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1 Fourier Series

Integration by Parts

[1] When f is piecewise continuous on [a, b], then

/f(z)dz*Z/z x)dx*Z/

Tj—1
[2] When P is a polynomial of degree < m and f is continuous,

/Pf do = PF —P' F+P'F3— 4+ (=1)"PMF, .1 +C.

gj(z) d

Here F), refers to the n-th antiderivative of f.
[3] When P is a polynomial or other nice function and f is only
piecewise continuous, then we will do [1] before [2].

Piecewise Continuous: A function f is said to be piecewise continuous

on [a,b] if it has a partition a = g < z1 < --- < z, = b such that f is
uniformly continuous on each interval (z;_1,2;) fori=1,---  n.

o f(a®), f(b7), f(z;), f(z]) exist forall i =1,--- ,n—1.
e Piecewise Smooth: A function f is said to be piecewise smooth on
[a,b] if both f’ and f are piecewise continuous on [a, b].

Fourier Cosine series: Assume f is piecewise continuous, then
ag = %fowf(z) dz

2 [ f(=) cos(kz) dz
ay = %fOL f(z)dz

f(z)cos (52) da

0,7]: f(z)=ao+ i ay, cos(kz) {
k=1

Ak

[0,L]: f(z)=ao+ i ax cos (£72) {

k=1 ar = %foL

Fourier Sine series: Assume f is piecewise continuous, then

0,7]: f(z)= k§1 by, sin(kz) bi = 2 [ f(z)sin(kz) dz
0,L]: f(z)= 1?:021 by, sin (k%) by = %fOL f(z)sin (522) da

Fourier series: Assume f is piecewise continuous with period 27 or L:

2 f(z) =ao+ Zak cos(kz) (@0 = = [T f(z)dz
k=1 =1 f

+) besin(kz) Ly, = L™ f(z)sin(kz) do

k=1

> -1 %Lf d
L: f(z):ao_i_zakcos(%%) ao Lf_f (z) dz
ak:%ff%f(

2kmx
" Z”’“ ( ) b= 2[5, f(@)sin (%72) da

(z) cos(kz) dz

cos (2’“”) dz

2 Fourier Analysis

Pointwise Convergence: Assume [ is a piecewise smooth function
on [0,L]. Then its Fourier series [ag + > a cos + Y bg sin] converges to
+ —
% for all z € (0, L). [same for Cosine and Sine series]
" _
e When =z = 0 or L, the series converges to %.
e If continuous at zg € (0, L), the Fourier series converge to f(zo).
e Corollary 4.4 Assume f is a piecewise continuous function on [0, L]

OR fOL |f(z)| dz < oo, then its Fourier coefficients klim ar = 0 and
— 00

lim by = 0. [same for Cosine and Sine series|
k—o0

Uniform & Absolute Convergence: Let Sar be the space of
infinitely differentiable functions of period 27. For any function f € Sar,

its Fourier series converges uniformly and absolutely to f.

e Proposition 4.12 If by, \, 0, the Fourier sine series Y by sin converges
uniformly on [d, 7 — 6] for all 0 < < 7.

Differentiability of Fourier Series: Let f be a continuous function of
period 27 such that its derivative f’ is piecewise continuous on [—,7].

Then the Fourier series of f, [ag + Y aj cos + > b sin], is differentiable at
each point zo € (—m,m) at which the second derivative f” exists:
oo
f(z0) = Z k(—ag sin(kzo) + by, cos(kzo)).
k=1

e Theorem 4.13 If f is a continuous function of period 27 such that f’
is piecewise continuous on [—, 7], then kay, kb — 0 as k — oco.
> If f € Son, then k™ay, k™br — 0 as k — oo for all n € N.

Fourier Series of Complex-Valued Functions

= che * where ¢, = f(k) = / f(x)e ™ dz.

keZ
e The family (e*¢® k € 1Z) is orthogonal when (f,g) =
JZ, F(2)g(z) dz

e If f is piecewise continuous on [0, 2], then ioj f(k)z* converges on
the open unit disk {|z| < 1} and hence analytzic on this disk.

e Define f(z) = 3 f(k)z*, then f(e'®) = f(z) if f is piecewise
smooth, continugfszand of period 2.

