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Sentential Logic

Well-Formed Formulas (WFFs): (¬Ai) or (Ai → Aj).
Length of Formulas: Every symbol, atom or bracket has length 1.
Structural Induction for Formulas If a set of formulaes S contains
all atoms and truth-constants and is closed under E¬, E→, E↔, E∧, E∨, E⊕
then S contains every WFF.
Proposition Let S be the set of all expressions which have the same
amount of opening and closing brackets. Then S contains all WFFs.
Truth Assignment: A truth-assignment ν is a mapping which assigns
to every atom a truth-value (0 or 1). ν̄ extends ν to all WFFs:

1. ν̄(0) = 0; ν̄(1) = 1; ν̄(Ak) = ν(Ak);
2. ν̄(¬α) = 1− α;
3. ν̄(α ∧ β) = ν̄(α) · ν̄(β);
4. ν̄(α ∨ β) = ν̄(α) + ν̄(β)− ν̄(α) · ν̄(β);
5. ν̄(α → β) = ν̄((¬α) ∨ β);
6. ν̄(α⊕ β) = ν̄(α) + ν̄(β)− 2 · ν̄(α) · ν̄(β);
7. ν̄(α ↔ β) = ν̄(¬(α⊕ β)).

Tautological Implication: If X is a set of WFFs and α is a for-
mula, one says that X tautologically implies α (written X ⊨ α) iff every
truth-assignment ν for atoms occurring in X or α satisfies that whenever
ν̄(β) = 1 for all β ∈ X then ν̄(α) = 1. α is a tautology iff ∅ ⊨ α.
Satisfiable: A set of formulaes X is satisfiable iff there is a truth-
assignment ν such that ν̄(α) = 1 for all α ∈ X.
Compactness Theorem If X is an infinite set of formulaes such that
every finite subset Y ⊆ X is satisfiable, then X itself is also satisfiable.
Lemma 13A Every WFF has the same number of opening and closing
brackets.
Lemma 13B If a WFF is split into two non-empty expressions α and β,
then α has more opening than closing brackets and β has more closing
than opening brackets.
Polish Notation: α ∧ β becomes ∧αβ.
Rules for Omitting Brackets

1. The outmost bracket can be omitted.
2. ¬ binds to what follows it directly.
3. ∧ binds more than ∨, than →, than ↔.
4. α → β → γ is bracketed as α → (β → γ).

Subformulas: Given a WFF α = a1a2 · · ·an, β is a subformula of α iff
β is a WFF and furthermore β = aiai+1 · · ·aj for some i, j with 1 ≤ i ≤
j ≤ n.
Proposition Every construction sequence for a WFF α contains besides
α all subformulas of α.
Recursion Theorem Assume that C is freely generated subset of D
with respect to a base set B and constructor functions f, g and further
assume that the “generation is free”, that is, for each x ∈ C, exactly one
of the following cases holds:

1. x ∈ B;
2. There are y, z ∈ C with x = f(y, z) and y, z uniquely depend on x;
3. There is an y ∈ C with x = g(y) and y uniquely depends on x.

Furthermore, assume that there is a further set E and that there are
functions h : B → E, f̄ : E×E → E, ḡ : E → E. Then there is a unique
function h̄ such that

1. For all x ∈ B, h̄(x) = h(x);
2. For all x,y ∈ C, h̄(f(x,y)) = f̄(h̄(x), h̄(y));
3. For all x ∈ C, h̄(g(x)) = ḡ(h̄(x)).

Majority Connective: #(α, β, γ).
Boolean Function: For a WFF α using atoms A1, · · · ,An, one can
define the Boolean function Bn

α(x1, · · · ,xn).
Partial Order on Boolean Functions: Bn

α ≤ Bn
β iff for all

{x1, · · · ,xn} ∈ {0,1}n, Bn
α(x1, · · · ,xn) ≤ Bn

β(x1, · · · ,xn).

Theorem 15A Let α and β be WFFs whose sentence symbols are among
A1, · · · ,An. The following statements are true:

1. {α} ⊨ β iff Bn
α ≤ Bn

β ;
2. {α} ⊨ β and {β} ⊨ α iff Bn

α = Bn
β ;

3. ∅ ⊨ α iff Bn
α = Bn
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Theorem 15B For every n-place Boolean function f there is a WFF α
using atoms A1, · · · ,An such that f = Bn

α (disjunction of conjunctive
clauses).
Disjunctive Normal Form: Disjunction of conjunctive clauses.
Conjunctive Normal Form: Conjunction of disjunctive clauses.
Corollary 15C For every α one can find an equivalent β in disjunctive
normal form.
Completeness: A set S of connectives is complete if all Boolean functions
with at least one input variable can be represented by a formula α using
these connectives.
Theorem 15D The following sets of connectives are complete: {¬,∧,∨},

{¬,∧}, {¬,∨}. {∧,∨} and {⊕,∧} are not complete.
Fuzzy Logic:

1. 0 = min(Q);
2. 1 = max(Q);
3. If p,q ∈ Q then 1− p,min{p+ q,2− p− q} ∈ Q.

