MA4207 Mathematical Logic

AY2022/23 Semester 2 • Prepared by Tian Xiao @snoidetx

Sentential Logic

Well-Formed Formulas (WFFs): $\left(\neg \mathbf{A}_{i}\right)$ or $\left(\mathbf{A}_{i} \rightarrow \mathbf{A}_{j}\right)$.
Length of Formulas: Every symbol, atom or bracket has length 1.
Structural Induction for Formulas If a set of formulaes \mathbf{S} contains all atoms and truth-constants and is closed under $\mathcal{E}_{\neg}, \mathcal{E}_{\rightarrow}, \mathcal{E}_{\leftrightarrow}, \mathcal{E}_{\wedge}, \mathcal{E}_{\vee}, \mathcal{E}_{\oplus}$ then \mathbf{S} contains every WFF.
Proposition Let \mathbf{S} be the set of all expressions which have the same amount of opening and closing brackets. Then \mathbf{S} contains all WFFs.
Truth Assignment: A truth-assignment ν is a mapping which assigns to every atom a truth-value ($\mathbf{0}$ or $\mathbf{1}$). $\bar{\nu}$ extends ν to all WFFs:

1. $\bar{\nu}(\mathbf{0})=\mathbf{0} ; \bar{\nu}(\mathbf{1})=\mathbf{1} ; \bar{\nu}\left(\mathbf{A}_{\mathbf{k}}\right)=\nu\left(\mathbf{A}_{\mathbf{k}}\right)$;
2. $\bar{\nu}(\neg \alpha)=1-\alpha$;
$\bar{\nu}(\alpha \wedge \beta)=\bar{\nu}(\alpha) \cdot \bar{\nu}(\beta) ;$
$\bar{\nu}(\alpha \vee \beta)=\bar{\nu}(\alpha)+\bar{\nu}(\beta)-\bar{\nu}(\alpha) \cdot \bar{\nu}(\beta) ;$
$\bar{\nu}(\alpha \rightarrow \beta)=\bar{\nu}((\neg \alpha) \vee \beta)$;
$\bar{\nu}(\alpha \oplus \beta)=\bar{\nu}(\alpha)+\bar{\nu}(\beta)-2 \cdot \bar{\nu}(\alpha) \cdot \bar{\nu}(\beta) ;$
$\bar{\nu}(\alpha \leftrightarrow \beta)=\bar{\nu}(\neg(\alpha \oplus \beta))$.
Tautological Implication: If \mathbf{X} is a set of WFFs and α is a formula, one says that \mathbf{X} tautologically implies α (written $\mathbf{X} \vDash \alpha$) iff every truth-assignment ν for atoms occurring in \mathbf{X} or α satisfies that whenever $\bar{\nu}(\beta)=\mathbf{1}$ for all $\beta \in \mathbf{X}$ then $\bar{\nu}(\alpha)=1 . \alpha$ is a tautology iff $\emptyset \vDash \alpha$.
Satisfiable: A set of formulaes \mathbf{X} is satisfiable iff there is a truthassignment ν such that $\bar{\nu}(\alpha)=\mathbf{1}$ for all $\alpha \in \mathbf{X}$.
Compactness Theorem If \mathbf{X} is an infinite set of formulaes such that every finite subset $\mathbf{Y} \subseteq \mathbf{X}$ is satisfiable, then \mathbf{X} itself is also satisfiable.
Lemma 13A Every WFF has the same number of opening and closing brackets.
Lemma 13B If a WFF is split into two non-empty expressions α and β, then α has more opening than closing brackets and β has more closing than opening brackets.
Polish Notation: $\alpha \wedge \beta$ becomes $\wedge \alpha \beta$.
Rules for Omitting Brackets
3. The outmost bracket can be omitted.
\neg binds to what follows it directly.
\wedge binds more than \vee, than \rightarrow, than \leftrightarrow.
$\alpha \rightarrow \beta \rightarrow \gamma$ is bracketed as $\alpha \rightarrow(\beta \rightarrow \gamma)$.
Subformulas: Given a WFF $\alpha=\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{\mathbf{n}}, \beta$ is a subformula of α iff β is a WFF and furthermore $\beta=\mathbf{a}_{\mathbf{i}} \mathbf{a}_{\mathbf{i + 1}} \cdots \mathbf{a}_{\mathbf{j}}$ for some i, j with $1 \leq i \leq$ $j \leq n$.
Proposition Every construction sequence for a WFF α contains besides $\bar{\alpha}$ all subformulas of α.
Recursion Theorem Assume that \mathbf{C} is freely generated subset of \mathbf{D} with respect to a base set \mathbf{B} and constructor functions f, g and further assume that the "generation is free", that is, for each $\mathbf{x} \in \mathbf{C}$, exactly one of the following cases holds:
4. $\mathbf{x} \in \mathbf{B}$;
5. There are $\mathbf{y}, \mathbf{z} \in \mathbf{C}$ with $\mathbf{x}=\mathbf{f}(\mathbf{y}, \mathbf{z})$ and \mathbf{y}, \mathbf{z} uniquely depend on \mathbf{x};
6. There is an $\mathbf{y} \in \mathbf{C}$ with $\mathbf{x}=\mathbf{g}(\mathbf{y})$ and \mathbf{y} uniquely depends on \mathbf{x}.

