MA4229 Fourier Analysis and Approximation

AY2022/23 Semester 1 . Prepared by Tian Xiao @snoidetx

1 Fourier Series

Integration by Parts

[1] When f is piecewise continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} f(x) \mathrm{d} x=\sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} g_{j}(x) \mathrm{d} x
$$

[2] When P is a polynomial of degree $<m$ and f is continuous,
$\int P f \mathrm{~d} x=P F_{1}-P^{\prime} F_{2}+P^{\prime \prime} F_{3}-\cdots+\cdots+(-1)^{m} P^{(m)} F_{m+1}+C$. Here F_{n} refers to the n-th antiderivative of f.
[3] When P is a polynomial or other nice function and f is only piecewise continuous, then we will do [1] before [2].

Piecewise Continuous: A function f is said to be piecewise continuous on $[a, b]$ if it has a partition $a=x_{0}<x_{1}<\cdots<x_{n}=b$ such that f is uniformly continuous on each interval $\left(x_{i-1}, x_{i}\right)$ for $i=1, \cdots, n$.

- $f\left(a^{+}\right), f\left(b^{-}\right), f\left(x_{i}^{-}\right), f\left(x_{i}^{+}\right)$exist for all $i=1, \cdots, n-1$.
- Piecewise Smooth: A function f is said to be piecewise smooth on $[a, b]$ if both f^{\prime} and f are piecewise continuous on $[a, b]$.

Fourier Cosine series: Assume f is piecewise continuous, then

$[0, \pi]: f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k x) \quad\left\{\begin{array}{l}a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f(x) \mathrm{d} x \\ a_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (k x) \mathrm{d} x\end{array}\right.$
$[0, L]: \quad f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{L}\right)\left\{\begin{array}{l}a_{0}=\frac{1}{L} \int_{0}^{L} f(x) \mathrm{d} x \\ a_{k}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{k \pi x}{L}\right) \mathrm{d} x\end{array}\right.$
Fourier Sine series: Assume f is piecewise continuous, then

$$
\begin{array}{ll}
{[0, \pi]:} & f(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x)-b_{k}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (k x) \mathrm{d} x \\
{[0, L]:} & f(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi x}{L}\right)-b_{k}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{k \pi x}{L}\right) \mathrm{d} x
\end{array}
$$

Fourier series: Assume f is piecewise continuous with period 2π or L :

$$
\begin{aligned}
2 \pi: f(x)=a_{0} & +\sum_{k=1}^{\infty} a_{k} \cos (k x) \\
& +\sum_{k=1}^{\infty} b_{k} \sin (k x)
\end{aligned}\left\{\begin{array}{l}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x \\
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) \mathrm{d} x \\
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) \mathrm{d} x
\end{array}\right] \begin{aligned}
& a_{0}=\frac{1}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \mathrm{d} x \\
& a_{k}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \cos \left(\frac{2 k \pi x}{L}\right) \mathrm{d} x \\
& b_{k}=\frac{2}{L} \int_{-\frac{L}{2}}^{\frac{L}{2}} f(x) \sin \left(\frac{2 k \pi x}{L}\right) \mathrm{d} x
\end{aligned}
$$

2 Fourier Analysis

Pointwise Convergence: Assume f is a piecewise smooth function on $[0, L]$. Then its Fourier series $\left[a_{0}+\sum a_{k} \cos +\sum b_{k} \sin \right]$ converges to $\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$ for all $x \in(0, L)$. [same for Cosine and Sine series]

- When $x=0$ or L, the series converges to $\frac{f\left(0^{+}\right)+f\left(L^{-}\right)}{2}$.
- If continuous at $x_{0} \in(0, L)$, the Fourier series converge to $f\left(x_{0}\right)$.
- Corollary 4.4 Assume f is a piecewise continuous function on [0, L] $\overline{\text { OR } \int_{0}^{L}|f(x)|} \mathrm{d} x<\infty$, then its Fourier coefficients $\lim _{k \rightarrow \infty} a_{k}=0$ and $\lim _{k \rightarrow \infty} b_{k}=0$. [same for Cosine and Sine series]
Uniform \& Absolute Convergence: Let $\mathcal{S}_{2 \pi}$ be the space of infinitely differentiable functions of period 2π. For any function $f \in \mathcal{S}_{2 \pi}$, its Fourier series converges uniformly and absolutely to f.
- Proposition 4.12 If $b_{k} \searrow 0$, the Fourier sine series $\sum b_{k}$ sin converges uniformly on $[\delta, \pi-\delta]$ for all $0<\delta<\frac{\pi}{2}$.
Differentiability of Fourier Series: Let f be a continuous function of period 2π such that its derivative f^{\prime} is piecewise continuous on $[-\pi, \pi]$. Then the Fourier series of $f,\left[a_{0}+\sum a_{k} \cos +\sum b_{k} \sin \right]$, is differentiable at each point $x_{0} \in(-\pi, \pi)$ at which the second derivative $f^{\prime \prime}$ exists:

