥y2,- - ,ym to constraints without posi-
tive slack.

m
(® Apply simplex method on LP with cost min cT'x+M > yi, where
y=1

M > 0 is treated as some algebraic variable.

Tableau Method:

(@ Start from basis B and its basic columns A g (preferably I, and the
corresponding BFS x = (xp,xn) (check)).

Basic zj,j €N T(1) | TB(2) Solution

C Cj CB(l) CB(Q)

c cj — c}gAglAj 0 0 Obj: fchB
BA) | —dl = (A;Aj)1 1 0 ZB()

(@ Choose some j such that j < 0. At that column, for all —dg > 0,7 €
B, calculate I;j and pick the smallest one i* (0 is also considered).

® i* leaves and j enters. Normalize the row where this happens such
that the cell (z;,z;) = 1.

(@ Perform row operations to all rows including € such that the column
of z; is all 0 but one 1.

(® If all € > 0, END; else, return to @ again.

Two-Phase Method:

Phase I: Find BF'S using auxiliary LP.
(@ Multiply constraints by —1 to make b > 0 as needed.
(@ Add artificial variables y1,¥y2,--- ,ym to constraints without posi-
tive slack. .
(® Apply simplex method on auxiliary LP with cost min > ;.
y=1
(@ If the optimal cost in auxiliary LP is:
> zero: A BFS to original LP is found.
> positive: Original LP is infeasible. END.

Phase II: Solve original LP.
@ Take BFS found in Phase I to start Phase II.
@ Use cost coefficients of original LP to compute reduced costs.
(® Apply simplex method to original LP.

> Either finds an optimum, or detects unboundedness.




