
MA4254 Discrete Optimization
Final Examination Helpsheet

AY2024/25 Semester 1 · Prepared by Tian Xiao @snoidetx

1 ILP Formulation
Mixed integer linear programs (standard form):

min c⊤x+d⊤y
s.t. Ax+By = b

x,y≥ 0; x ∈ Zn; y ∈ Rk .

Examples of ILP formulation:
item 1, · · · ,n;
weight w1 , · · · ,wn;
cost c1 , · · · ,cn;

max ∑i cixi
s.t. ∑i wixi ≤ B

xi ∈ {0,1}. (i picked?)

KNAPSACK

item 1, · · · ,n; size a1···n;
container 1, · · · ,m; size b1···m;
binary feasibility problem:
whether a feasible point exists.

∑
m
j=1 xi j = 1,∀i

∑
n
i=1 aixi j ≤ b j ,∀ j

∑
m
j=1 b jy j ≤ Q (ship capacity)

xi j ≤ y j ; xi j ,y j ∈ {0,1}.
SHIPPINGCONTAINERS

service locations 1, · · · ,m;
customers 1, · · · ,m;
cost for j to be switched on: c j ;
cost for i to be served by j: di j ;

min ∑ j c jy j +∑ j ∑i di jxi j
s.t. ∑ j xi j = 1, ∀i

xi j ≤ y j , ∀i, j
xi j ,y j ∈ {0,1}.

FACILITYLOCATION (relax)

item 1, · · · ,n;
disjoint subset F1 , · · · ,Fn;
find collection of subsets with
highest value.
incident matrix Ai j = 1 if j ∈ Fi;

max c⊤x
s.t. A⊤x≤ 1

x ∈ {0,1}m .

PACKING

item 1, · · · ,n;
disjoint subset F1 , · · · ,Fn;
optimize objective when all items
are covered.
incident matrix Ai j = 1 if j ∈ Fi;

min c⊤x
s.t. A⊤x≥ 1

x ∈ {0,1}m .
COVERING

item 1, · · · ,n;
disjoint subset F1 , · · · ,Fn;
find partition that maximizes ob-
jective.
incident matrix Ai j = 1 if j ∈ Fi;

max c⊤x
s.t. A⊤x = 1

x ∈ {0,1}m .
PARTITIONING

One of a⊤x ≥ b and a′⊤x ≥ b′
needs to be satisfied.

max c⊤x
s.t. a⊤x≥ yb

a′⊤x≥ (1− y)b′
y ∈ {0,1},x≥ 0.

DISJUNCTION

At least k inequalities from a⊤i x≥
bi need to be satisfied.

max c⊤x
s.t. a⊤i x≥ yibi

∑i yi ≥ k
yi ∈ {0,1},x≥ 0.

MOREDISJUNCTION

Assume a⊤i x ≥ γ ∀x ≥ 0, x ∈ C,
we want x ≥ 0, x ∈C and at least
k from a⊤i x≥ bi . Let yi = 1 if con-
straint i is satisfied.

a⊤i x≥ yi(bi− γ)+ γ

∑i yi ≥ k
yi ∈ {0,1},x≥ 0,x ∈C.

EVENMOREDISJUNCTION

nnz(x): no. of non-zero entries in x.
min

x∈[−M,M]n
nnz(x) s.t. Ax≤ b.

⇓MILP
minx,z ∑

n
i=1 zi

s.t. Ax≤ b
−Mzi ≤ xi ≤Mzi, ∀i
z ∈ {0,1}n ,x ∈ Rn.

NON-LINEARTOLINEAR

people 1, · · · ,n;
job 1, · · · ,n;
cost for person j doing job i: ci j ;

min ∑ j ∑i ci jxi j
s.t. ∑ j xi j = 1, ∀i

∑i xi j = 1, ∀ j
xi j ∈ {0,1}, ∀i, j.

JOBSCHEDULING

G = (V,E); k-coloring: Each node
has a color s.t. adjacent nodes
have different color.
min ∑ j y j (color j needed?)
s.t. ∑ j xi j = 1, ∀i

xu j + xv j ≤ y j , ∀(u,v) ∈ E
xi j ,y j ∈ {0,1}.

k-COLORING

Optimal route for driver to tra-
verse n cities and return.
Graph G = (V,E),S⊆ {1, · · · ,n};
δ (S): subset of edges from S to S′;

min{xe} ∑e∈E cexe

s.t. ∑e∈δ (i) xe = 2, ∀i
∑e∈δ (S) xe ≥ 2,
∀ /0⊂ S⊂V
xe ∈ {0,1}.

