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1 Static Games of Complete Information

Representation (Normal-Form)

G = {51,582, ,Sn;u1,u2, "+ ;un}
Payoff |w(s11,%21)=1 Strategy spaces Player 2 Strategies
functi =
unctions | us(sy;1,821) =0 821 G@I S22 € Sg G Sg
51,1 € 51 1,0 1,2 0,1
Player 1
s12 €51 0,3 01 2.0
Strategy
Domination: In G = {81,583, + ,Snju1,u2, - ,un}, let s, s € Sy

Strategy s} is strictly dominated by strategy s if
Va_i € S_i [ui(s],8-i) <ui(s],s_4)],
where —i represents the set of other players.
» Rational players do not play strictly dominated strategies.

o Iterative elimination of strictly dominated strategies (IESDS):
(1) Right dominated by Middle. 3)
(2) Down dominated by Up. bj Player 2 - @
(3) Left dominated by Middle. Lﬁt Middle Riht
5 Up 1,0 1,2 ) 1
Player 1 |- 2? : = l}’
o s ey i 20

Best response: Given strategies s_; of other players, the best response
of player i is
R;(s—;) = max u;(s;,8—i).
8;E€S;

e Check @ ddTu,-(s,:, g_;)=0& %u;(si, 9_;)<0 and @ boundaries.

e Response curve: Graph of R;(s—;) against s_;.
ilibri L o Y Vi = e * eR(s*:
Nfﬁggﬁ?ﬂﬁnggﬁs&és to’(‘lsg\zi'a.z: fro%r,lzI,\Ta.sh’ &Eﬂigﬂﬂf_ o)l
e Prop 1. {Nash equilibrium} C {IESDS}.
e Prop 2. In a game G with finite S1, S2, '+, Sn, if {IESDS} contains
only one (s3,s3, - ,85), then it is the unique Nash equilibrium.
e Nash equilibrium is the intersection of all response curves.
Mixed strategy: A probability distribution

K
Pi = (pi1, iz, -+, pixc), Where > pix =1 and pix >0,
k=1
w.r.t. each pure strategy s;, € 5;.

J K
o Expected payoff (2-player): vi(p1,p2) = 3> 2 P1jP2kU1 (Slj, Sak)-
J=1k=1
Nash equilibrium: Each player’s mixed strategy is a best response to

the other player’s mixed strategy:

vi(p7,p3) = vi(p1,p3); va(p,p3) = valpl,pa).
e Thm 1. If n is finite and S; is finite for every i, then there exists at
least one Nash equilibrium, possibly involving mixed strategies.
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2 Dynamic Games of Complete Information

Representation (Extensive-Form)

@ Players in the game; AND

(@ When each player has the move; AND

What each player can do at each move; AND
(@ What each player knows at each move; AND
(& The payofls for each combination of moves.

e Payoff functions: u;(a;, oz, -
quence of actions.
> Complete information: Payoffs are common knowledﬁg.
e Can be transformed into normal-form by specifying payoffs for each
combination of strategies.
e Subgame:
Begin at a singtelton information set {(not the root); AND
©

,Gm), Where a1, @2, ++ ,Qm are a se-

(2 Include the whole remaining subtree;
Do not cut any information set.

Information Set for a Player

A collection of decision nodes s.t.
the player needs to move at every node in the information set; AND
when the play of the game reaches a node in the information set, the
player with the move does not know which node in the set has (or
has not) been reached.
> The set of feasible actions at each decision node must be same.
o Perfect information: All previous moves are observed before next
move is chosen.
e Imperfect information: Some information sets are non-singleton.
> Decision nodes in an information set connected by a dotted line.

Strategy
A complete plan of actions s = (31,82, ,8n). /

e Actions specified by s: (a1{s),a2(s), -+ ,am(s)). \’
o Payoff received by playing s: % = u(a1(s),az2(s), - ,am(s)).
subgame -purted
owtrome = (D0 )
Gubgome — Pu{m
Nash Equilibrium NE: (D DU)

Obtained from the normal-form representation of strategies.
¢ Subgame-perfect Nash equilibrium: A Nash equilibrium is
subgame-perfect if the players’ strategies constitute a Nash equilib-
rium in every subgame.
> Not all Nash equilibria are subgame-perfect.
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3 Static Games of Incomplete Information 4 Dynamic Games of Incomplete Information

