MA4264 Game Theory

Final Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

Static Games of Complete Information

Representation (Normal-Form)

$$G = \{S_1, S_2, \cdots, S_n; u_1, u_2, \cdots, u_n\}.$$

Payoff	$u_1(s_{1,1}, s_{2,1}) = 1$ $u_2(s_{1,1}, s_{2,1}) = 0$		Strategy spaces Player 2 Strategies		
functions			$s_{2,1} \in S_2$	$s_{2,2} \in S_2$	$s_{2,3} \in S_2$
Player 1		$s_{1,1} \in S_1$	1, 0	1, 2	0, 1
		$s_{1,2} \in S_1$	0, 3	0, 1	2, 0

Strategy

Domination: In $G = \{S_1, S_2, \dots, S_n; u_1, u_2, \dots, u_n\}$, let $s_i', s_i'' \in S_i$. Strategy s_i' is *strictly dominated* by strategy s_i'' if

 $\forall s_{-i} \in S_{-i} \left[u_i(s_i', s_{-i}) < u_i(s_i'', s_{-i}) \right],$

where -i represents the set of other players.

Rational players do not play strictly dominated strategies.
 Iterative elimination of strictly dominated strategies (IESDS):

Right dominated by Middle. Down dominated by Up. Left dominated by Middle.		3 Player 2 1		
		Left	Middle	Right
DI 1	(2) Up	1, 0	1, 2	0, 1
Player 1	Down	0, 3	0, 1	2, 0

Best response: Given strategies s_{-i} of other players, the best response of player i is $R_i(s_{-i}) = \max_{s_i \in S_i} u_i(s_i, s_{-i}).$

• Check ① $\frac{d}{ds_i}u_i(s_i, s_{-i})=0$ & $\frac{d^2}{ds_i^2}u_i(s_i, s_{-i})<0$ and ② boundaries.

• Response curve: Graph of $R_i(s_{-i})$ against s_{-i} .

Nash equilibrium $(s_1^*, s_2^*, \cdots, s_n^*)$: $\forall i = 1, 2, \cdots, n \ [s_i^* \in R_i(s_{-i}^*)]$.

No player has incentives to deviate from Nash equilibrium.

Prop 1. {Nash equilibrium} $\subseteq \{\text{IESDS}\}$.

• Prop 2. In a game G with finite S_1, S_2, \dots, S_n , if {IESDS} contains only one $(s_1^*, s_2^*, \dots, s_n^*)$, then it is the unique Nash equilibrium.

Nash equilibrium is the intersection of all response curves.

Mixed strategy: A probability distribution

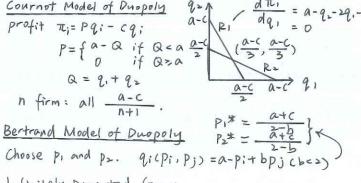
$$p_i = (p_{i1}, p_{i2}, \cdots, p_{iK})$$
, where $\sum_{k=1}^K p_{ik} = 1$ and $p_{ik} \ge 0$,

w.r.t. each pure strategy $s_{ik} \in S_i$.

• Expected payoff (2-player): $v_1(p_1, p_2) = \sum_{j=1}^{J} \sum_{k=1}^{K} p_{1j} p_{2k} u_1(s_{1j}, s_{2k}).$

Nash equilibrium: Each player's mixed strategy is a best response to the other player's mixed strategy:

 $v_1(p_1^*, p_2^*) \ge v_1(p_1, p_2^*); \quad v_2(p_1^*, p_2^*) \ge v_2(p_1^*, p_2).$ Thm 1. If n is finite and S_i is finite for every i, then there exists at least one Nash equilibrium, possibly involving mixed strategies.



Infinitely pepeated Game Discount factor & & (0,1)

Player 2 Non-cooperative strategy: Always play (L1, L2) This 1+ b+ 82 + ... = 1-6 = The General case: X,X t,O Trigger strategy:

ロムXムリくそ Trigger is optimal iff $\delta = \frac{3-y}{7-x}$. $\pi_1 = 4+4\delta+\dots = \frac{4}{1-\delta} = \pi_2$

Dynamic Games of Complete Information

Representation (Extensive-Form)

① Players in the game; AND

When each player has the move; AND

What each player can do at each move; AND 3

What each player knows at each move; AND 4

The payoffs for each combination of moves.

Payoff functions: $u_i(a_1, a_2, \dots, a_m)$, where a_1, a_2, \dots, a_m are a sequence of actions.

▷ Complete information: Payoffs are common knowledge. Can be transformed into normal-form by specifying payoffs for each combination of strategies.

Subgame:

(1) Begin at a singtelton information set (not the root); AND
(2) Include the whole remaining subtree; AND
(3) Do not cut any information set.

Information Set for a Player

A collection of decision nodes s.t.

1 the player needs to move at every node in the information set; AND 2 when the play of the game reaches a node in the information set, the player with the move does not know which node in the set has (or has not) been reached.

▷ The set of feasible actions at each decision node must be same.

Perfect information: All previous moves are observed before next

move is chosen. Imperfect information: Some information sets are non-singleton.