TSP (each city once + no sub-tour)

Optimal route for driver to tra-
verse n cities, but ci j ̸= c ji .
δ+(S): S to S′; δ−(S): S′ to S;

min ∑a∈A caxa
s.t. ∑a∈δ+(i) xa = 1, ∀i

∑a∈δ−(i) xa = 1, ∀i
∑a∈δ−(S) xa ≥ 1,

∀2≤ |S| ≤ |V |−1
xa ∈ {0,1}.

ASYMMETRICTSP

2 LP and Lagrange Duality
Convexity:

• Convex set: If x,x′ ∈D, then λx+(1−λ)x′ ∈D for all λ ∈ [0,1].
• Convex function: f (λx+(1−λ)x′)≤ λ f (x)+(1−λ) f (x′).

▷ Any local minimum is also a global minimum.
▷ If f differentiable, then convex iff f (x′) ≥ f (x) +

∇ f (x)⊤(x′−x) for all x,x′ .
▷ If f twice differentiable, then convex iff ∇2(x)≥ 0 for all x.
▷ If f1 , f2 convex, α1 ,α2 > 0, then α1 f1 +α2 f2 convex.
▷ If f1 , · · · , fL convex, then maxℓ∈[L] fℓ convex.
▷ If h linear/affine and g convex, then g◦h convex.
▷ Jensen’s inequality: For any random vector X and convex

function f , f (E[X])≤ E[f (X)].

Convex optimization: (1) f0 and all fi are convex; (2) all hi affine.
minx f0(x)

s.t. fi(x)≤ 0, ∀i = 1, · · · ,mineq
hi(x) = 0, ∀i = 1, · · · ,meq.

Lagrangian: L(x,λλλ ,ννν) = f0(x)+∑i∈[mineq]
λi fi(x)+∑i∈[meq] νihi(x).

• λλλ and ννν are Lagrangian multipliers.
• Lagrangian dual: g(λλλ ,ννν) = minx L(x,λλλ ,ννν).
• Lagrangian dual problem: maxλλλ ,µµµ g(λλλ ,ννν) s.t. λλλ ≥ 0.
• Weak duality: g(λλλ∗ ,ννν∗)≤ f0(x∗).
• Strong duality: If original problem is convex and a mild regularity

condition holds, then g(λλλ∗ ,ννν∗) = f0(x∗).
▷ Slater’s condition: There exists at least one feasible x s.t. all

fi(x)<<< 0 and all i(x) = 0.

▷ Another sufficient condition: All fi are linear.

Lagrangian of LP:
(P) min

x
c⊤x

s.t. Ax = b;x≥ 0.
⇔

(D) max
ννν

b⊤ννν

s.t. A⊤ννν ≤ c.

• If we replace by Ax≥ b, then add constraint ννν ≥ 0.
• Strong duality: min(P) = max(D).

Examples of convex optimization formulation:
Directed graph G = (V,E);
source s, sink t;

max{ fuv} ∑v:(s,v)∈E fsv

s.t. 0≤ fuv ≤ cuv
∑u:(u,v)∈E fuv =

∑v:(v,w)∈E fvw ,

∀v ∈V \{s, t}.
MAXFLOW

max ∑i, j xi jwi j
s.t. ∑ j xi j = 1, ∀i

∑i xi j = 1, ∀ j
xi j ∈ {0,1}.

MATCHING

• Dual of MAXFLOW:
minλλλ ,µµµ ∑(u,v)∈E cuvλuv

s.t. µs = 1,µt = 0
λuv ≥ µu−µv ,λuv ≥ 0, ∀(u,v) ∈ E.

▷ Max flow = min cut.

3 LP Geometry
Standard form: Every LP can be converted to standard form (P).

• Maximization with c is minimization with −c.
• aixi ≤ b⇔ aixi + si = b;si ≥ 0.
• x unconstrained⇔ x = x+− x−;x+,x− ≥ 0.

Polyhedron: {x : Ax = b;x≥ 0}.
• Convex sets defined by linear inequalities (equalities).
• Polytype: Bounded polyhedron.
• Extreme point: Let S ⊆ Rn be a set (polyhedron or otherwise).

