MA4254 Discrete Optimisation

Midterm Examination Helpsheet

AY2024/25 Semester 1 - Prepared by Tian Xiao @snoidetz

1 Introduction

Mixed Integer Linear Programmes: (standard form)
min ¢! x+ dTy
x,y

st. Ax+By=b
x,y>0,x€Z"y€eR"

Formulation and Examples:
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2 Geometry of Linear Programming

Standard Form: Every LP can be converted to the following standard
form (e.g., by adding slack variables):

min ¢'x

xX

st. Ax=Db
x.2 0.

e Maximisation with ¢ is minimisation with —c.

e a;x; <b&ajx;+ s =bs; >0

e x uncontrained < z+ —z~;zt, 2~ > 0;
Polyhedron: {x: Ax = b;x > 0}.

e Convex sets defined by linear inequalities (equalities).

e Polytype: Bounded polyhedron.

e Extreme point: Let S C R™ be a set (polyhedron or otherwise). We
say that y € S is an extreme point of S if, whenever y = 6z1+(1—0)z»
for some 0 < § < 1 and z1,2z2 € S, it must hold that y = z1 = zs.

e Vertex: Let P C R™ be a polyhedron. We say that y € P is a

vertez of P if there is a direction ¢ € R™ such that ¢'y < ¢z for
allz € P\ {y}.

Basic Feasible Solutions:
e Assumptions (A € R™X");
@ The polyhedron P is not empty.
@ The linear map A has full row rank.
e Basis: m linearly dependent columns of A.
e Basic solution: Let B be a basis. Then x =
> B~1b for the columns in basis
> O for the columns not in basis 0
is a basic solution.
e Basic feasible solution: Basic solution that > 0 (feasible).
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Thm. 3.1 Suppose P = {x: Ax = b;x > 0} is a non-empty polyhedron,
and let x € P. The following are equivalent:

e Xx is a vertex;
e x is an extreme point;

e x is a basic feasible solution with non-negative entries.

3 Unimodularity and Total Unimodularity

Polyhedron Integrality: A polyhedron P C R™ is integral if all its

extreme points are integer vectors.

e If so, then solving the relaxation of ILP is tight.

Unimodularity (U): We say that a square matrix A € Z™X™ is uni-
modular if its determinant if its determinant is £1. We say that a matrix

A € ZmX" with full row rank is unimodular if the sub-matrix ob-

tained by takin
(ie., € {-1,0,1}).

any m columns of A is either singular or unimodular

Thm. 4.1 Let A € Z™*™ be a matrix with full row rank. Then A
is unimodular if and only if the set P(b) = {x : Ax = b;x > 0} is
integral for any b € Z™ for which the polyhedron P(b) is non-empty.

‘ Proof. This can be proven by using Cramer’s Rule. l

e This applies only to standard form.
e Prop. 4.2 A non-empty bounded polyhedron has at least one ex-

treme point.

e Prop. 4.3 Let P be a non-empty polyhedron with at least one ex-

treme point. The optimal solution of the LP {mincTx : x € P} is
either —oo or is attained (possibly non-uniquely) at an extreme point

of P

° Proi). 4.4 Any non-empty polyhedron of the form {x : Ax =b;x >
0} has at least one basic feasible solution (and hence an extreme

point).
Other Results: (from tutorial)

e U is a square invertible matrix. U is unimodular if and only if U and

U~ are both integer-valued matrices (proven by Cramer’s rule).
e U is a square invertible matrix. U is unimodular if and only if for all




x, Ux is integral if and only if x is integral.
e Unimodular operations:
@ Switch two columuns;
(® Multiply a column by —1;
(® Add an integer multiple of a column to another;
Let U be a square invertible matrix. U is unimodular if (and only if)
it can be derived from the identity matrix via the above operations.

Total Unimodularity (TU): We say that a matrix A € Z™X" is to-
f[ally uni{nodular if the determinant of each square sub-matrix of A is in
—1,0,1}.

Thm. 4.6 Let A € Z™*"™ be a matrix. Then A is totally uni-
modular if and only if the set P(b) = {x : Ax < b;x > 0} is
integral for any b € Z™ for which the polyhedron P(b) is non-empty.