Convolution: Let f and g be both periodic (of period 27) piecewise
continuous functions on [ 7, ). Then we define its convolution as

fro@) = o [ 1=y
-@f*g:g*ﬁ@(f*g)*m * (g * h);
@ (afi + fo)xg=a(fi*xg)+ fa*g; @ f * g is continuous.

o [xg(n) = f(n)g(n).
n sin(2nt1,
e Dirichlet Kernel: Dy (t) = % + > coskt = qm(_ia,t # 2km.
=1 2 sln(é)

> [ Dn(t)dt =3

> (f*Dp)(z) = 3 fk)eth® — % (if applicable).
keZ

Theorem 5.4 If f is piecewise continuous on [—, 7], then (f * oy )(z) —

f(z) whenever f is continuous at x, € (—m, ). Moreover, if f is contin-
uous and of period 2, then (f * oy )(z) — f(z) uniformly.
sin 2L t] 2 1 1

- 1
e Fejér’s Kernel: oy, (t) = ey |: Sin% S Tl

o Cesaro Means: % for a sequence {ay}.

Theorem 5.5 If f is piecewise continuous on [—, 7|, then (f * P.)(z) —

f(z) as r — 1~ whenever f is continuous at z, z € (—m, 7).

e Poisson’s Kernel: P.(t) = 3 rlkleikt,
kEZ
e Abel's Means: lim 3 cprlklei*t for a series 3 cpet®®.

r—1 kez

3 Fourier Approximation

Best Approximation: Let X = (X,| - ||) be a normed space and Y

be a fixed subspace of X. If there exists yo € Y such that ||z — yo| =
ing ||z —yl|, then yo is called a best approximation to x out of Y.
ye

e Existence Theorem If Y is finite dimensional, then for each z € X
there exists a best approximation to x out of Y.
e Uniqueness Theorem If X is strictly convex, then for each z € X
there exists at most one best approximation to x out of Y.
> Convex: y,ze€ M =W ={v=ay+(1—a)z[0<a <1} C M.
> Lemma 6.2.1 The set of best approximations to x is convex.
> Strict Convexity: Vo # y of norm 1 [||z + y|| < 2].
* Hilbert space is strictly convex.
* Cla,b] is not strictly convex.
e Theorem 6.2.5 Let H be a Hilbert space and Y be any closed subspace
of H, then for every x € H there is a unique best approximation to

x out of Y.

[a,b].

e Extremal Point: An extremal point of an z € Cla,b] is a to € [a, ]
such that |z(to)| = ||=||-

e Haar Condition: A finite dimensional subspace Y of the real space
Cla, b] satisfies the Haar condition if every y € Y,y # 0 has at most
n — 1 zeros in [a, b], where n = dimY

> Lemma 6.3.3 Suppose Y satisfies the Haar condition. If for a
given z € Cla,b] and a y € Y the function z — y has less than
n + 1 extremal points, then y is not a best approximation to z.
e Haar Uniqueness Theorem The best approximation out of Y is unique
for every z € Cla, b] iff Y satisfies the Haar condition.
> Theorem 6.3.5 The best approximation to an z € Cla,b] out
of Y,, is unique, where Y,, is the subspace containing 0 and all
polynomials of degree not exceeding a fixed given n
e Chebyshev Polynomials: The polynomial Ty (t) = 2n —Tn(t) =

Uniform Approximation: ||z| = max |z(t)|, where J =
te

271%1 cos(narccost) (n > 1) is the best approximation of 0 out of
all real polynomials on [—1, 1] of degree n and leading coefficient 1.
> Recursive formula: Th41(¢) + Tr—1(t) = 2tTy ().
> Lemma 6.4.2 Let Y be a subspace of C|a, b] satisfying the Haar
condition. Given z € Cla,b], let y € Y be such that z — y has
an alternating set of n + 1 points, where n = dimY. Then y is
the best uniform approximation to x out of Y.