We say that y ∈ S is an extreme point of S if, whenever y =
θz1 +(1−θ)z2 for some 0 < θ < 1 and z1 ,z2 ∈ S, it must hold
that y = z1 = z2 .

• Vertex: Let P ⊆ Rn be a polyhedron. We say that y ∈ P is a ver-
tex of P if there is a direction c ∈ Rn such that c⊤y < c⊤z for all
z ∈ P\{y}.

Basic feasible solutions:
• Assumptions (A ∈ Rm×n):

1. The polyhedron P is not empty.
2. The linear map A has full row rank.

• Basis: m linearly dependent columns of A.
• Basic solution: Let B be a basis. Then x =

▷ B−1b for the columns in basis
▷ 0 for the columns not in basis

is a basic solution.
• Basic feasible solution: Basic solution that ≥ 0 (feasible).

Thm. 3.1: Suppose P = {x : Ax = b;x ≥ 0} is a non-empty polyhe-
dron, and let x ∈ P. The following are equivalent:

• x is a vertex;
• x is an extreme point;
• x is a basic feasible solution with non-negative entries.

4 U and TU
Polyhedron integrality: A polyhedron P ⊆ Rn is integral if all its
extreme points are integer vectors.

• If so, then solving the relaxation of ILP is tight.

Unimodularity (U): A square matrix A ∈ Zm×m is unimodular if
its determinant if its determinant is ±1. A matrix A ∈ Zm×n with
full row rank is unimodular if the sub-matrix obtained by tak-
ing any m columns of A is either singular or unimodular (i.e., ∈
{−1,0,1}).

Thm. 4.1: Let A ∈ Zm×n be a matrix with full row rank. Then A
is unimodular if and only if the set P(b) = {x : Ax = b;x ≥ 0} is
integral for any b ∈ Zm for which the polyhedron P(b) is non-empty.

Proof. This can be proven by using Cramer’s Rule.

• This applies only to standard form.
• Prop. 4.2: A non-empty bounded polyhedron has at least one

extreme point.
• Prop. 4.3: Let P be a non-empty polyhedron with at least one

extreme point. The optimal solution of the LP {minc⊤x : x ∈ P}
is either −∞ or is attained (possibly non-uniquely) at an extreme
point of P.

• Prop. 4.4: Any non-empty polyhedron of the form {x : Ax =
b;x ≥ 0} has at least one basic feasible solution (and hence an
extreme point).

Other results: (from tutorial)

• U is a square invertible matrix. U is unimodular if and only if
U and U−1 are both integer-valued matrices (proven by Cramer’s
rule).

• U is a square invertible matrix. U is unimodular if and only if for
all x, Ux is integral if and only if x is integral.

• Unimodular operations:
1. Switch two columns;
2. Multiply a column by −1;
3. Add an integer multiple of a column to another;

Let U be a square invertible matrix. U is unimodular if (and only
if) it can be derived from the identity matrix via above operations.

Total unimodularity (TU): We say that a matrix A ∈ Zm×n is totally
unimodular if the determinant of each square sub-matrix of A is in
{−1,0,1}.

Thm. 4.6: Let A ∈ Zm×n be a matrix. Then A is totally uni-
modular if and only if the set P(b) = {x : Ax ≤ b;x ≥ 0} is in-
tegral for any b ∈ Zm for which the polyhedron P(b) is non-empty.

Proof. A is TU
⇔[A I] is U (Prop. 4.7)
⇔{(x,s) : Ax+ s = b;x,s≥ 0} is integral (Thm. 4.1)
⇔{x : Ax≤ b;x≥ 0} is integral (Prop. 4.8).

• Prop. 4.7: A is TU if and only if [A Im×m] is unimodular.

• Prop. 4.8: x∗ is an extreme point of P(b) = {x : Ax ≤ b;x ≥ 0}
if and only if [x∗ s∗] := [x∗ b−Ax∗] is an extreme point of
Q(b) = {(x,s) : Ax+ s = b;x,s≥ 0}.

Prop. 4.9: A ∈ Zm×n . Then A is TU if and only if A⊤ is TU.

Prop. 4.10: A ∈ Zm×n . Then [A I], [A A], [A −A], [A −A I], [A −
A I − I] are all TU.

Thm. 4.11: Let A ∈ Zm×n be a matrix. Then A is TU if and only if
the set {x : a ≤ Ax ≤ b, l ≤ x ≤ u} is integral for all integral vectors
a,b, l,u for which the polyhedron is non-empty.