$$
f^{\prime}\left(x_{0}\right)=\sum_{k=1}^{\infty} k\left(-a_{k} \sin \left(k x_{0}\right)+b_{k} \cos \left(k x_{0}\right)\right)
$$

- Theorem 4.13 If f is a continuous function of period 2π such that f^{\prime} is piecewise continuous on $[-\pi, \pi]$, then $k a_{k}, k b_{k} \rightarrow 0$ as $k \rightarrow \infty$. \triangleright If $f \in \mathcal{S}_{2 \pi}$, then $k^{n} a_{k}, k^{n} b_{k} \rightarrow 0$ as $k \rightarrow \infty$ for all $n \in \mathbb{N}$.

Fourier Series of Complex-Valued Functions:

$$
f(x)=\sum_{k \in \mathbb{Z}} c_{k} e^{i k x} \text { where } c_{k}=\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} \mathrm{~d} x
$$

- The family $\left\langle e^{i k x}: k \in \mathbb{Z}\right\rangle$ is orthogonal when $\langle f, g\rangle=$ $\int_{-\pi}^{\pi} f(x) \overline{g(x)} \mathrm{d} x$.
- If f is piecewise continuous on $[0,2 \pi]$, then $\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ converges on the open unit disk $\{|z|<1\}$ and hence analytic on this disk.
- Define $\tilde{f}(z)=\sum_{k \in \mathbb{Z}} \hat{f}(k) z^{k}$, then $\tilde{f}\left(e^{i x}\right)=f(x)$ if f is piecewise smooth, continuous and of period 2π.
Convolution: Let f and g be both periodic (of period 2π) piecewise continuous functions on $[-\pi, \pi]$. Then we define its convolution as

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y
$$

- (1) $f * g=g * f$; (2) $(f * g) * h=f *(g * h)$;
(3) $\left(\alpha f_{1}+f_{2}\right) * g=\alpha\left(f_{1} * g\right)+f_{2} * g$; (4) $f * g$ is continuous.
- $\widehat{f * g}(n)=\hat{f}(n) \hat{g}(n)$.
- Dirichlet Kernel: $D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin \left(\frac{2 n+1}{2} t\right)}{2 \sin \left(\frac{t}{2}\right)}, t \neq 2 k \pi$.
$\triangleright \int_{0}^{\pi} D_{n}(t) d t=\frac{\pi}{2}$.
$\triangleright\left(f * D_{n}\right)(x)=\sum_{k \in \mathbb{Z}} \hat{f}(k) e^{i k x} \rightarrow \frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}$ (if applicable).
Theorem 5.4 If f is piecewise continuous on $[-\pi, \pi]$, then $\left(f * \sigma_{n}\right)(x) \rightarrow$ $f(x)$ whenever f is continuous at $x, x \in(-\pi, \pi)$. Moreover, if f is continuous and of period 2π, then $\left(f * \sigma_{n}\right)(x) \rightarrow f(x)$ uniformly.
- Fejér's Kernel: $\sigma_{n}(t)=\frac{1}{n+1}\left[\frac{\sin \frac{n+1}{2} t}{\sin \frac{t}{2}}\right]^{2} \leq \frac{1}{n+1} \frac{1}{\sin ^{2} \frac{t}{2}}$.
- Cesàro Means: $\frac{a_{1}+\cdots+a_{n}}{n}$ for a sequence $\left\{a_{n}\right\}$.

Theorem 5.5 If f is piecewise continuous on $[-\pi, \pi]$, then $\left(f * P_{r}\right)(x) \rightarrow$ $f(x)$ as $r \rightarrow 1^{-}$whenever f is continuous at $x, x \in(-\pi, \pi)$.