Least Squares Approximation: ||z| = /(z,z) =/ [, |:z:(t)|2 dt.

e {vi, -+ ,vn} is a family of orthonormal vectors. For all u eV,

inf {||lu —v|| : v € Span{vy, - ,vn} =M} = Z u, vj)vj



n
> > (u,vj)v; = Ppru is the orthogonal projection of u to M.
> Ppru is independent of choice of basis.
> u — Ppju is perpendicular to M.
> ||Pryru — Ppgol| < ||u — vl||. This implies Pysu is continuous.

<.
-

e Approximation in R™: Given M = Span{ai, -+ ,am} which is a sub-
space of R™, let A = [a1,- - ,am]. The best approximation to any
b € R™ out of M, Aa*, satisfies AT Aa* = ATb.
> Gram Determinant: The determinant of AT A is the Gram
determinant of A, denoted as G(a1, - ,am). We have

G(byar, - ,am)
G(a, - ,am)
e Approximation in L?: Let {¢x} be a family of orthonormal set. If
cx = {f, pk) for all k, then for any n € N and {vx} C R, we have

b n 2 b n 2

[ i@ = e doz [ i@ - Y aee)| e
@ k=1 @ k=1
e Approximation with Fourier Series: Fourier series of f is its best ap-
proximation out of the Cosine and Sine basis.
Theorem 3.14 Let {py :
OO

Then for any f € L?[a,b], f: [f(@)|?dz = > ¢ [Parseval’s identity],

b — Pasbl|? = for any vector b € R".

k € N} be an orthonormal basis of L2[a,b].

OO

where ¢ = f: f(@)pg(z) dz. Note that f = > cpor.
k=1

e In particular let f be a piecewise continuous function on [0, L], let

ao + E ay cos (2]‘””) + Z by, sin (2'”””) be the Fourier series of f
on [0, L], then fo |f(x)]? do = & (2(10 + Z (a2 +bi)>
k=1
e Let f be a piecewise continuous [0, 7],

o0 o0
Jo 1 f(@)? dz = gkgl b2 =% (Qa%—i-kz;l ai), where ag, aj and

by are the Fourier cosine and sine coefficients respectively.

function on then

Theorem 3.17 Let w be a weight on a finite interval [a,b], and let f €
L2 [a,b]. Then p% € P, is the least squares approximation of f out of Py,

n
if and only if (f — p},, p) = 0 for all p € P,. Moreover, pj,(z) = > ajz®,
k=0
where
<1,1>w <xn’1>w 0[6 <f»1>’w
(L,a") @l len] e
4 Application of Fourier Series
PDE: Separation of variables & verify.
e u(z,0) =0,u(z,1) =2 = Let v = u + w(y).
o u(z,0) =1,u(x,1) =1=Letv=u—1.
Eigenvalue Problem: Consider the ODE L(y) = Find y; such

f(@).

that L(yx) = Ay has non-trivial solutions for some A € R
e y(0)=0,y(mr)=1=>Letv=y— 7.

Sturm-Liouville Problem: Consider the self-adjoint DE (p(x)y’) —
g(z)y+Ar(z)y = 0 on [a, b] with boundary conditions apy(a)+a1y’(a) =0
and boy(b)+b1y’(b) = 0. Find X and corresponding non-trivial ¢ .

e Regular: p,r > 0 on [a,b] & p,p’, ¢, are continuous.
e Spectrum: Set of all eigenvalues of a regular SL problem.
e Theorems
— If ¢1 and ¢2 are eigenfunctions corresponding to the same eigen-
value, then ¢ = k¢o for some k.
— If A1 # X2, then ¢, and ¢, are linearly independent. Also,

/ " by (@)dag () dz = 0 o / " b1 (@), (@)r(z) dz = 0.
(0] 0

— All eigenvalues are real.

— Infinite eigenvalues A\; < --- < Ap < --- where lim A\, — co.
n—oo

Fourier-Legendre Series: {P;(z) : k € N} is a family of orthogonal
functions on [—1, 1]. The Fourier-Legendre series of a function f is

1
k1 /_1 F(2) Py () da.

%(3:{32—1),-'}.