Fuzzy Connectives:

1. p ∧ q = min{p, q};
2. p ∨ q = max{p, q};
3. ¬p = 1− p;
4. p → q = min{1 + q − p, 1};
5. p ↔ q = min{1 + q − p, 1 + p− q};
6. p⊕ q = min{p+ q, 2− p− q}.

Fuzzy Tautologies:

1. S ⊨ α iff for every ν there is a β ∈ S ∪ {1} with ν̄(β) ≤ ν̄(α).
2. α is a tautology iff ∅ ⊨ α.
3. All formulas made from atoms and connectives ∧, ∨, ¬ are evaluated

to 1
2
in the case that 1

2
∈ Q and all atoms take the value 1

2
and hence

none of them is a tautology.
4. α ↔ α and α → α are tautologies and indeed, α ↔ β is a tautology

iff for all Q-valued truth-assignments ν, ν̄(α) = ν̄(β).

Corollary 17A If S ⊨ α then there is a finite S′ ⊆ S with S′ ⊨ α.

• Works also for fuzzy logic where Q is a finite set.

Compactness Theorem for Fuzzy Logic Let Q be a compact set of

possible truth-values for fuzzy logic (i.e. Q =
{
0, 1

k
, · · · , k−1

k
,1

}
or

Q = {r ∈ R : 0 ≤ r ≤ 1}). Then a countable set S of formulas is satis-
fiable iff S is finitely satisfiable.
Notions of Effectiveness:

1. There is a program in a usual programming language (e.g.
JavaScript) which computes the function.

2. One defines the function from some basic functions by recursion in
one variables where + and − and comparison-functions are defined.
Furthermore, if f is a recursive function, then one can define a new
function g which maps x,y to the least z such that f(x,y, z) = 0;
note that g(x,y) is undefined if such a z cannot be found.

3. An effective function f is given by a graph which is a Diophantine
set, that is, there is a polynomial p with coefficients from Z such that
f(x) = y iff there are z1, · · · , zk with f(x,y, z1, · · · , zk) = 0. While
the coefficients of the polynomial are integers which can be negative,
the values for x,y, z1, · · · , zk are all from N.

Decidable Sets: A set L is decidable iff there is a recursive function f
such that for all inputs x, f(x) = 1 when x ∈ L and f(x) = 0 when x /∈ L.
That is, some algorithm can determine which possible inputs are in the
set L and which are not.
Recursively Enumerable Sets: A set L is recursively enumerable iff
there is an algorithm (i.e. recursive function) which enumerates the mem-
bers of L; ∅ is defined to be recursively enumerable.
Theorem 17B There is an algorithm which can check whether an expres-
sion α is a well-formed formula; that is, the set of all WFFs is decidable.
Theorem 17C Given a finite set of well-formed formulas S and a well-
formed formula α, one can decide whether S ⊨ α.
Corollary 17D If S is finite then the set {α : α is a WFF and S ⊨ α} is
decidable.
Theorem 17E A set is recursively enumerable iff there is an algorithm
which, for all x ∈ A, outputs “yes”; however, for x /∈ A, the function f(x)
might either never output something or output “no”.
Theorem 17F (Kleene’s Theorem) A set A is decidable iff both the
set A and its complement are recursively enumerable.
Theorem 17G If S is a recursively enumerable set of formulas then
{α : α is a WFF and S ⊨ α} is recursively enumerable.
Theorem 17H If S is a recursively enumerable set of formulas then there
is a further decidable set T of formulas with ∀ WFF α [S ⊨ α iff T ⊨ α].
Closure Properties: The following statements are true for recursively
enumerable and decidable subsets of N:

1. Every infinite recursively enumerable set X has an infinite recursive
subset Y.

2. IfX andY are both recursively enumerable, so areX ∪Y andX ∩Y.
3. If X and Y are both decidable, so are X ∪Y, X ∩Y and N−X.