Sufficient conditions for TU:
• Thm. 4.12: A matrix A ∈ {−1,0,1}m×n is TU if both of the

following conditions hold:
1. Each column of A contains at most 2 non-zero entries;
2. It is possible to split the row indices {1, · · · ,m} into two dis-

joint sets I1 , I2 such that whenever a column (indexed by j)
has 2 non-zero entries, it holds that

∑
i∈I1

Ai j = ∑
i∈I2

Ai j .

In other words, if the two non-zeros have the same sign then
one lies in I1 and one lies in I2 , whereas if the two non-zeros
have different signs then both lie in I1 or both lie in I2 .

▷ Cor. 4.13: A matrix A ∈ {−1,0,1}m×n is TU if each of its
columns has at most one +1 entry and at most one −1 entry.

• Thm. 4.14: Let A be an ×n integer-valued matrix, and for any
J ⊆ {1, · · · ,n}, let AJ denote the m×J sub-matrix obtained
by keeping only the columns in J . Then A is TU if and only
if AJ admits an equitable column-bicoloring for all non-empty
J ⊆ {1, · · · ,n}.

▷ Equitable bicoloring: We say that an integer-valued matrix
A admits an equitable column-bicoloring if it is possible to
partition the columns indices J into two sets Ja and Jb so
that the difference between the sums of the columns in these
subsets is a vector with entries in {−1,0,1}:

∑
i∈Ja

Ai− ∑
j∈Jb

A j ∈ {−1,0,1}m ,

where Ai is the i-th column of A. Equivalently, there exists
some z ∈ {−1,+1}|J | such that each entry of Az has abso-
lute value at most one.

▷ Cor. 4.15: A is TU if and only if every sub-matrix obtained
by taking a non-empty subset of the rows of A admits an
equitable row-bicoloring.

• Prop. 4.16: The node-edge incidence matrix of an undirected bi-
partite graph is TU.
▷ Ai j = 1 if node i is in edge j and 0 otherwise.
▷ Graph matching: Given a bipartite graph, a matching is a

subset of non-intersecting edges (i.e., edges for which no
two of them have a common node). A matching is said to
be perfect if all nodes are selected.

• Prop. 4.17: The node-edge incidence matrix of a directed graph
is TU.
▷ Ai j = 1 if edge j starts from node i,−1 if edge j ends at node

i, 0 otherwise.

5 Rounding
General approach: Rounding the LP solution to get α-approximation
ĉ⊤x≤ RR ·OPT(ILP) s.t. α = RR.

• α-approximation: x̂ is an α-approximation if it is a feasible inte-
ger solution s.t. c⊤x≤ α ·OPT(ILP).

• Integrality gap: IG = OPT(ILP)/OPT(LP)≥ 1.
• Rounding ratio: RR = c⊤x/OPT(LP)≥ 1.

WEIGHTEDVERTEXCOVER problem (2-approximation): Given
undirected G = (V,E) with non-negative vertex weights w : V → R,
find the vertex cover with minimum total weight.

min ∑v∈V wvxv (xv: whether v is selected)
s.t. xu + xv ≥ 1,∀(u,v) ∈ E

xv ∈ {0,1},∀v ∈V relax−−−→ xv ∈ [0,1].

• Rounding: If xLP
v ≥ 1/2, set xv = 1; else set xv = 0.

• Feasibility: At least one of xu ,xv ≥ 1/2, so after rounding
xu + xv ≥ 1 is guaranteed.

• Approximation: ∀v, xv ≤ 2xLP
v , so ∑wvxv ≤ 2OPT(LP) ≤

2OPT(ILP).

Randomized rounding: Suppose LP returns values xi ∈ [0,1],

(†) For each xi , round to 1 w.p. xi; OR
(‡) Sample a λ ∼ U[0,1], for each xi round to 1 if x≥ λ .

SETCOVERING problem: Let E = [n] be an index set, F =
{F1 , · · · ,Fm} be a collection of subsets of E. Find the set covering
with minimum total cost.

min c⊤x (xi: whether Fi is selected)
s.t. A⊤x≥ 1 (Ai j : whether j is in Fi)

x ∈ {0,1}m relax−−−→ x ∈ [0,1]m .

• Rounding: Use (†) until feasible.
• Feasiblity: In one (†), Pr[e not picked] = ∏i:e∈Fi (1− xLP

i) ≤
exp(−∑i:e∈Fi xLP

i) ≤ 1/e. Setting logn+ 2 times of (†), proba-

bility of all of them failing is at most (1/e)logn+2 = e−2/n. Since
there are n elements, we get coverage w.p. at least 1− e−2 .