- Poisson's Kernel: $P_{r}(t)=\sum_{k \in \mathbb{Z}} r^{|k|} e^{i k t}$.
- Abel's Means: $\lim _{r \rightarrow 1} \sum_{k \in \mathbb{Z}} c_{k} r^{|k|} e^{i k t}$ for a series $\sum c_{k} e^{i k x}$.

3 Fourier Approximation

Best Approximation: Let $X=(X,\|\cdot\|)$ be a normed space and Y be a fixed subspace of X. If there exists $y_{0} \in Y$ such that $\left\|x-y_{0}\right\|=$ $\inf _{y \in Y}\|x-y\|$, then y_{0} is called a best approximation to x out of Y.

- Existence Theorem If Y is finite dimensional, then for each $x \in X$ there exists a best approximation to x out of Y.
- Uniqueness Theorem If X is strictly convex, then for each $x \in X$ there exists at most one best approximation to x out of Y.
\triangleright Convex: $y, z \in M \Rightarrow W=\{v=\alpha y+(1-\alpha) z \mid 0 \leq \alpha \leq 1\} \subseteq M$.
\triangleright Lemma 6.2.1 The set of best approximations to x is convex.
\triangleright Strict Convexity: $\forall x \neq y$ of norm $1[\|x+y\|<2]$.
* Hilbert space is strictly convex.
* $C[a, b]$ is not strictly convex.
- Theorem 6.2.5 Let H be a Hilbert space and Y be any closed subspace of H, then for every $x \in H$ there is a unique best approximation to x out of Y.
Uniform Approximation: $\|x\|=\max _{t \in J}|x(t)|$, where $J=[a, b]$.
- Extremal Point: An extremal point of an $x \in C[a, b]$ is a $t_{0} \in[a, b]$ such that $\left|x\left(t_{0}\right)\right|=\|x\|$.
- Haar Condition: A finite dimensional subspace Y of the real space
 $n-1$ zeros in $[a, b]$, where $n=\operatorname{dim} Y$.
\triangleright Lemma 6.3.3 Suppose Y satisfies the Haar condition. If for a given $x \in C[a, b]$ and a $y \in Y$ the function $x-y$ has less than $n+1$ extremal points, then y is not a best approximation to x.
- Haar Uniqueness Theorem The best approximation out of Y is unique for every $x \in C[a, b]$ iff Y satisfies the Haar condition.
\triangleright Theorem 6.3.5 The best approximation to an $x \in C[a, b]$ out of Y_{n} is unique, where Y_{n} is the subspace containing 0 and all polynomials of degree not exceeding a fixed given n.
- Chebyshev Polynomials: The polynomial $\tilde{T}_{n}(t)=\frac{1}{2^{n-1}} T_{n}(t)=$ $\frac{1}{2^{n-1}} \cos (n \arccos t)(n \geq 1)$ is the best approximation of 0 out of all real polynomials on $[-1,1]$ of degree n and leading coefficient 1 .
\triangleright Recursive formula: $T_{n+1}(t)+T_{n-1}(t)=2 t T_{n}(t)$.
\triangleright Lemma 6.4.2 Let Y be a subspace of $C[a, b]$ satisfying the Haar condition. Given $x \in C[a, b]$, let $y \in Y$ be such that $x-y$ has an alternating set of $n+1$ points, where $n=\operatorname{dim} Y$. Then y is the best uniform approximation to x out of Y.
Least Squares Approximation: $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\int_{a}^{b}|x(t)|^{2} d t}$.
- $\left\{v_{1}, \cdots, v_{n}\right\}$ is a family of orthonormal vectors. For all $u \in V$,
$\inf \left\{\|u-v\|: v \in \operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}=M\right\}=\left\|\sum_{j=1}^{n}\left\langle u, v_{j}\right\rangle v_{j}-u\right\|$.
$\triangleright \sum_{j=1}^{n}\left\langle u, v_{j}\right\rangle v_{j}=P_{M} u$ is the orthogonal projection of u to M.
$\triangleright P_{M} u$ is independent of choice of basis.
$\triangleright u-P_{M} u$ is perpendicular to M.
$\triangleright\left\|P_{M} u-P_{M} v\right\| \leq\|u-v\|$. This implies $P_{M} u$ is continuous.
- Approximation in \mathbb{R}^{n} : Given $M=\operatorname{Span}\left\{a_{1}, \cdots, a_{m}\right\}$ which is a subspace of \mathbb{R}^{n}, let $A=\left[a_{1}, \cdots, a_{m}\right]$. The best approximation to any $b \in \mathbb{R}^{n}$ out of $M, A \alpha^{*}$, satisfies $A^{\top} A \alpha^{*}=A^{\top} b$.
\triangleright Gram Determinant: The determinant of $A^{\top} A$ is the Gram determinant of A, denoted as $G\left(a_{1}, \cdots, a_{m}\right)$. We have

$$
\left\|b-P_{M} b\right\|^{2}=\frac{G\left(b, a_{1}, \cdots, a_{m}\right)}{G\left(a_{1}, \cdots, a_{m}\right)} \text { for any vector } b \in \mathbb{R}^{n}
$$

