MA4207 Mathematical Logic

AY2022/23 Semester 2 \cdot Prepared by Tian Xiao @snoidetx

Sentential Logic

Well-Formed Formulas (WFFs): $(\neg \mathbf{A}_i)$ or $(\mathbf{A}_i \rightarrow \mathbf{A}_j)$.

Length of Formulas: Every symbol, atom or bracket has length 1. <u>Structural Induction for Formulas</u> If a set of formulaes **S** contains all atoms and truth-constants and is closed under $\mathcal{E}_{\neg}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}, \mathcal{E}_{\wedge}, \mathcal{E}_{\vee}, \mathcal{E}_{\oplus}$ then **S** contains every WFF.

Proposition Let **S** be the set of all expressions which have the same amount of opening and closing brackets. Then **S** contains all WFFs. **Truth Assignment**: A truth-assignment ν is a mapping which assigns to every atom a truth-value (**0** or **1**). $\bar{\nu}$ extends ν to all WFFs:

- 1. $\bar{\nu}(\mathbf{0}) = \mathbf{0}; \bar{\nu}(\mathbf{1}) = \mathbf{1}; \bar{\nu}(\mathbf{A}_{\mathbf{k}}) = \nu(\mathbf{A}_{\mathbf{k}});$
- 2. $\bar{\nu}(\neg \alpha) = 1 \alpha;$
- 3. $\bar{\nu}(\alpha \wedge \beta) = \bar{\nu}(\alpha) \cdot \bar{\nu}(\beta);$
- 4. $\bar{\nu}(\alpha \lor \beta) = \bar{\nu}(\alpha) + \bar{\nu}(\beta) \bar{\nu}(\alpha) \cdot \bar{\nu}(\beta);$
- 5. $\bar{\nu}(\alpha \to \beta) = \bar{\nu}((\neg \alpha) \lor \beta);$
- 6. $\bar{\nu}(\alpha \oplus \beta) = \bar{\nu}(\alpha) + \bar{\nu}(\beta) \mathbf{2} \cdot \bar{\nu}(\alpha) \cdot \bar{\nu}(\beta);$
- 7. $\bar{\nu}(\alpha \leftrightarrow \beta) = \bar{\nu}(\neg(\alpha \oplus \beta)).$

Tautological Implication: If **X** is a set of WFFs and α is a formula, one says that **X** *tautologically implies* α (written **X** $\models \alpha$) iff every truth-assignment ν for atoms occurring in **X** or α satisfies that whenever $\bar{\nu}(\beta) = \mathbf{1}$ for all $\beta \in \mathbf{X}$ then $\bar{\nu}(\alpha) = 1$. α is a *tautology* iff $\emptyset \models \alpha$.

Satisfiable: A set of formulaes **X** is *satisfiable* iff there is a truthassignment ν such that $\bar{\nu}(\alpha) = \mathbf{1}$ for all $\alpha \in \mathbf{X}$.

Compactness Theorem If **X** is an infinite set of formulaes such that every finite subset $\mathbf{Y} \subseteq \mathbf{X}$ is satisfiable, then **X** itself is also satisfiable.

Lemma 13A Every WFF has the same number of opening and closing brackets. **Lemma 13B** If a WFF is split into two non-empty expressions α and β ,

Lemma 13B If a WFF is split into two non-empty expressions α and β , then α has more opening than closing brackets and β has more closing than opening brackets.

Polish Notation: $\alpha \land \beta$ becomes $\land \alpha \beta$. **Rules for Omitting Brackets**

- 1. The outmost bracket can be omitted.
- 2. \neg binds to what follows it directly.
- 3. \land binds more than \lor , than \rightarrow , than \leftrightarrow .
- 4. $\alpha \to \beta \to \gamma$ is bracketed as $\alpha \to (\beta \to \gamma)$.

Subformulas: Given a WFF $\alpha = \mathbf{a_1}\mathbf{a_2}\cdots\mathbf{a_n}$, β is a subformula of α iff β is a WFF and furthermore $\beta = \mathbf{a_i}\mathbf{a_{i+1}}\cdots\mathbf{a_j}$ for some i, j with $1 \le i \le j \le n$.

Proposition Every construction sequence for a WFF α contains besides α all subformulas of α .

Recursion Theorem Assume that **C** is freely generated subset of **D** with respect to a base set **B** and constructor functions f, g and further assume that the "generation is free", that is, for each $\mathbf{x} \in \mathbf{C}$, exactly one of the following cases holds:

- 1. $x \in B;$
- 2. There are $\mathbf{y}, \mathbf{z} \in \mathbf{C}$ with $\mathbf{x} = \mathbf{f}(\mathbf{y}, \mathbf{z})$ and \mathbf{y}, \mathbf{z} uniquely depend on \mathbf{x} ; 3. There is an $\mathbf{y} \in \mathbf{C}$ with $\mathbf{x} = \mathbf{g}(\mathbf{y})$ and \mathbf{y} uniquely depends on \mathbf{x} .