Furthermore, assume that there is a further set \mathbf{E} and that there are functions $\mathbf{h}: \mathbf{B} \rightarrow \mathbf{E}, \overline{\mathbf{f}}: \mathbf{E} \times \mathbf{E} \rightarrow \mathbf{E}, \overline{\mathbf{g}}: \mathbf{E} \rightarrow \mathbf{E}$. Then there is a unique function $\overline{\mathbf{h}}$ such that

1. For all $\mathbf{x} \in \mathbf{B}, \overline{\mathbf{h}}(\mathbf{x})=\mathbf{h}(\mathbf{x})$;
2. For all $\mathbf{x}, \mathbf{y} \in \mathbf{C}, \overline{\mathbf{h}}(\mathbf{f}(\mathbf{x}, \mathbf{y}))=\overline{\mathbf{f}}(\overline{\mathbf{h}}(\mathbf{x}), \overline{\mathbf{h}}(\mathbf{y}))$;
3. For all $\mathbf{x} \in \mathbf{C}, \overline{\mathbf{h}}(\mathbf{g}(\mathbf{x}))=\overline{\mathbf{g}}(\overline{\mathbf{h}}(\mathbf{x}))$.

Majority Connective: $\#(\alpha, \beta, \gamma)$.
Boolean Function: For a WFF α using atoms $\mathbf{A}_{\mathbf{1}}, \cdots, \mathbf{A}_{\mathbf{n}}$, one can define the Boolean function $\mathbf{B}_{\alpha}^{\mathbf{n}}\left(\mathbf{x}_{\mathbf{1}}, \cdots, \mathbf{x}_{\mathbf{n}}\right)$.
Partial Order on Boolean Functions: $\mathbf{B}_{\alpha}^{\mathbf{n}} \leq \mathbf{B}_{\beta}^{\mathbf{n}}$ iff for all $\left\{\mathbf{x}_{\mathbf{1}}, \cdots, \mathbf{x}_{\mathbf{n}}\right\} \in\{\mathbf{0}, \mathbf{1}\}^{\mathbf{n}}, \mathbf{B}_{\alpha}^{\mathbf{n}}\left(\mathbf{x}_{\mathbf{1}}, \cdots, \mathbf{x}_{\mathbf{n}}\right) \leq \mathbf{B}_{\beta}^{\mathbf{n}}\left(\mathbf{x}_{\mathbf{1}}, \cdots, \mathbf{x}_{\mathbf{n}}\right)$.
Theorem 15A Let α and β be WFFs whose sentence symbols are among
$\mathbf{A}_{\mathbf{1}}, \cdots, \mathbf{A}_{\mathbf{n}}$. The following statements are true:

1. $\{\alpha\} \vDash \beta$ iff $\mathbf{B}_{\alpha}^{\mathbf{n}} \leq \mathbf{B}_{\beta}^{\mathbf{n}}$;
2. $\{\alpha\} \vDash \beta$ and $\{\beta\} \vDash \alpha$ iff $\mathbf{B}_{\alpha}^{\mathbf{n}}=\mathbf{B}_{\beta}^{\mathbf{n}}$;
3. $\emptyset \vDash \alpha$ iff $\mathbf{B}_{\alpha}^{\mathbf{n}}=\mathbf{B}_{\mathbf{1}}^{\mathbf{n}}$.