- Approximation in L^{2} : Let $\left\{\varphi_{k}\right\}$ be a family of orthonormal set. If $c_{k}=\left\langle f, \varphi_{k}\right\rangle$ for all k, then for any $n \in \mathbb{N}$ and $\left\{\gamma_{k}\right\} \subset \mathbb{R}$, we have

$$
\int_{a}^{b}\left|f(x)-\sum_{k=1}^{n} \gamma_{k} \varphi_{k}(x)\right|^{2} \mathrm{~d} x \geq \int_{a}^{b}\left|f(x)-\sum_{k=1}^{n} c_{k} \varphi_{k}(x)\right|^{2} \mathrm{~d} x
$$

- Approximation with Fourier Series: Fourier series of f is its best approximation out of the Cosine and Sine basis.
Theorem 3.14 Let $\left\{\varphi_{k}: k \in \mathbb{N}\right\}$ be an orthonormal basis of $L^{2}[a, b]$. Then for any $f \in L^{2}[a, b], \int_{a}^{b}|f(x)|^{2} \mathrm{~d} x=\sum_{k=1}^{\infty} c_{k}^{2}$ [Parseval's identity], where $c_{k}=\int_{a}^{b} f(x) \varphi_{k}(x) \mathrm{d} x$. Note that $f=\sum_{k=1}^{\infty} c_{k} \varphi_{k}$.
- In particular, let f be a piecewise continuous function on $[0, L]$, let $a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{2 k \pi x}{L}\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{2 k \pi x}{L}\right)$ be the Fourier series of f on $[0, L]$, then $\int_{0}^{L}|f(x)|^{2} \mathrm{~d} x=\frac{L}{2}\left(2 a_{0}^{2}+\sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)\right)$.
- Let f be a piecewise continuous function on $[0, \pi]$, then $\int_{0}^{\pi}|f(x)|^{2} \mathrm{~d} x=\frac{\pi}{2} \sum_{k=1}^{\infty} b_{k}^{2}=\frac{\pi}{2}\left(2 a_{0}^{2}+\sum_{k=1}^{\infty} a_{k}^{2}\right)$, where a_{0}, a_{k} and b_{k} are the Fourier cosine and sine coefficients respectively.
Theorem 3.17 Let w be a weight on a finite interval $[a, b]$, and let $f \in$ $L_{w}^{2}[a, b]$. Then $p_{n}^{*} \in P_{n}$ is the least squares approximation of f out of P_{n} if and only if $\left\langle f-p_{n}^{*}, p\right\rangle=0$ for all $p \in P_{n}$. Moreover, $p_{n}^{*}(x)=\sum_{k=0}^{n} \alpha_{k}^{*} x^{k}$, where

$$
\left[\begin{array}{ccc}
\langle 1,1\rangle_{w} & \cdots & \left\langle x^{n}, 1\right\rangle_{w} \\
\vdots & \ddots & \vdots \\
\left\langle 1, x^{n}\right\rangle_{w} & \cdots & \left\langle x^{n}, x^{n}\right\rangle_{w}
\end{array}\right]\left[\begin{array}{c}
\alpha_{0}^{*} \\
\vdots \\
\alpha_{n}^{*}
\end{array}\right]=\left[\begin{array}{c}
\langle f, 1\rangle_{w} \\
\vdots \\
\left\langle f, x^{n}\right\rangle_{w}
\end{array}\right]
$$

4 Application of Fourier Series

PDE: Separation of variables \& verify.

- $u(x, 0)=0, u(x, 1)=2 \Rightarrow$ Let $v=u+w(y)$.
- $u(x, 0)=1, u(x, 1)=1 \Rightarrow$ Let $v=u-1$.

Eigenvalue Problem: Consider the ODE $L(y)=f(x)$. Find y_{k} such that $L\left(y_{k}\right)=\lambda y_{k}$ has non-trivial solutions for some $\lambda \in \mathbb{R}$.