Decision nodes in an information set connected by a dotted line.

Strategy

Nash Equilibrium

A complete plan of actions $s = (s_1, s_2, \dots, s_n)$.

• Actions specified by $s: (a_1(s), a_2(s), \cdots, a_m(s)).$

• Payoff received by playing s: $\tilde{u} = u(a_1(s), a_2(s), \dots, a_m(s))$.

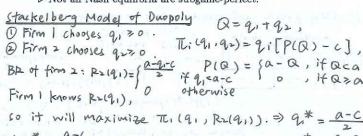
Backwards Induction

subgame-perfect

Obtained from the normal-form representation of strategies.

• Subgame-perfect Nash equilibrium: A Nash equilibrium is subgame-perfect if the players' strategies constitute a Nash equilibrium. rium in every subgame.

Not all Nash equilibria are subgame-perfect.



(Si*= a-c, R=(0)) is the

(subgame-perfect) Norsh equilibrium. -

Sequential-Burgaining Game

Backward induction: In Period 3 Player 1 receives 8°51. In Period 2 Player 2 ofters & 5, to player 1 and 1- 15, to himself.

8 (51) So he will receive SU-SSI). St (52) In period 1 player 1 ofters SU-SSI) to player 2 and 1-d (1-8 51) to himself.

Infinite Horizon Burgaming Game let (vi, viz) be the optimal payoft. Players can regard these payofts as a settlement in Period 3, that is, $\overline{\mathcal{A}}_{1} = \left| - \left\{ \left(1 - \left\{ \overline{\mathcal{A}}_{1} \right) \right\} \right| \Rightarrow \overline{\mathcal{A}}_{1} = \frac{1}{1 + \lambda}, \quad \overline{\mathcal{A}}_{2} = \frac{\delta}{1 + \lambda}$

if player I changes,

TC1 = 5+ 8+ 82+ ... = 5+ 2 play (F1, R2) until someone changes When $\frac{4}{1-8} > 5 + \frac{1}{1-8}$, i.e., $\frac{1}{8} > \frac{1}{4}$ trigger strategy is a Norsh equilibrium.

3 Static Games of Incomplete Information

Representation (Normal-Form)

 $G = \{A_1, \dots, A_n; T_1, \dots, T_n; P_1, \dots, P_n; u_1, \dots, u_n\}, \text{ where }$

 A_1, \dots, A_n are each player's action space; T_1, \dots, T_n are each player's type space; \triangleright Player i knows his own type t_i . P_1, \dots, P_n are each player's belief; \triangleright Player i only knows a distribution of other players' types $P_i(t_{-i}|t_i)$.

Strategy

 $s_i: T_i \to A_i$, where $s_i(t_i)$ gives the action.

Bayesian Nash Equilibrium

$$\begin{split} s_i^*(t_i) &= \underset{a_i \in A_i}{\arg\max} \, \mathbb{E}_{t_{-i}} \left[u_i(a_i, s_{-i}^*(t_{-i}); t_i) \right] \\ &= \underset{a_i \in A_i}{\arg\max} \, \sum_{t_{-i} \in T_{-i}} P_i(t_{-i}|t_i) u_i(a_i, s_{-i}^*(t_{-i}); t_i). \end{split}$$

• Prop. 1. (s_1^*, \dots, s_n^*) is a Bayesian Nash equilibrium, if $\forall t_i \in T_i, a_i \in A_i, a_{-i} \in A_{-i} [u_i(s_i^*(t_i), a_{-i}; t_i) \ge u_i(a_i, a_{-i}; t_i)].$

Cournot competition under Asymmetric Internation

Firm 1's cost function C1(q1) = cq1 (2(92) = 1 CH 92 with prob 0 CL 92 with prob 1-6

Firm 2 maximites (a-9, = 92- (m) 92 if CH, (a-9,*- 92- CL) 92 if CL

Firm 1 maximizes expectation: 0 (a-9,-924-c)91+

(1-0)(0-9,-921-6)91. We get 92H = 4-91*-CH 91* = O(a-924-W+(1-0)(a-921-c)

Providing public goods under incomplete information

C1= {0.5 prob=0.5 1-6,1-62 1-61,1

Type of player 1: 910 +3, 11.21) => {CD, CL, DC, DD} Cooperative Games Type of player 2: 90.83. => 10.03.

player 1's br: PILU= DD, PI(D)=CD Representation Representation player 2's br: $R_{2}(C) = D$, $R_{2}(D) = D$, $R_{2}(D) = C$ Two-Person Bargaining Game: The pair $\Gamma = (H, d)$ is a two-person • A game (H, d) has

bargaining game if (1) $H \subset \mathbb{R}^2$ is compact and convex; (2) $d \in H$; (3) H contains at least one element u such that u >> d. The set of two-person bargaining games is denoted W. n-Person Game: For an n-person game with the set of players $N = \{1, 2, ..., n\}$, any non-empty subset of N is called a **coalition**. For each coalition S, the characteristic function v of the game gives the amount v(S) that the coalition can be sure of receiving. The game is $\Gamma(N, v)$.