Theorem 15B For every n-place Boolean function \mathbf{f} there is a WFF α using atoms $\mathbf{A}_{\mathbf{1}}, \cdots, \mathbf{A}_{\mathbf{n}}$ such that $\mathbf{f}=\mathbf{B}_{\alpha}^{\mathbf{n}}$ (disjunction of conjunctive clauses).
Disjunctive Normal Form: Disjunction of conjunctive clauses.
Conjunctive Normal Form: Conjunction of disjunctive clauses.
Corollary 15C For every α one can find an equivalent β in disjunctive normal form.

Completeness: A set \mathbf{S} of connectives is complete if all Boolean functions with at least one input variable can be represented by a formula α using these connectives.
Theorem 15D The following sets of connectives are complete: $\{\neg, \wedge, \vee\}$, $\{\neg, \wedge\},\{\neg, \vee\} .\{\wedge, \vee\}$ and $\{\oplus, \wedge\}$ are not complete.

Fuzzy Logic:

1. $\mathbf{0}=\min (\mathbf{Q})$;
2. $\mathbf{1}=\max (\mathbf{Q})$;
3. If $\mathbf{p}, \mathbf{q} \in \mathbf{Q}$ then $\mathbf{1}-\mathbf{p}, \min \{\mathbf{p}+\mathbf{q}, \mathbf{2}-\mathbf{p}-\mathbf{q}\} \in \mathbf{Q}$.

Fuzzy Connectives:

1. $p \wedge q=\min \{p, q\}$;
2. $p \vee q=\max \{p, q\}$;
3. $\neg p=1-p$;
4. $p \rightarrow q=\min \{1+q-p, 1\}$;
. $p \leftrightarrow q=\min \{1+q-p, 1+p-q\}$;
5. $p \oplus q=\min \{p+q, 2-p-q\}$.

Fuzzy Tautologies:

1. $\mathbf{S} \vDash \alpha$ iff for every ν there is a $\beta \in \mathbf{S} \cup\{\mathbf{1}\}$ with $\bar{\nu}(\beta) \leq \bar{\nu}(\alpha)$.
2. α is a tautology iff $\emptyset \vDash \alpha$.
3. All formulas made from atoms and connectives \wedge, \vee, \neg are evaluated to $\frac{1}{2}$ in the case that $\frac{1}{2} \in Q$ and all atoms take the value $\frac{1}{2}$ and hence none of them is a tautology.
4. $\alpha \leftrightarrow \alpha$ and $\alpha \rightarrow \alpha$ are tautologies and indeed, $\alpha \leftrightarrow \beta$ is a tautology iff for all Q-valued truth-assignments $\nu, \bar{\nu}(\alpha)=\bar{\nu}(\beta)$.
Corollary 17A If $\mathbf{S} \vDash \alpha$ then there is a finite $\mathbf{S}^{\prime} \subseteq \mathbf{S}$ with $\mathbf{S}^{\prime} \vDash \alpha$.

- Works also for fuzzy logic where \mathbf{Q} is a finite set.

Compactness Theorem for Fuzzy Logic Let \mathbf{Q} be a compact set of possible truth-values for fuzzy logic (i.e. $\mathbf{Q}=\left\{\mathbf{0}, \frac{\mathbf{1}}{\mathbf{k}}, \cdots, \frac{\mathbf{k}-\mathbf{1}}{\mathbf{k}}, \mathbf{1}\right\}$ or $\mathbf{Q}=\{\mathbf{r} \in \mathbb{R}: \mathbf{0} \leq \mathbf{r} \leq \mathbf{1}\})$. Then a countable set \mathbf{S} of formulas is satisfiable iff \mathbf{S} is finitely satisfiable.
Notions of Effectiveness:

1. There is a program in a usual programming language (e.g. JavaScript) which computes the function.
2. One defines the function from some basic functions by recursion in one variables where + and - and comparison-functions are defined. Furthermore, if \mathbf{f} is a recursive function, then one can define a new function \mathbf{g} which maps \mathbf{x}, \mathbf{y} to the least \mathbf{z} such that $\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{0}$; note that $\mathbf{g}(\mathbf{x}, \mathbf{y})$ is undefined if such a \mathbf{z} cannot be found.
3. An effective function \mathbf{f} is given by a graph which is a Diophantine set, that is, there is a polynomial \mathbf{p} with coefficients from \mathbb{Z} such that $\mathbf{f}(\mathbf{x})=\mathbf{y}$ iff there are $\mathbf{z}_{\mathbf{1}}, \cdots, \mathbf{z}_{\mathbf{k}}$ with $\mathbf{f}\left(\mathbf{x}, \mathbf{y}, \mathbf{z}_{\mathbf{1}}, \cdots, \mathbf{z}_{\mathbf{k}}\right)=\mathbf{0}$. While the coefficients of the polynomial are integers which can be negative, the values for $\mathbf{x}, \mathbf{y}, \mathbf{z}_{\mathbf{1}}, \cdots, \mathbf{z}_{\mathbf{k}}$ are all from \mathbb{N}.

Decidable Sets: A set \mathbf{L} is decidable iff there is a recursive function \mathbf{f} such that for all inputs $\mathbf{x}, \mathbf{f}(\mathbf{x})=\mathbf{1}$ when $\mathbf{x} \in \mathbf{L}$ and $\mathbf{f}(\mathbf{x})=\mathbf{0}$ when $\mathbf{x} \notin \mathbf{L}$. That is, some algorithm can determine which possible inputs are in the set \mathbf{L} and which are not.
Recursively Enumerable Sets: A set \mathbf{L} is recursively enumerable iff there is an algorithm (i.e. recursive function) which enumerates the members of $\mathbf{L} ; \emptyset$ is defined to be recursively enumerable.
Theorem 17B There is an algorithm which can check whether an expression α is a well-formed formula; that is, the set of all WFFs is decidable. Theorem 17C Given a finite set of well-formed formulas \mathbf{S} and a wellformed formula α, one can decide whether $\mathbf{S} \vDash \alpha$.
Corollary 17D If \mathbf{S} is finite then the set $\{\alpha: \alpha$ is a WFF and $\mathbf{S} \vDash \alpha\}$ is decidable.
Theorem 17E A set is recursively enumerable iff there is an algorithm which, for all $\mathbf{x} \in \mathbf{A}$, outputs "yes"; however, for $\mathbf{x} \notin \mathbf{A}$, the function $\mathbf{f}(\mathbf{x})$ might either never output something or output "no".
Theorem 17F (Kleene's Theorem) A set \mathbf{A} is decidable iff both the set A and its complement are recursively enumerable.
Theorem 17G If \mathbf{S} is a recursively enumerable set of formulas then $\{\alpha: \alpha$ is a WFF and $\mathbf{S} \vDash \alpha\}$ is recursively enumerable.
Theorem $\mathbf{1 7 H}$ If \mathbf{S} is a recursively enumerable set of formulas then there is a further decidable set \mathbf{T} of formulas with \forall WFF $\alpha[\mathbf{S} \vDash \alpha$ iff $\mathbf{T} \vDash \alpha]$. Closure Properties: The following statements are true for recursively enumerable and decidable subsets of \mathbb{N} :

1. Every infinite recursively enumerable set \mathbf{X} has an infinite recursive subset \mathbf{Y}.
2. If \mathbf{X} and \mathbf{Y} are both recursively enumerable, so are $\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{X} \cap \mathbf{Y}$.
3. If \mathbf{X} and \mathbf{Y} are both decidable, so are $\mathbf{X} \cup \mathbf{Y}, \mathbf{X} \cap \mathbf{Y}$ and $\mathbb{N}-\mathbf{X}$.
