
MA4207 Mathematical Logic

AY2022/23 Semester 2 · Prepared by Tian Xiao @snoidetx

Sentential Logic

Well-Formed Formulas (WFFs): (¬Ai) or (Ai → Aj).
Length of Formulas: Every symbol, atom or bracket has length 1.
Structural Induction for Formulas If a set of formulaes S contains
all atoms and truth-constants and is closed under E¬, E→, E↔, E∧, E∨, E⊕
then S contains every WFF.
Proposition Let S be the set of all expressions which have the same
amount of opening and closing brackets. Then S contains all WFFs.
Truth Assignment: A truth-assignment ν is a mapping which assigns
to every atom a truth-value (0 or 1). ν̄ extends ν to all WFFs:

1. ν̄(0) = 0; ν̄(1) = 1; ν̄(Ak) = ν(Ak);

2. ν̄(¬α) = 1− α;

3. ν̄(α ∧ β) = ν̄(α) · ν̄(β);
4. ν̄(α ∨ β) = ν̄(α) + ν̄(β)− ν̄(α) · ν̄(β);
5. ν̄(α → β) = ν̄((¬α) ∨ β);

6. ν̄(α⊕ β) = ν̄(α) + ν̄(β)− 2 · ν̄(α) · ν̄(β);
7. ν̄(α ↔ β) = ν̄(¬(α⊕ β)).

Tautological Implication: If X is a set of WFFs and α is a for-
mula, one says that X tautologically implies α (written X ⊨ α) iff every
truth-assignment ν for atoms occurring in X or α satisfies that whenever
ν̄(β) = 1 for all β ∈ X then ν̄(α) = 1. α is a tautology iff ∅ ⊨ α.
Satisfiable: A set of formulaes X is satisfiable iff there is a truth-
assignment ν such that ν̄(α) = 1 for all α ∈ X.
Compactness Theorem If X is an infinite set of formulaes such that
every finite subset Y ⊆ X is satisfiable, then X itself is also satisfiable.
Lemma 13A Every WFF has the same number of opening and closing
brackets.
Lemma 13B If a WFF is split into two non-empty expressions α and β,
then α has more opening than closing brackets and β has more closing
than opening brackets.
Polish Notation: α ∧ β becomes ∧αβ.
Rules for Omitting Brackets

1. The outmost bracket can be omitted.

2. ¬ binds to what follows it directly.

3. ∧ binds more than ∨, than →, than ↔.

4. α → β → γ is bracketed as α → (β → γ).

Subformulas: Given a WFF α = a1a2 · · ·an, β is a subformula of α iff
β is a WFF and furthermore β = aiai+1 · · ·aj for some i, j with 1 ≤ i ≤
j ≤ n.
Proposition Every construction sequence for a WFF α contains besides
α all subformulas of α.
Recursion Theorem Assume that C is freely generated subset of D
with respect to a base set B and constructor functions f, g and further
assume that the “generation is free”, that is, for each x ∈ C, exactly one
of the following cases holds:

1. x ∈ B;

2. There are y, z ∈ C with x = f(y, z) and y, z uniquely depend on x;

3. There is an y ∈ C with x = g(y) and y uniquely depends on x.

Furthermore, assume that there is a further set E and that there are
functions h : B → E, f̄ : E×E → E, ḡ : E → E. Then there is a unique
function h̄ such that

1. For all x ∈ B, h̄(x) = h(x);

2. For all x,y ∈ C, h̄(f(x,y)) = f̄(h̄(x), h̄(y));

3. For all x ∈ C, h̄(g(x)) = ḡ(h̄(x)).

Majority Connective: #(α, β, γ).
Boolean Function: For a WFF α using atoms A1, · · · ,An, one can
define the Boolean function Bn

α(x1, · · · ,xn).
Partial Order on Boolean Functions: Bn

α ≤ Bn
β iff for all

{x1, · · · ,xn} ∈ {0,1}n, Bn
α(x1, · · · ,xn) ≤ Bn

β(x1, · · · ,xn).

Theorem 15A Let α and β be WFFs whose sentence symbols are among
A1, · · · ,An. The following statements are true:

1. {α} ⊨ β iff Bn
α ≤ Bn

β ;

2. {α} ⊨ β and {β} ⊨ α iff Bn
α = Bn

β ;

3. ∅ ⊨ α iff Bn
α = Bn

1 .