- $y(0)=0, y(\pi)=1 \Rightarrow$ Let $v=y-\frac{x}{\pi}$.

Sturm-Liouville Problem: Consider the self-adjoint DE $\left(p(x) y^{\prime}\right)^{\prime}-$ $q(x) y+\lambda r(x) y=0$ on $[a, b]$ with boundary conditions $a_{0} y(a)+a_{1} y^{\prime}(a)=0$ and $b_{0} y(b)+b_{1} y^{\prime}(b)=0$. Find λ and corresponding non-trivial ϕ_{λ}.

- Regular: $p, r>0$ on $[a, b] \& p, p^{\prime}, q, r$ are continuous.
- Spectrum: Set of all eigenvalues of a regular SL problem.
- Theorems
- If ϕ_{1} and ϕ_{2} are eigenfunctions corresponding to the same eigenvalue, then $\phi_{1}=k \phi_{2}$ for some k.
- If $\lambda_{1} \neq \lambda_{2}$, then $\phi_{\lambda_{1}}$ and $\phi_{\lambda_{2}}$ are linearly independent. Also,

$$
\int_{0}^{\pi} \phi_{\lambda_{1}}(x) \phi_{\lambda_{2}}(x) \mathrm{d} x=0 \text { or } \int_{0}^{\pi} \phi_{\lambda_{1}}(x) \phi_{\lambda_{2}}(x) r(x) \mathrm{d} x=0
$$

- All eigenvalues are real.
- Infinite eigenvalues $\lambda_{1}<\cdots<\lambda_{n}<\cdots$ where $\lim _{n \rightarrow \infty} \lambda_{n} \rightarrow \infty$.

Fourier-Legendre Series: $\left\{P_{k}(x): k \in \mathbb{N}\right\}$ is a family of orthogonal functions on $[-1,1]$. The Fourier-Legendre series of a function f is

$$
f(x)=\sum_{k=0}^{\infty} c_{k} P_{k}(x), \text { where } c_{k}=\frac{2 k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) \mathrm{d} x
$$

Here $P_{k}(x)=\frac{1}{2^{k} k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left(x^{2}-1\right)^{k} \in\left\{1, x, \frac{1}{2}\left(3 x^{2}-1\right), \cdots\right\}$.
Green Function: Consider the second-order self-adjoint DE $L[y]=f$. A solution to this function would be $2 \pi(G * f)$, where the Green function G is the solution to $L[G]=\delta_{0}$.

- $y=\sum_{k \in \mathbb{Z}} \frac{e^{i k x}}{2-k^{2}}$ is a solution to $y^{\prime \prime}+2 y=\delta_{0}$.
$\cos x \cos y=\frac{\cos (x-y)+\cos (x+y)}{2}$
$\sin x \sin y=\frac{\cos (x+y)-\cos (x-y)}{2}$ $\sin x \cos y=\frac{\sin (x+y)+\sin (x-y)}{2}$
$\cos ^{2} x=\frac{1+\cos 2 x}{2}$

Inner Product Space

Inner product: $\langle\cdot, \cdot\rangle$ is said to be an inner product on a real vector space V if for all $f, g, h \in V$, we have (1) $\langle f, g\rangle=\langle g, f\rangle$ (symmetric); (2) $\langle f, g+c h\rangle=\langle f, g\rangle+c\langle f, h\rangle$ and $\langle f+c h, g\rangle=\langle f, g\rangle+c\langle h, g\rangle$ (bilinear);
(3) $\langle f, f\rangle \geq 0$ with equality only when $f=0$ (positive definite).

- Orthogonal: A set \mathcal{F} in a vector space with inner product $\langle\cdot, \cdot\rangle$ is said to be orthogonal if $\langle f, g\rangle=0$ for all $f, g \in \mathcal{F}, f \neq g$.
\triangleright An orthogonal family of vectors is linearly independent.
- Orthonormal: Orthogonal $\&\langle f, f\rangle=1$ for all $f \in \mathcal{F}$.
- Orthonormal Basis: An orthonormal set $\left\{e_{1}, e_{2}, \cdots\right\}$ in a vector space V is an orthonormal basis of V if for any $f \in V$, there exists unique $\left\{c_{k}\right\} \subset \mathbb{R}$ such that $f=\sum_{k=1}^{\infty} c_{k} e_{k}$. It is complete.
Norm: $\|x\|=\sqrt{\langle x, x\rangle}$.
- Cauchy-Schwartz Inequality $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- Parallelogram Rule $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$.
- $\overline{\text { Pythagorean Law }}\left\|\sum_{j=1}^{k} v_{j}\right\|^{2}=\sum_{j=1}^{k}\left\|v_{j}\right\|^{2}$ if $\left\langle v_{j}, v_{l}\right\rangle=0$ for all $j \neq l$.