First-Order Logic

Atomic Formulas: P (t1, t2, · · · , tn) for an n-ary predicate and n terms;
OR t1 = t2; OR q for a truth-value q.
Well-Formed Formulas (WFFs): Atomic formulas + Logical connec-
tives + Quantifiers (∃x [P (x)] is equivalent to ¬∀vi [¬P (vi)]).
Free Occurence: Occurence of variable in atomic formulas is free;
occurence of vi within the range of ∀vi [α] is bound.
Sentence: Every WFF which satisfies h(α) = ∅ is a sentence.
Structure: A structure A consists of a non-empty domain A which
assigns to every constant, function and predicate a value from A or from
functions of An → A or from predicates of An → Q.
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Theorem 22A Given a structure A, a formula α and two default
assignments to the variables s1 and s2. If this agrees on all variables
which occur free in α, then A, s1 ⊨ α iff A, s2 ⊨ α.
Corollary 22B If α is a sentence, then either A, s ⊨ α for all s or for no
s.
Logical Implication: Let S be a set of WFFs and α be a WFF. Then
S ⊨ α iff for every structure A and every value-assignment s to the
variables, if A, s ⊨ β for all β ∈ S then A, s ⊨ α.
Logical Equivalence: Two formulas are logically equivalent iff {α} ⊨ β
and {β} ⊨ α.
Validity: A formula α is valid iff ∅ ⊨ α.
Satisfiability: A formula α is satisfiable iff there is a structure A and a
value-assignment s such that A, s ⊨ α.
Corollary 22C S ⊨ α depends only on the structures involved and not
on the s considered.
Definability in a Structure: An n-ary relation R/n-ary function
f/constant c is definable in a structure A iff there is a first-order formula
α with free variables v1, v2, · · · , vn such that for all a1, a2, · · · , an ∈ A,

R(a1, a2, · · · , an) is true ⇔ A, s(v1|a1, v2|a2, · · · , vn|an) ⊨ α;

f(a1, a2, · · · , an) = b ⇔ A, s(v1|a1, v2|a2, · · · , vn|an, vn+1|b) ⊨ α;

a = c ⇔ A, s(v1|a) ⊨ α.

Definability of Classes of Structures: A class of structures is definable
iff there is a set S of axioms which defines it.
Elementary Class: A class of structures is called elementary iff there is
a single sentence α such that a structure belongs to C iff it satisfies the
formula α.

• Elementary in a wider sense: Replace α with S.

Homomorphism: A mapping h from the domain A of A to the do-
main B of B is called a homomorphism iff it satisfies the following condi-
tions:

1. For every constant symbol c, h(cA) = cB.
2. For every n-ary function symbol f and all a1, a2, · · · , an ∈ A,

h
(
fA(a1, · · · , an)

)
= fB(h(a1), · · · , h(an)).

3. For every n-ary predicate symbol P and all a1, a2, · · · , an ∈ A,
PA(a1, · · · , an) ⇒ PB(h(a1), · · · , h(an)).

Strong Homomorphism: PA(a1, · · · , an) ⇔ PB(h(a1), · · · , h(an)).
Isomorphism: Strong homomorphism + injective + surjective.
Homomorphism Theorems

1. ∀t [h(s̄(t)) = s̄′(t)].
2. For every atomic formula α, if A, s ⊨ α then B, s′ ⊨ α.
3. If h is a strong homomorphism and α has no equality or quantifier,

A, s ⊨ α iff B, s′ ⊨ α.
4. If h is a strong injective homomorphism and α has no quantifer,

A, s ⊨ α iff B, s′ ⊨ α.
5. If h is a strong surjective homomorphism and α has no equality,

A, s ⊨ α iff B, s′ ⊨ α.
6. If h is an isomorphism, then A, s ⊨ α iff B, s′ ⊨ α.

Elementary Equivalence: Two structures A and B are elementarily
equivalent iff they use the same logical language and for all sentences α,
A ⊨ α iff B ⊨ α.
Corollary 22D Isomorphic structures are all elementarily equivalent.
Axioms for Formal Proofs

• Modus Ponens: If S ⊨ α and S ⊨ α → β, then S ⊨ β.

• Axiom 1: α for every α which is obtained by taking a tautology in
sentential logic and replacing all axioms by WFFs in a consistent way
(the same atom needs always be replaced by the same formula).

• Axiom 2: ∀x[α] → (α)xt for all well-formed formula α, variables x
and terms t where α does not have any variable names inside t which
are bound at the place x.

• Axiom 3: ∀x [α → β] → ∀x [α] → ∀x [β].

• Axiom 4: α → ∀x [α] if x does not occur free in α.

• Axiom 5: x = x for every variable x.

• Axiom 6: x = y → α → β for all variables x, y and all atomic
formulas α and all β derived from α by replacing some occurences of
x by occurences of y or vice versa.

• Axiom 7: ∀x [α] whenever α is already in Λ and x is any variable.

• Deduction Theorem: If S ∪ {α} ⊢ β, then S ⊢ α → β.

• Contraposition: S ∪ {α} ⊢ β, then S ∪ {¬β} ⊢ ¬α.