Furthermore, assume that there is a further set **E** and that there are functions $\mathbf{h} : \mathbf{B} \to \mathbf{E}$, $\mathbf{\bar{f}} : \mathbf{E} \times \mathbf{E} \to \mathbf{E}$, $\mathbf{\bar{g}} : \mathbf{E} \to \mathbf{E}$. Then there is a unique function $\mathbf{\bar{h}}$ such that

1. For all $\mathbf{x} \in \mathbf{B}$, $\mathbf{\bar{h}}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$;

2. For all $\mathbf{x}, \mathbf{y} \in \mathbf{C}$, $\overline{\mathbf{h}}(\mathbf{f}(\mathbf{x}, \mathbf{y})) = \overline{\mathbf{f}}(\overline{\mathbf{h}}(\mathbf{x}), \overline{\mathbf{h}}(\mathbf{y}));$

3. For all $\mathbf{x} \in \mathbf{C}$, $\mathbf{\bar{h}}(\mathbf{g}(\mathbf{x})) = \mathbf{\bar{g}}(\mathbf{\bar{h}}(\mathbf{x}))$.

Majority Connective: $\#(\alpha, \beta, \gamma)$.

Boolean Function: For a WFF α using atoms $\mathbf{A}_1, \cdots, \mathbf{A}_n$, one can define the Boolean function $\mathbf{B}_{\alpha}^n(\mathbf{x}_1, \cdots, \mathbf{x}_n)$. **Partial Order on Boolean Functions:** $\mathbf{B}_{\alpha}^n \leq \mathbf{B}_{\beta}^n$ iff for all

<u>Theorem 15A</u> Let α and β be WFFs whose sentence symbols are among A_1, \dots, A_n . The following statements are true:

1. $\{\alpha\} \models \beta$ iff $\mathbf{B}^{\mathbf{n}}_{\alpha} \leq \mathbf{B}^{\mathbf{n}}_{\beta};$

2. $\{\alpha\} \models \beta$ and $\{\beta\} \models \alpha$ iff $\mathbf{B}^{\mathbf{n}}_{\alpha} = \mathbf{B}^{\mathbf{n}}_{\beta}$;

3. $\emptyset \models \alpha$ iff $\mathbf{B}^{\mathbf{n}}_{\alpha} = \mathbf{B}^{\mathbf{n}}_{\mathbf{1}}$.

<u>Theorem 15B</u> For every n-place Boolean function f there is a WFF α using atoms A_1, \dots, A_n such that $f = B^n_{\alpha}$ (disjunction of conjunctive clauses).

Disjunctive Normal Form: Disjunction of conjunctive clauses.

Conjunctive Normal Form: Conjunction of disjunctive clauses.

Corollary 15C For every α one can find an equivalent β in disjunctive normal form.

Completeness: A set **S** of connectives is *complete* if all Boolean functions with at least one input variable can be represented by a formula α using these connectives.

<u>Theorem 15D</u> The following sets of connectives are complete: $\{\neg, \land, \lor\}$, $\{\neg, \land\}$, $\{\neg, \lor\}$. $\{\land, \lor\}$ and $\{\oplus, \land\}$ are not complete. **Fuzzy Logic**:

1. $\mathbf{0} = \min(\mathbf{Q});$

- 2. $1 = \max(\mathbf{Q});$
- 3. If $\mathbf{p}, \mathbf{q} \in \mathbf{Q}$ then $1 \mathbf{p}, \min\{\mathbf{p} + \mathbf{q}, 2 \mathbf{p} \mathbf{q}\} \in \mathbf{Q}$.

Fuzzy Connectives:

- 1. $p \wedge q = \min\{p, q\};$
- 2. $p \lor q = \max\{p, q\};$
- 3. $\neg p = 1 p;$
- 4. $p \to q = \min\{1 + q p, 1\};$
- 5. $p \leftrightarrow q = \min\{1+q-p, 1+p-q\};$
- 6. $p \oplus q = \min\{p+q, 2-p-q\}.$

Fuzzy Tautologies:

- 1. $\mathbf{S} \vDash \alpha$ iff for every ν there is a $\beta \in \mathbf{S} \cup \{\mathbf{1}\}$ with $\bar{\nu}(\beta) \leq \bar{\nu}(\alpha)$.
- 2. α is a tautology iff $\emptyset \vDash \alpha$.
- 3. All formulas made from atoms and connectives \land, \lor, \neg are evaluated to $\frac{1}{2}$ in the case that $\frac{1}{2} \in \mathbf{Q}$ and all atoms take the value $\frac{1}{2}$ and hence none of them is a tautology.
- 4. $\alpha \leftrightarrow \alpha$ and $\alpha \rightarrow \alpha$ are tautologies and indeed, $\alpha \leftrightarrow \beta$ is a tautology iff for all Q-valued truth-assignments ν , $\bar{\nu}(\alpha) = \bar{\nu}(\beta)$.