Green Function: Consider the second-order self-adjoint DE L[y] = f.
A solution to this function would be 27(G * f), where the Green function
G is the solution to L[G] = do.

o0
= Z ¢k Px (), where ¢ =
k=0

Here Pk.(:c):ﬁdd?(a: ke{lq,

° y= kz 5 k2 is a solution to y"" + 2y = do.
ez

Trigometric Identity

cosmcosy:w cos  + cosy = 2cos Lt cos Y
. . cos(z+y)—cos(z—y)
singsiny = =/ . . . _
Y ) 2 sinz + siny = 2sin Z+¥ cos =¥
. __ sin(z+y)+sin(z—y) 2 2
sinzcosy = ——r5——=
cos2z = 1+cgs 2z SiIl2 = l—cgs 2z

Inner Product Space

Inner product: (-, -) is said to be an inner product on a real vector
space V' if for all f,g,h € V, we have @ (f,9) = (g, ) (symmetric);
(f,g+ch) = (f,9) + c(f, h) and (f + ch,g) = (f,g) + c(h, g) (bilinear);
@ (f, f) > 0 with equality only when f = 0 (positive definite).
e Orthogonal: A set F in a vector space with inner product (-,-) is
said to be orthogonal if (f,g) =0 for all f,g € F, f # g.
> An orthogonal family of vectors is linearly independent.
e Orthonormal: Orthogonal & (f, f) =1 for all f € F.
e Orthonormal Basis: An orthonormal set {e1,e2, -} in a vector
space V' is an orthonormal basis of V' if for any f € V, there exists
o0
unique {c;} C R such that f = > cpeg. It is complete.
k=1
Norm: ||z|| = v/{z, x).
e Cauchy-Schwartz Inequality |(z,y)| < ||z|| ||y]|.
e Parallelogram Rule ||z + y||? + ||z — y||? = 2||z||% + 2||y||?.
2

k
Z vj|| = _lelvjll2
=

Hilbert space: Complete inner product space.
e Every Hilbert space has a maximal (complete) orthonormal set.
Bessel’s Inequality Let F be a family of orthonormal vectors in V,

> v, va)® < [Jo]|? for all v € V.
v EF
Identity If F is complete and hence an orthonormal basis,

> v,va) > = []vlf? forallv € V.
v EF

Functional Analysis

Bessel’s Inequality If {¢} is orthonormal on [a, b], then

e Pythagorean Law if (vj,v;) = 0forall j # 1.

Parseval’s

n
(£, £) = D 1(f,9w)]? for all n.
k=1
e Let f be a piecewise continuous function on [0, 7], then
(2 1
lim / @ n + )7rx
n— o0
Theorem 4.10 @ If f, is continuous on an interval I for each n € N
and > fn(x) converges uniformly to f on I, then f is continuous.

Let f, be differentiable functions on an interval J for each n € N
such that > f/ (x) converges uniformly on all bounded subintervals of
J. If 3zg € J such that > fn(xo) converges, then the series Y fn(x)
converges uniformly to a differentiable function f on any bounded subin-
tervals of J and f'(z) =Y f} (z) on J.

Cauchy Criterion A series Y fn(z) converges uniformly on I iff
Ve > 03K (e) s.t. [fm(x) + fm—1(x) + -+ frn+1(z) < €| for all z € T
and m >n > K.

Weierstrass M-test Let |fn(x)] < My, for all © € I, M,, € R for each
n € N and Y M, < co. The series > fn(x) converges uniformly on I.
Minkowski Inequality

) ()5
([ir+or) < (1) + ([1o2)

o0
Abel’s Lemma Let (a,) and (by) be sequences and let S, = > by

k=1
be the sequence of partial sums with Sp = 0. Then for m > n € N,

= 0.

m m—1
Z akbk = amSm — an+1sn + Z (ak — ak+1)sk.
k=n+1 k=n+1

Dirichlet’s Test Let (an) be a decreasing sequence of real numbers

> bi

k=1

that converge to 0 and 3IM > 0 such that < M for all n € N.

Then the series Y axby converges.

Abel’s Test Let (an) be a convergent monotone sequence and let > by,
converge. Then the series > apby converges.