• Generalisation Theorem: If S ⊢ α and the variable x does not
occur free in S, then S ⊢ ∀x [α].

• Corollary 24G: Assume that S ⊢ (α)xc , where the constant symbol
c neither occurs in S nor in α, then S ⊢ ∀x [α].

• Existential Instantiation: Assume c does not occur free in S. If
S ∪ {(α)xc } ⊢ α then S ∪ {∃x [α]} ⊢ α.

Tautological Implication: If n formulas β1, · · · , βn tautologically imply
α, then {β1, · · · , βn} ⊢ α.
Inconsistency: A set S of formulas is inconsistent if one can derive an
antitautology, so that every formula can be derived from S.
Reductio and Absurdum: If S ∪ {α} is inconsistent, then S ⊢ ¬α.
Soundness: A proof-system is called sound iff it only proves correct
theorems, that is, whenever S ⊢ α we have S ⊨ α.
Completeness: A proof-system is called complete iff it proves every
correct theorem, that is, whenever S ⊨ α we have S ⊢ α.
Lemma If a formula α is valid, then so is ∀x [α].
Soundness Theorem If S ⊢ α, then S ⊨ α.
Gödel’s Completeness Theorem If S ⊢ α, then S ⊨ α.
Compactness Theorem Let S be a set of WFFs and α be a WFF. Then
the following statements hold:

1. If S ⊨ α then S has a finite subset T such that T ⊨ α.
2. If every finite subset of S is satisfiable, so is S.

Reasonable Language: A logical language is reasonable iff it has at
most countably many logical symbols and an algorithm can enumerate
these symbols together with information where they are constants, func-
tions or predicates and their arities.
Enumerability Theorem Let the logical language be reasonable and T
be a recursively enumerable set of WFFs. Then the set {α : T ⊨ α} is
recursively enumerable.
Corollary If S is a recursive enumerable set of formulas such that for
each α, either S ⊨ α or S ⊨ ¬α but not both, then the set of formulas
logically implied by S is decidable.
Theory: A theory is a set T of sentences with the property that for all
sentences α, if T ⊢ α then α ∈ T . The theory of a structure A is the set
of all sentences which are true in A.
Theorem 26A If a set S of sentences has arbitrarily large finite models,
then S has an infinite model.
Corollary 26B Consider some fixed logical language. The class of all
infinite structures in this language is not an elementary class, but it is an
elementary class in a wider sense. The class of all finite structures in this
language is not an elementary class in a wider sense.
Theorem 26C Assume that a finite structure A has a finite language.
Then the theory of A is decidable.
Corollary 26D Assume that a logical language is reasonable, then one
can recursively enumerate the set T of all sentences α such that there is
a finite model A satisfying α.
Theorem 26E Let the logical language be finite.

1. Assume that S is a recursively enumerable set of sentences. Now
one can enumerate all finite structures A not satisfied by S; this is
done by forming for each finite structure A the sentence αA and then
enumerate A whenever one has found a proof for S ⊢ ¬αA.

2. Given S as above, one can enumerate all sentences β, such that S∪{β}
does not satisfy all finite models such that there is a finite model A
with S ∪ {β} ⊢ ¬αA.

Trakhtenbrot’s Theorem The set T of all sentences α which are true
in all finite structures is, for most logical languages, neither decidable nor
recursively enumerable.
Theorem of Lövenheim and Skolem Let the logical language be at
most countable and S be the set of all WFFs. Then

1. If S is satisfiable then S has an at most countable model.
2. If S has a model then S has an at most countable model.

Axiomatisable: A theory T is axiomatisable iff there is a decidable set
S of sentences such that a sentence α belongs to T iff S ⊢ α. A theory T
is finitely axiomatisable iff the S witnessing that T is axiomatisable can
be chosen ot be finite.
Theorem 26H If S is a set of sentences and T = {α : S ⊢ α} is finitely
axiomatisable, then there is a finite subset S′ of S such that T = {α :
S′ ⊢ α}.
Corollary 26I The following are equivalent:

• T is axiomatisable;

• T is recursively enumerable;

• There is a recursively enumerable subset S ⊆ T with T = {α : S ⊢ α};

• There is a recursively enumerable subset S ⊆ T with T = {α : S ⊨ α}.

κ-Categorical: A theory T is κ-categorical iff (a) it has a model of
cardinality κ and (b) any two models of cardinality κ are isomorphic.
Los-Vaught Test: If a theory is κ-categorical for some κ and for each
αn either αn ∈ T or ¬αn ∈ T then T is complete.
Theorem 26J The theory of algebraically closed fields of characteristic
0 is complete and decidable.
Theorem 26K The theory of the dense linear orders without endpoints
is ℵ0-categorical and thus decidable. However, this theory is not ℵ1-
categorical.
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