Hilbert space: Complete inner product space.

- Every Hilbert space has a maximal (complete) orthonormal set.

Bessel's Inequality Let \mathcal{F} be a family of orthonormal vectors in V,

$$
\sum_{v_{\alpha} \in \mathcal{F}}\left|\left\langle v, v_{\alpha}\right\rangle\right|^{2} \leq\|v\|^{2} \text { for all } v \in V
$$

Parseval's Identity If \mathcal{F} is complete and hence an orthonormal basis,

$$
\sum_{v_{\alpha} \in \mathcal{F}}\left|\left\langle v, v_{\alpha}\right\rangle\right|^{2}=\|v\|^{2} \text { for all } v \in V
$$

Functional Analysis

Bessel's Inequality If $\left\{\psi_{k}\right\}$ is orthonormal on $[a, b]$, then

$$
\langle f, f\rangle \geq \sum_{k=1}^{n}\left|\left(f, \psi_{k}\right)\right|^{2} \text { for all } n
$$

- Let f be a piecewise continuous function on $[0, T]$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} f(x) \sin \frac{(2 n+1) \pi x}{2 T} \mathrm{~d} x=0
$$

Theorem 4.10 (1) If f_{n} is continuous on an interval I for each $n \in \mathbb{N}$ and $\sum f_{n}(x)$ converges uniformly to f on I, then f is continuous.
(2) Let f_{n} be differentiable functions on an interval J for each $n \in \mathbb{N}$ such that $\sum f_{n}^{\prime}(x)$ converges uniformly on all bounded subintervals of J. If $\exists x_{0} \in J$ such that $\sum f_{n}\left(x_{0}\right)$ converges, then the series $\sum f_{n}(x)$ converges uniformly to a differentiable function f on any bounded subintervals of J and $f^{\prime}(x)=\sum f_{n}^{\prime}(x)$ on J.
Cauchy Criterion A series $\sum f_{n}(x)$ converges uniformly on I iff $\forall \varepsilon>0 \exists K(\varepsilon)$ s.t. $\mid f_{m}(x)+f_{m-1}(x)+\cdots+f_{n+1}(\overline{x)<\epsilon \mid \text { for }}$ all $x \in I$ and $m>n \geq K$.
Weierstrass M-test Let $\left|f_{n}(x)\right| \leq M_{n}$ for all $x \in I, M_{n} \in \mathbb{R}$ for each $n \in \mathbb{N}$ and $\sum M_{n}<\infty$. The series $\sum f_{n}(x)$ converges uniformly on I. Minkowski Inequality

$$
\begin{aligned}
\left(\sum_{k=1}^{\infty}\left|a_{k}+b_{k}\right|^{2}\right)^{\frac{1}{2}} & \leq\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}\right)^{\frac{1}{2}} \\
\left(\int_{a}^{b}|f+g|^{2}\right)^{\frac{1}{2}} & \leq\left(\int_{a}^{b}|f|^{2}\right)^{\frac{1}{2}}+\left(\int_{a}^{b}|g|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Abel's Lemma Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences and let $S_{n}=\sum_{k=1}^{\infty} b_{k}$ be the sequence of partial sums with $S_{0}=0$. Then for $m>n \in \mathbb{N}$,

$$
\sum_{k=n+1}^{m} a_{k} b_{k}=a_{m} S_{m}-a_{n+1} S_{n}+\sum_{k=n+1}^{m-1}\left(a_{k}-a_{k+1}\right) S_{k}
$$

Dirichlet's Test Let $\left(a_{n}\right)$ be a decreasing sequence of real numbers that converge to 0 and $\exists M>0$ such that $\left|\sum_{k=1}^{n} b_{k}\right| \leq M$ for all $n \in \mathbb{N}$. Then the series $\sum a_{k} b_{k}$ converges.
Abel's Test Let $\left(a_{n}\right)$ be a convergent monotone sequence and let $\sum b_{k}$ converge. Then the series $\sum a_{k} b_{k}$ converges.