• Approximation: Assume (†) is repeated for logn+ 2 times. We
know E[c⊤x] = c⊤xLP . So E[c⊤xfinal] ≤ (logn+ 2)OPT(ILP).
W.p. at least 0.9, c⊤xfinal ≤ 10(logn+2)OPT(ILP).

TSP is hard to approximate: We show that efficient approxima-
tion of TSP will solve HAMILTONIANCYCLE problem (NP-hard) ef-
ficiently:

1. Let G = (V,E) be a weighted graph in which every edge is in-
cluded, w(e) = 1 if e ∈ E0 and w(e) = nα +1 if e /∈ E0 .

2. If a Hamiltonian cycle exists in G0 , then TSP approximated so-
lution is at most nα . Otherwise, it is at least nα +1.

3. So can solve HAMILTONIANCYCLE using TSP approximation.

6 Submodularity
Submodularity: ∀S⊆ T ⊆V, e∈V \T, ∆(e|S)≥∆(e|T).

• Related notions:
▷ Monotonicity: S⊆ T ⊆V ⇒ f (S)≤ f (T).

▷ Modularity: ∆(e|S) = ∆(e|T).
▷ Supermodularity: ∆(e|S)≤ ∆(e|T).

• Equivalent definitions:
▷ ∀S,T, f (S)+ f (T)≥ f (S∪T)+ f (S∩T).
▷ ∀S,e,e′, ∆(e|S)≥ ∆(e|S∪{e′}).
▷ (If f monotone) ∀S,T, f (T)≤ f (S)+∑e∈T\S ∆(e|S).

• Relation to concavity:
▷ Diminishing returns;
▷ (Non-monotone case) Any local maximum is within 1/2 of

global maximum.
▷ Maximization (unconstrained or constrained) can be done

approximately efficiently.
▷ f (S) = g(|S|) is submodular if g is concave.

• Relation to convexity:
▷ Unconstrained minimization can be done exactly efficiently.
▷ An extension from sets to continuous values called Lovász

extension is a convex function.
• Properties: Suppose f1 , f2 are submodular:

▷ Linear combinations: c1 ,c2 > 0⇒ c1 f1 + c2 f2 submodular.
▷ Concave of modular: g modular, h concave⇒ h◦g submodular.
▷ Residual: f (S) = f1(S∪B)− f1(B) submodular for any B.
▷ Conditioning: f (S) = f1(S∩A) submodular for any A.
▷ Reflection: f (S) = f1(V \S) submodular.
▷ Truncation: If f1 also monotone, then f (S) = min{c, f1(S)}

is submodular for any c.
▷ Minimum: min{ f1 , f2} is submodular if either f1 − f2 or

f2− f1 is monotone.
• Examples:

▷ f (S) = area covered by activating all sensors in S.
▷ Let X be a matrix, V be the set of column indices, XS is the

submatrix indexed by S ⊆V . Then rS = rank(XS) is mono-
tone submodular.

▷ f (S) = total number of users influenced by advertising to S
(in a graph).

▷ f (S) = representativeness of images in S.
▷ f (S) = number of edges between S and Sc is submodular

but non-monotone.
▷ f (S) = H(XS) where entropy HX = ∑x PX (x) log 1

PX (x) is

monotone submodular.

Cardinality-constrained submodular maximization:
maxS∈S f (S)

s.t. S = {S : |S| ≤ k}.
• Greedy algorithm: For k times, add e = argmaxe∈V\Si−1

∆(e|Si−1).

• Useful fact: 1− x≤ e−x ,∀x ∈ R.
• Approximation: If f monotone submodular with f (/0) = 0, then

f (Sk)≥ (1−1/e) f (S∗k).
• Generalization: If we perform ℓ instead of k iterations, then

f (Sℓ)≥ (1− e−ℓ/k) f (S∗k).

Proof. f (S∗)≤ f (S∗ ∪Si) (monotonicity)
= f (Si)+∑

k
j=1 ∆(e∗j |Si ∪{e∗1 , · · · ,e

∗
j−1})

≤ f (Si)+∑
k
j=1 ∆(e∗j |Si) (submodularity)

≤ f (Si)+∑
k
j=1 ∆(e∗i+1|Si) (greedy)

≤ f (Si)+ k(f (Si+1)− f (Si)).
So f (S∗) − f (Si+1) ≤ (1 − 1/k)(f (S∗) − f (Si)). Since (1 −
1/k)ℓ ≤ e−ℓ/k , we have proven the theorem.