Representation (Normal-Form) Strategy
G={A1, ,An;T1, , Tn; P1,- , Pujul,- -+ ,un}, where Perfect Bayesian Nash Equilibrium
e Ay, -, Ap are each player’s action space; (@ Consistency: At each information set, beliefs are determined by
e T . !Tn are each player’s type space; Bayes rule and the players’ strategies, wherever possible.
b Pfayér i knows his own type ;. ' @ Sequentially rational: at each information set, given a player’s
e P, .1’ P, are eafh Iﬁ}f,yer’s begef; . - ) be;ef, its action must be optimal.
> Player i only ows a distribution of other players’ types B i )
Fi(t—qlts). l ! Two NME: (RiR) ond (L, L)
> Bayes rule: Pi(t—ilt;) = % e If (BB, the raformatien se+ [$ nof recehod
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Two-Person Bargaining Game: The pair [' = (H, d) is a two-person e A game (H,d) has a unique Nash solution u* = f(H,d) satisfying batvy)

Representation

bargaining game if (1) H C R? is compact and convex; (2) d € H; (3) H conditions 1 — 6 if and only if P
contains at least one element u such that v >> d. The set of two-person (ul —di)(ug — da) > (u1 — d1)(uz — da) il
bargaining games is denoted W. for all w € H,u > d and u # u*.

n-Person Game: For an n-person game with the set of players N = Tmputation: An imputation in the game {N,v) is a payoff vector 2 =
{],2,.“,7;}, any non-empty subset of N is called a coalition. For

A o % f i tisfyi
each coalition S, the characteristic function v of the game gives the e = ym.g 75 — (N
amount »(S) that the coalition can be sure of receiving. The game is @ Group rational: 377 | x; = v(N).

T(N,v). @ Individually rational: @; > v({i}) for alli € N.
@ () = 0. Let I(N,v) denote the set of all imputations.
@ Super-aditivity: for any disjoint coalitions K,L € N, v(K U L) > Imputation Domination: Let @,y € I(IV,v), and let S be a coalition.
w(K) +v(L). ‘We say = dominates y via S (z »g y) if (1) m; > y; for all i € §; (2)
Y ies Zi S u(S). We say x dominates y if there exists any S such that
T -5 Y.
Strategy T

Core: The set of all undominated imputations for a game (IV, v) is called
Domination: Let (w,v) and (uv/,v’) be two payoff pairs. We say (u,v) the core, denoted by C(N!'u). . o
dominates (v/,v') if e The core of the game is the set of all n-vectors, satisfying
: Vst o D iesmi = v(8) forall @ # 5 C N.

im nrily = YN}
Payoff pairs not dominated by any other are Pareto-optimal. ® Yiew @i ()

Nash Bargaining Solution: A mapping f : W — R? that associates a
unique element f(H,d) = (f1(H,d), f2{H, d)) with the game (H,d) € w, 4.1 Shapley Value

satisfying the following axioms:

o T The Shapley value is an n-vector, denoted by ¢(v), satisfying a set of ax-
% ﬁ;:ﬂf&iﬁ R‘i&ﬁf&iy?} (H,d) > d for all (H,d) €W ioms. The i-th component of ¢{v) can be uniquely determined as
: s == 3 . | — & =T
@) Pareto Optirmality: f(H, ﬁ is Pareto optimal. de(v) = Z sln—s—1)! [v(S U {i}) — u(8)]
(@ Invariance under Linear Transformaiions: Let a1, a2 > 0,b,b2 € R, SCNVi n!
and (H.d), (H',d') € W where dj = a;d;+b;, and H' = {z € R?|a; = " 1)
aiyi +bi,y € H} (1=1,2). Then f;(H},d}) = a; fi(H,d) + b;. = 1 .
® Symmetry: If dy = dz and (z1,32) 16 H — (z2,71) € H, then = " Z Th—1% Z [w(S U {i}) —u(S)].
fi(H,d) = f2(H,d). s=0 ( s ) SEN\{i},|S]=s

® Independence of Irrelevant Alternatives: If (H,d),(H',d') € W and o The Shapley value has individual rationality, efficiency, symmetry,
d=d',H C H and f(H',d’) € H, then f(H,d)= f(H' d'). additivity, dummy properties.