① $v(\emptyset) = 0$.

(2) Super-aditivity: for any disjoint coalitions $K, L \subseteq N, v(K \cup L) \ge$ v(K) + v(L).

Strategy

Domination: Let (u, v) and (u', v') be two payoff pairs. We say (u, v)dominates (u', v') if

 $u \ge u', \ v \ge v'.$

Payoff pairs not dominated by any other are Pareto-optimal.

Nash Bargaining Solution: A mapping $f:W\to\mathbb{R}^2$ that associates a unique element $f(H,d)=(f_1(H,d),f_2(H,d))$ with the game $(H,d)\in W$, satisfying the following axioms:

① Feasibility: $f(H,d)\in H$.

(a) Individual Rationality: $f(H,d) \ge d$ for all $(H,d) \in W$. (b) Pareto Optimality: f(H,d) is Pareto optimal. (c) Invariance under Linear Transformations: Let $a_1, a_2 > 0, b_1, b_2 \in \mathbb{R}$, and $(H, d), (H', d') \in W$ where $d'_i = a_i d_i + b_i$, and $H' = \{x \in \mathbb{R}^2 | x_i = a_i d_i + b_i \}$ $a_i y_i + b_i, y \in H$ (i = 1, 2). Then $f_i(H'_i, d'_i) = a_i f_i(H, d) + b_i$.

(5) Symmetry: If $d_1 = d_2$ and $(x_1, x_2) \in H \to (x_2, x_1) \in H$, then $f_1(H,d) = f_2(H,d).$

Independence of Irrelevant Alternatives: If $(H, d), (H', d') \in W$ and $d = d', H \subset H'$ and $f(H', d') \in H$, then f(H, d) = f(H', d').

Dynamic Games of Incomplete Information

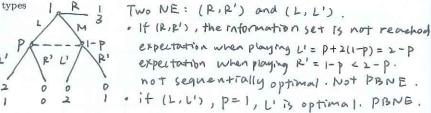
Strategy

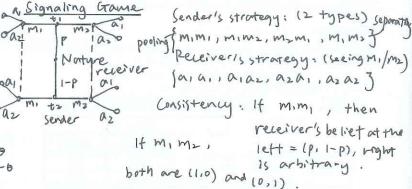
Perfect Bayesian Nash Equilibrium

Consistency: At each information set, beliefs are determined by

Bayes rule and the players' strategies, wherever possible.

Sequentially rational: at each information set, given a player's belief, its action must be optimal.





Nature Selects a Game

Nature selects from & have 1, hame 2, hame 3 } with prob = 1 . Player I learns whether nature has selected game 1; player 2 does not learn.

Player 1's types: \$113, 12, 313 => ITT, TB, BT, BB} player 1's br and player 2's br.

First-price Sealed bid auction VI, V2 ~ U(0,1). corresponding to its own bis by higher win. type draw tip win. A1= A2= [0,00) (b) Ti=Tz=[0,1] (v)

Payot: vi-bi if bi>bj; vi-bi if draw; D if bi bj.

NES: (00.6),(60,0). The unique symmetric Bayesian NE is b. (VI)= VI/2 and

• A game (H,d) has a unique Nash solution $u^* = f(H,d)$ satisfying $b_{\lambda}(\nu_{\lambda})$ conditions 1-6 if and only if =V2/2. $(u_1^*-d_1)(u_2^*-d_2)>(u_1-d_1)(u_2-d_2)$ for all $u\in H, u\geq d$ and $u\neq u^*.$

Imputation: An imputation in the game (N, v) is a payoff vector x = $(x_1,...,x_n)$ satisfying

① Group rational: $\sum_{i=1}^{n} x_i = v(N)$. ② Individually rational: $x_i \geq v(\{i\})$ for all $i \in N$.

Let I(N, v) denote the set of all imputations.

Imputation Domination: Let $x, y \in I(N, v)$, and let S be a coalition. We say x dominates y via $S(x \succ_S y)$ if (1) $x_i > y_i$ for all $i \in S$; (2) $\sum_{i \in S} x_i \le v(S)$. We say x dominates y if there exists any S such that $x \succ_S y$.

the core, denoted by C(N,v).

• The core of the game is the set of all n-vectors, satisfying

① $\sum_{i \in S} x_i \ge v(S)$ for all $\emptyset \ne S \subset N$.
② $\sum_{i \in N} x_i = v(N)$.

Shapley Value

The Shapley value is an n-vector, denoted by $\phi(v)$, satisfying a set of axioms. The i-th component of $\phi(v)$ can be uniquely determined as

s-th component of
$$\phi(v)$$
 can be uniquely determined as
$$(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n-s-1)!}{n!} [v(S \cup \{i\}) - v(S)]$$

$$= \frac{1}{n} \sum_{s=0}^{n-1} \frac{1}{\binom{n-1}{s}} \sum_{S \subseteq N \setminus \{i\}, |S| = s} [v(S \cup \{i\}) - v(S)].$$
Shapley value has individual rationality, efficiency, symmetry,

The Shapley value has individual rationality, efficiency, symmetry, additivity, dummy properties.