• Lazy greedy algorithm: For each e maintain its upper bound
(e,ρ(e)) and sort. If at a round the marginal contribution of e is
still larger than ρ(e′) after it, then we choose e without consider-
ing other elements.

• Stochastic greedy algorithm: Sample only N elements from
V \Si−1 and choose the one with largest gain.

▷ Choosing N = (n/k) log(1/ε) ensures overlapping with S∗
w.p. at least 1− ε .

▷ Time: O(n log(1/ε)).
▷ Approximation: (1−1/e− ε) on expectation.

7 Matroids
Independence system: Let N be a finite set, and let I be a collection
of subsets of N. We say that the tuple (N,I) is an independence system
if

1. /0 ∈ I; AND
2. Hereditary: A ∈ I implies B ∈ I for all B⊆ A.

• Each S ∈ I is an independent set. N is also called ground set.
• S /∈ I is dependent.
• For T ⊆ N, an independent set S ∈I satisfying S⊆ T is maximal

with respect to T if S∪{i} is dependent for all i ∈ T \S.
• Any maximimally independent subset of T is a basis of T .
• Rank r(T): Cardinality of largest sized basis of T . r(·) is called

the rank function.

Matroid:

1. An independence system (N,I) is a matroid if for any two inde-
pendent sets A ∈ I and B ∈ I, if B contains more elements than
A, then there exists x ∈ B\A s.t. A∪{x} ∈ I.

2. An independence system (N,I) is a matroid if for all subsets
T ⊆ N, every maximal independent set (basis) of T has cardinal-
ity r(T).

• Thm. 7.1: An independence system (N,I) is a matroid iff its
rank function r(·) is submodular.

8 Exact Solutions via Greedy Algorithms
BESTINDEPENDENTSET problem: Given a matroid (N,I), find the
independent set with the highest weight.

maxx ∑ j∈N c jx j
s.t. ∑ j∈T x j ≤ r(T), ∀T ⊆ N

x j ∈ {0,1}, ∀ j ∈ N relax−−−→ x j ≥ 0.

• r is non-negative, non-decreasing, submodular and r(/0) = 0.
• Greedy algorithm:

1. Re-label the set s.t. all weights are sorted in decreasing order
c1 ≥ ·· · ≥ ck > 0≥ ck+1 ≥ ·· · ≥ cn .

2. Define the set S j = {1, · · · , j} and S0 = /0.
3. Pick (♦) x j = r(S j)− r(S j−1) if 1≤ j ≤ k and 0 if j > k.
▷ Greedy since we choose the largest x j not violating x1+· · ·+

x j ≤ f (S j).

• Dual problem:
min{yT }T⊆N ∑T⊆N r(T)yT

s.t. ∑T : j∈T yT ≥ c j , ∀ j ∈ N
yT ≥ 0, ∀T ⊆ N.

▷ Optimal solution: (♢) ys =

c j − c j+1 if S =S j ,1≤ j ≤ k
ck if S =S j

0 otherwise
.

• Prop. 8.1: If r is a submodular, non-decreasing function satisfy-
ing r(/0) = 0, then (♦) and (♢) are the primal and dual optimal
solutions to the primal and dual problem respectively.

Proof. Primal feasibility: For a given set T ,
∑ j∈T x j = ∑ j: j∈T ; j≤k(f (S j)− f (S j−1))

≤ ∑ j: j∈T ; j≤k(f (S j ∩T)− f (S j−1 ∩T))(submodularity)
≤ ∑ j: j≤k(f (S j ∩T)− f (S j−1 ∩T))

= f (Sk ∩T)− f (/0)
= f (Sk ∩T)
≤ f (T)(non-decreasing).

The non-negativity constraint is obvious as f is non-decreasing.
Dual feasibility: For j ≤ k, we have

∑T : j∈T yT = yS j + · · ·+ ySk
= (c j − c j+1)+ · · ·+(ck−1− ck)+ ck
= c j .

For j > k, we have ∑T : j∈T yT = 0+ · · ·+0≥ c j .
Since both objectives are equal, by strong duality, we know that
both solutions are optimal.