Corollary 17A If $\mathbf{S} \vDash \alpha$ then there is a finite $\mathbf{S}' \subseteq \mathbf{S}$ with $\mathbf{S}' \vDash \alpha$.

 $\bullet\,$ Works also for fuzzy logic where ${\bf Q}$ is a finite set.

 $\begin{array}{l} \hline Compactness \ Theorem \ for \ Fuzzy \ Logic \\ \hline possible \ truth-values \ for \ fuzzy \ logic \ (i.e. \ \mathbf{Q} = \left\{ 0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1 \right\} \ or \\ \mathbf{Q} = \left\{ \mathbf{r} \in \mathbb{R} : 0 \leq \mathbf{r} \leq 1 \right\}). \ Then \ a \ countable \ set \ \mathbf{S} \ of \ formulas \ is \ satisfiable \ iff \ \mathbf{S} \ is \ finitely \ satisfiable. \\ \hline Notions \ of \ Effectiveness: \end{array}$

- 1. There is a program in a usual programming language (e.g. JavaScript) which computes the function.
- 2. One defines the function from some basic functions by recursion in one variables where + and and comparison-functions are defined. Furthermore, if **f** is a recursive function, then one can define a new function **g** which maps \mathbf{x}, \mathbf{y} to the least \mathbf{z} such that $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{0}$; note that $\mathbf{g}(\mathbf{x}, \mathbf{y})$ is undefined if such a \mathbf{z} cannot be found.
- 3. An effective function **f** is given by a graph which is a Diophantine set, that is, there is a polynomial **p** with coefficients from \mathbb{Z} such that $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ iff there are $\mathbf{z}_1, \cdots, \mathbf{z}_k$ with $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z}_1, \cdots, \mathbf{z}_k) = \mathbf{0}$. While the coefficients of the polynomial are integers which can be negative, the values for $\mathbf{x}, \mathbf{y}, \mathbf{z}_1, \cdots, \mathbf{z}_k$ are all from \mathbb{N} .

Decidable Sets: A set **L** is *decidable* iff there is a recursive function **f** such that for all inputs \mathbf{x} , $\mathbf{f}(\mathbf{x}) = \mathbf{1}$ when $\mathbf{x} \in \mathbf{L}$ and $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ when $\mathbf{x} \notin \mathbf{L}$. That is, some algorithm can determine which possible inputs are in the set **L** and which are not.

Recursively Enumerable Sets: A set **L** is *recursively enumerable* iff there is an algorithm (i.e. recursive function) which enumerates the members of **L**; \emptyset is defined to be recursively enumerable.

Theorem 17B There is an algorithm which can check whether an expression α is a well-formed formula; that is, the set of all WFFs is decidable. **Theorem 17C** Given a finite set of well-formed formulas **S** and a well-formed formula α , one can decide whether **S** $\models \alpha$.

Corollary 17D If **S** is finite then the set $\{\alpha : \alpha \text{ is a WFF and } \mathbf{S} \models \alpha\}$ is decidable.

<u>Theorem 17E</u> A set is recursively enumerable iff there is an algorithm which, for all $\mathbf{x} \in \mathbf{A}$, outputs "yes"; however, for $\mathbf{x} \notin \mathbf{A}$, the function $\mathbf{f}(\mathbf{x})$ might either never output something or output "no".

Theorem 17F (Kleene's Theorem) A set \mathbf{A} is decidable iff both the set \mathbf{A} and its complement are recursively enumerable.

<u>Theorem 17G</u> If **S** is a recursively enumerable set of formulas then $\{\alpha : \alpha \text{ is a WFF and } \mathbf{S} \models \alpha\}$ is recursively enumerable.

Theorem 17H If **S** is a recursively enumerable set of formulas then there is a further decidable set **T** of formulas with \forall WFF α [**S** $\models \alpha$ iff **T** $\models \alpha$]. **Closure Properties**: The following statements are true for recursively enumerable and decidable subsets of \mathbb{N} :

- 1. Every infinite recursively enumerable set ${\bf X}$ has an infinite recursive subset ${\bf Y}.$
- 2. If **X** and **Y** are both recursively enumerable, so are $\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{X} \cap \mathbf{Y}$.
- 3. If **X** and **Y** are both decidable, so are $\mathbf{X} \cup \mathbf{Y}$, $\mathbf{X} \cap \mathbf{Y}$ and $\mathbb{N} \mathbf{X}$.