Theorem 15B For every n-place Boolean function f there is a WFF α
using atoms A1, · · · ,An such that f = Bn

α (disjunction of conjunctive
clauses).
Disjunctive Normal Form: Disjunction of conjunctive clauses.
Conjunctive Normal Form: Conjunction of disjunctive clauses.
Corollary 15C For every α one can find an equivalent β in disjunctive
normal form.

Completeness: A set S of connectives is complete if all Boolean functions
with at least one input variable can be represented by a formula α using
these connectives.
Theorem 15D The following sets of connectives are complete: {¬,∧,∨},
{¬,∧}, {¬,∨}. {∧,∨} and {⊕,∧} are not complete.
Fuzzy Logic:

1. 0 = min(Q);
2. 1 = max(Q);
3. If p,q ∈ Q then 1− p,min{p+ q,2− p− q} ∈ Q.

Fuzzy Connectives:

1. p ∧ q = min{p, q};
2. p ∨ q = max{p, q};
3. ¬p = 1− p;
4. p → q = min{1 + q − p, 1};
5. p ↔ q = min{1 + q − p, 1 + p− q};
6. p⊕ q = min{p+ q, 2− p− q}.

Fuzzy Tautologies:

1. S ⊨ α iff for every ν there is a β ∈ S ∪ {1} with ν̄(β) ≤ ν̄(α).
2. α is a tautology iff ∅ ⊨ α.
3. All formulas made from atoms and connectives ∧, ∨, ¬ are evaluated

to 1
2
in the case that 1

2
∈ Q and all atoms take the value 1

2
and hence

none of them is a tautology.
4. α ↔ α and α → α are tautologies and indeed, α ↔ β is a tautology

iff for all Q-valued truth-assignments ν, ν̄(α) = ν̄(β).

Corollary 17A If S ⊨ α then there is a finite S′ ⊆ S with S′ ⊨ α.

• Works also for fuzzy logic where Q is a finite set.

Compactness Theorem for Fuzzy Logic Let Q be a compact set of

possible truth-values for fuzzy logic (i.e. Q =
{
0, 1

k
, · · · , k−1

k
,1

}
or

Q = {r ∈ R : 0 ≤ r ≤ 1}). Then a countable set S of formulas is satis-
fiable iff S is finitely satisfiable.
Notions of Effectiveness:

1. There is a program in a usual programming language (e.g.
JavaScript) which computes the function.

2. One defines the function from some basic functions by recursion in
one variables where + and − and comparison-functions are defined.
Furthermore, if f is a recursive function, then one can define a new
function g which maps x,y to the least z such that f(x,y, z) = 0;
note that g(x,y) is undefined if such a z cannot be found.

3. An effective function f is given by a graph which is a Diophantine
set, that is, there is a polynomial p with coefficients from Z such that
f(x) = y iff there are z1, · · · , zk with f(x,y, z1, · · · , zk) = 0. While
the coefficients of the polynomial are integers which can be negative,
the values for x,y, z1, · · · , zk are all from N.

Decidable Sets: A set L is decidable iff there is a recursive function f
such that for all inputs x, f(x) = 1 when x ∈ L and f(x) = 0 when x /∈ L.
That is, some algorithm can determine which possible inputs are in the
set L and which are not.
Recursively Enumerable Sets: A set L is recursively enumerable iff
there is an algorithm (i.e. recursive function) which enumerates the mem-
bers of L; ∅ is defined to be recursively enumerable.
Theorem 17B There is an algorithm which can check whether an expres-
sion α is a well-formed formula; that is, the set of all WFFs is decidable.
Theorem 17C Given a finite set of well-formed formulas S and a well-
formed formula α, one can decide whether S ⊨ α.
Corollary 17D If S is finite then the set {α : α is a WFF and S ⊨ α} is
decidable.
Theorem 17E A set is recursively enumerable iff there is an algorithm
which, for all x ∈ A, outputs “yes”; however, for x /∈ A, the function f(x)
might either never output something or output “no”.
Theorem 17F (Kleene’s Theorem) A set A is decidable iff both the
set A and its complement are recursively enumerable.
Theorem 17G If S is a recursively enumerable set of formulas then
{α : α is a WFF and S ⊨ α} is recursively enumerable.
Theorem 17H If S is a recursively enumerable set of formulas then there
is a further decidable set T of formulas with ∀ WFF α [S ⊨ α iff T ⊨ α].
Closure Properties: The following statements are true for recursively
enumerable and decidable subsets of N:

1. Every infinite recursively enumerable set X has an infinite recursive
subset Y.

2. IfX andY are both recursively enumerable, so areX ∪Y andX ∩Y.
3. If X and Y are both decidable, so are X ∪Y, X ∩Y and N−X.
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