• If r is integer-valued and we add the integrality constraint x j ∈ Z,
then greedy algorithm gives integer solution which is still optimal.

MINIMUMSPANNINGTREE problem: Given undirected G = (V,E),
find the spanning tree of minimum weight.

• Greedy algorithm: Starting from the empty graph, repeatedly
add the smallest weight edge that does not form a cycle. Stop
once there are |V |−1 edges.

• Equivalence to BESTINDEPENDENTSET: Set cmax − ci j in
MINIMUMSPANNINGTREE as the weight c j in BESTINDEPEN-
DENTSET; sort them in increasing order.

JOBSCHEDULING problem: Each job 1, · · · ,n takes a unit amount of
time and has a deadline d1···n . Determine the optimal order to maxi-
mize the total reward.

• Greedy algorithm:
1. List of jobs J ← /0.
2. Sort the job from highest reward to lowest: j1, · · · , jn .
3. Starting from j1 , if adding j to J (just before its deadline)

is still feasible, then do.
• Prop. 8.2: Given a set S of jobs, let Nt (S) be the number of jobs

whose deadline is t or earlier. The following are equivalent:
1. There exists schedule that completes all jobs in S on time;
2. Nt (S)≤ t for all t = 1, · · · ,n.
3. If the jobs in S are run sequentially in monotonically increas-

ing order of deadline, then no job is late.
▷ This implies that the set of all feasible job subsets forms a

matroid.

9 Computational Complexity
Problem: A problem is specified by a set of inputs, each of which has
an associated correct output.

Algorithm: An algorithm is a computer program that is guaranteed to
produce the correct output for a given problem.

Order of growth: Let f (n) and g(n) be real functions, then

1. f (n) = O(g(n)) if ∃c s.t. f (n)≤ cg(n) when n is large enough.
2. f (n) = Ω(g(n)) if ∃c s.t. f (n)≥ cg(n) when n is large enough.
3. f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)).

4. f (n) = o(g(n)) if limn→∞
f (n)
g(n) = 0.

• Stirling’s approximation: log(n!) = n logn−n+O(logn) = O(n logn).
• Polynomial time: O(nk) for some constant k.

Difficulty of problem:

• Decision problem: One that has a binary answer, YES or NO.
• Class P : A decision problem is in P if it is solvable by an algo-

rithm whose runtime in polynomial with respect to the number of
bits used to specify the problem input.
▷ The decision counterpart of LP is in P .

• Class NP : A decision problem is in NP if there exists a certi-
fying procedure s.t. the following conditions are true:

1. Any YES instance of the problem has an associated certifi-
cate whose size is polynomial with respect to the original
input.

2. Given the original input and the certificate, the certifying
procedure is able to confirm with certainty that the answer
is YES in polynomial time.

Thm. 9.1: P ⊆NP .

Reduction: We say that ρ1 reduces to ρ2 if it is possible to solve
ρ1 by solving at most a polynomial number of instances of ρ2 (each
with polynomial input size), plus polynomial-time additional compu-
tation.

• If algorithm for ρ2 is correct, we can solve ρ1 .
• NP-hard: ρ0 is NP-hard if all problems in NP reduce to ρ0 .
• NP-complete: ρ0 is NP-complete if ρ0 is NP-hard and ρ0 ∈NP .
• Prop. 9.2: If ρ0 is NP-complete/hard and we can reduce it to some

other problem ρ ′0 ∈ / /∈NP , then ρ ′0 is NP-complete/hard.
• BOOLEANSATISFIABILITY problem (or more specifically 3-

SAT) is NP-complete: given n Boolean variables x1···n and m
disjunctive logical clauses c1···m , decide whether it is possible to
assign x1···n s.t. all clauses are TRUE.

• Reduce 3-SAT to SUBSETSUM:
x1 x2 x3 c1 c2

y1 1 0 0 1 0
z1 1 0 0 0 1
y2 0 1 0 1 1
z2 0 1 0 0 0
y3 0 0 1 0 0
z3 0 0 1 1 1
s1 0 0 0 1 0
t1 0 0 0 1 0
s2 0 0 0 0 1
t2 0 0 0 0 1

k 1 1 1 3 3

10 General Global Optimization

Branch and bound: Consider the problem minx c⊤x s.t. x ∈F ,

1. Select a sub-problem Fi that is active (i.e., not eliminated);
2. If Fi is empty, eliminate Fi; otherwise, compute ℓ(Fi) (e.g., via

LP relaxation);
3. If ℓ(F)>U , eliminate Fi; otherwise, if we are able to solve Fi

completely, we may do so, update the upper bound U and elimi-
nate Fi from our list of sub-problems. Otherwise, break Fi into
further sub-problems and add these problems to our list of sub-
problems.