Proof. A is TU
<[AT]is U (Prop. 4.7)
<{(x,s) : Ax +s =b;x,s > 0} is integral (Thm. 4.1)
<{x: Ax < b;x > 0} is integral (Prop. 4.8).

e Prop. 4.7 A is TU if and only if [A I,,xm] is unimodular.

e Prop. 4.8 x* is an extreme point of P(b) = {x: Ax < b;x > 0}
if and only if [x* s*] := [x* b — Ax*| is an extreme point of Q(b) =
{(x,s) : Ax+s =b;x,s > 0}.

Prop. 4.9 A € Z™*". Then A is TU if and only if AT is TU.

Prop. 4.10 A € Z™*"™. Then [A I),[A A],[A —A],[A —AT,[A —
AT —1] are all TU. (1 AJ

Thm. 4.11 Let A € Z™*" be a matrix. Then A is TU if and only if
the set {x : a < Ax < b,1 < x < u} is integral for all integral vectors
a, b, 1, u for which the polyhedron is non-empty.

Sufficient Conditions for TU:

e Thm. 4.12 A matrix A € {—1,0,1}™*" is TU if both of the fol-
lowing conditions hold:

@ Each column of A contains at most 2 non-zero entries;

@ 1t is possible to split the row indices {1, -+ ,m} into two disjoint
sets I1,I> such that whenever a column (indexed by j) has 2
non-zero entries, it holds that

Z Aij = Z A”
i€l icly
In other words, if the two non-zeros have the same sign then one
lies in I1 and one lies in Is, whereas if the two non-zeros have
different signs then both lie in I; or both lie in I5.
> Cor. 4.13 A matrix A € {-1,0,1}™*™ is TU if each of its
columns has at most one +1 entry and at most one —1 entry.

e Thm. 4.14 Let A be an Xn integer-valued matrix, and for any J C
{1,---,n}, let Az denote the m x J sub-matrix obtained by keeping
only the columns in J. Then A is TU if and only if A 7 admits an
equitable column-bicoloring for all non-empty J C {1,--- ,n}.

> Equitable bicoloring: We say that an integer-valued matrix
A admits an equitable column-bicoloring if it is possible to par-
tition the columns indices J into two sets J, and J, so that
the difference between the sums of the columns in these subsets
is a vector with entries in {—1,0,1}:

1€Ta JE€ETy

where A; is the i-th column of A. Equivalently, there exists
some z € {—1,+1}171 such that each entry of Az has absolute
value at most one.

> Cor. 4.15 A is TU if and only if every sub-matrix obtained by
taking a non-empty subset of the rows of A admits an equitable
row-bicoloring.

e Prop. 4.16 The node-edge incidence matrix of an undirected bipar-
tite graph is TU.

> A =1 if node 7 is in edge j and 0 otherwise.

> Graph matching: Given a bipartite graph, a matching is a
subset of non-intersecting edges (i.e., edges for which no two of

them have a common node). A matching is said to be perfect if
all nodes are selected.
e Prop. 4.17 The node-edge incidence matrix of a directed graph is

TU.
> A;; = 1if edge j starts from node 4, —1 if edge j ends at node
i, 0 otherwise.

4 Appendix: Mathematical Facts

Determinant:
e Cofactor expansion: For a matrix A € R"*"  we have

n
det(A) = Z A Cij,
j=1

where C;; = (—1)"7 det(A4;).
e Cramer’s Rule A € R™"*" is invertible. Then the solution to the
linear system Ax = b is given by

det(Ai)
T = )
det(A)
where A; is the matrix obtained by replacing the i-th column of A
with vector b:
A1 -+ Ai1 b A An].

o det(AT) = det(A).

lograogifia
dwol

— 1

o det(A~1) = TRE)

o det(AB) = det(A) det(B).
Trace:

o tr(A 4+ B) =tr(A) + tr(B).
o tr(AT) =tr(A).
o tr(ATB) =tr(ABT) =tr(BTA) = tr(BAT).
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