4. Return to Step 1 and continue until there are no active sub-
problems. Return the point x∗ that produced the latest updated
(best) value of U .

• Best-first-search: The next node to be branched is the one that
has smallest lower bound (for minimize).

• Example:

▷ Suppose we search 1 before 0.
▷ BFS: 1→ 0→ 11→ 10→ 01→ 00→ 111→ 110→ 101.
▷ DFS: 111→ 110→ 101→ 100→ 0→ 01→ 00.
▷ Best-first-search: 0→ 1→ 10→ 101.

• Limitation: Certain non-binary ILP may have infinite number of
sub-problems.

Cutting plane: Consider ILP in standard form and its relaxation:
min c⊤x
s.t. Ax = b

x≥ 0;x ∈ Zn relax
===⇒ delete.

Suppose we obtain an LP solution x̂LP that is non-integral. We then
seek an inequality that all ILP solutions satisfy, but excludes x̂LP ,
ααα⊤x ≤ β (valid inequality) s.t. ααα⊤ x̂LP > β (cutting plane). If both
conditions are satisfied, the inequality is a valid cut.

• Gomory cuts: Suppose the optimal basis is formed by the first
m columns denoted as B: A = [B ASc]. xLP has the form[

B−1b
0

]
. Hence

[
I

A = B−1ASc

]
x = B−1b = b. For each row

h ∈ S, xh +∑ j∈Sc Ah jx j = bh .
▷ Prop. 10.1: For any h s.t. bh is not integral, the following is

a cutting plane:
xh + ∑

j∈Sc
⌊Ah j⌋x j ≤ ⌊bh⌋,

▷ Equivalent cut:(
∑

j∈Sc
(⌊Ah j⌋−Ah j)x j

)
+ s = ⌊bh⌋−bh, s≥ 0.

▷ Example: x1 + x2 +
4
3 x3 − 1

2 x5 = 4
5 , where x3 and x4 are

non-basic variables. We can rewrite this as x1 + x2 + x3 −
x5 = − 1

3 x3 − 1
2 x5 + 4

5 , which is at most 4
5 and hence at

most 0. So the Gomory cut is − 1
3 x3− 1

2 x5 +
4
5 ≤ 0.

Dynamic programming:

• TSP problem: For i = 1, · · · ,n, evaluate C(S,k) for all subsets
S ⊂V with |S|= i and all k ∈V .

▷ Recurrence: C(S,k) = minm∈S\{k}{C(S \{k},m)+ cmk}
refers to the min cost of paths starting from 1 ending at k
visiting all nodes in S.

▷ Time: O(n22n).
• KNAPSACK problem: Iteratively build up the table of Wi(C) val-

ues starting from i = C = 0. At each step, proceed to any non-
computed entry for which the quantities needed have been com-
puted. Continue until the entire table has been completed.
▷ Recurrence: Wi+1(C) = min{Wi(C),Wi(C− ci+1)+wi+1}

refers to the least weight accumulated to attain value at
least C using items 1, · · · , i+ 1. Alternatively, we can use
Ci+1(W) = max{Ci(W),Ci(W −wi+1) + ci+1} refering to
the max value s.t. accumulated weight equals W .

▷ Time: O(n2cmax) (first); O(nB) (second).

Appendix: Mathematical Facts
Determinant:

• Cofactor expansion: For a matrix A ∈ Rn×n , we have
det(A) = ∑

n
j=1 Ai jCi j ,

where Ci j = (−1)i+ j det(Ai j).

• Cramer’s rule: A ∈ Rn×n is invertible. Then the solution to the
linear system Ax = b is given by

xi =
det(Ai)

det(A)
,

where Ai is the matrix obtained by replacing the i-th column of A
with vector b:

[A1 · · · Ai−1 b Ai+1 · · · An] .

• det(A⊤) = det(A).
• det(A−1) = 1

det(A)
.

• det(AB) = det(A)det(B).
Trace:

• tr(A+B) = tr(A)+ tr(B).
• tr(A⊤) = tr(A).
• tr(A⊤B) = tr(AB⊤) = tr(B⊤A) = tr(BA⊤).

