# MA4264 Game Theory

Midterm Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

# 1 **Static Games of Complete Information**

**n-person game (normal-form):**  $G = \{S_1, S_2, \dots, S_n; u_1, u_2, \dots, u_n\}.$ 

| Payoff    | $\begin{array}{l} u_1(s_{1,1},s_{2,1})=1\\ u_2(s_{1,1},s_{2,1})=0 \end{array}$ |                   | Strategy spaces Player 2 Strategies |                   |                   |
|-----------|--------------------------------------------------------------------------------|-------------------|-------------------------------------|-------------------|-------------------|
| functions |                                                                                |                   | $s_{2,1} \in S_2$                   | $s_{2,2} \in S_2$ | $s_{2,3} \in S_2$ |
| Player 1  |                                                                                | $s_{1,1} \in S_1$ | 1, 0                                | 1,2               | 0, 1              |
|           |                                                                                | $s_{1,2} \in S_1$ | 0, 3                                | 0, 1              | 2, 0              |

## 1.1**Pure Strategy Games**

**Domination:** In  $G = \{S_1, S_2, \cdots, S_n; u_1, u_2, \cdots, u_n\}$ , let  $s'_i, s''_i \in S_i$ . Strategy  $s'_i$  is strictly dominated by strategy  $s''_i$  if A

$$(s_{-i} \in S_{-i} [u_i(s'_i, s_{-i}) < u_i(s''_i, s_{-i})]$$

where -i represents the set of other players.

- Rational players do not play strictly dominated strategies.
- Iterative elimination of strictly dominated strategies (IESDS):

| (1) Right dominated by Middle.<br>(2) Down dominated by Up. |            | 3                  | Player 2 |                                 |
|-------------------------------------------------------------|------------|--------------------|----------|---------------------------------|
| (3) Left dominated                                          | by Middle. | $\mathbf{Left}$    | Middle   | $\operatorname{\mathbf{Right}}$ |
| Dlaman 1                                                    | (2) Up     | 1 <mark>,</mark> 0 | 1, 2     | 0 <mark>,</mark> 1              |
| Flayer 1                                                    | Down       | 0, 3               | 0, 1     | 2, 0                            |

**Best response:** Given strategies  $s_{-i}$  of other players, the best response of player i is

$$R_i(s_{-i}) = \max_{s_i \in S_i} u_i(s_i, s_{-i}).$$

- Check ① d/ds<sub>i</sub> u<sub>i</sub>(s<sub>i</sub>, s<sub>-i</sub>)=0 & d<sup>2</sup>/ds<sup>2</sup><sub>i</sub> u<sub>i</sub>(s<sub>i</sub>, s<sub>-i</sub>)<0 and ② boundaries.</li>
  Response curve: Graph of R<sub>i</sub>(s<sub>-i</sub>) against s<sub>-i</sub>.
- **Nash equilibrium**  $(s_1^*, s_2^*, \dots, s_n^*)$ :  $\forall i = 1, 2, \dots, n \ [s_i^* \in R_i(s_{-i}^*)]$ .

• No player has incentives to deviate from Nash equilibrium.

- **Prop 1.** {Nash equilibrium}  $\subseteq$  {IESDS}. •
- **Prop 2.** In a game G with finite  $S_1, S_2, \dots, S_n$ , if {IESDS} contains • only one  $(s_1^*, s_2^*, \dots, s_n^*)$ , then it is the unique Nash equilibrium. Nash equilibrium is the **intersection** of all response curves.
- Example. Consider the Cournot model of duopoly where two firms sell the same product. q<sub>2</sub> Response Curves  $\triangleright$  quantity  $q_1, q_2$ , cost c, fixed cost  $c_0$ ;  $\triangleright \ \overline{\text{price } p = \begin{cases} a - (q_1 + q_2) & \text{if } Q < a \\ 0 & \text{if } Q \geq a \end{cases}};$  $\triangleright$  profit  $\pi = pq - cq - c_0$

The Nash equilibrium is 
$$q_1^* = q_2^* = \frac{1}{2}(a-c)$$
.

#### 1.2Mixed Strategy Games

Mixed strategy: A probability distribution

$$p_i = (p_{i1}, p_{i2}, \cdots, p_{iK})$$
, where  $\sum_{k=1}^{n} p_{ik} = 1$  and  $p_{ik} \ge 0$ ,

w.r.t. each pure strategy  $s_{ik} \in S_i$ .

• Expected payoff (2-player):  $v_1(p_1, p_2) = \sum_{j=1}^{J} \sum_{k=1}^{K} p_{1j} p_{2k} u_1(s_{1j}, s_{2k}).$ 

Nash equilibrium: Each player's mixed strategy is a best response to the other player's mixed strategy:

$$v_1(p_1^*, p_2^*) \ge v_1(p_1, p_2^*); \quad v_2(p_1^*, p_2^*) \ge v_2(p_1^*, p_2)$$

• <u>Thm 1.</u> If n is finite and  $S_i$  is finite for every i, then there exists at least one Nash equilibrium, possibly involving mixed strategies.

## **Dynamic Games of Complete Information** $\mathbf{2}$

n-person game (extensive-form): The following are specified:

- (1) the players in the game; AND
- (2) when each player has the move; AND
- (3) what each player can do at each move; AND
- (4) what each player knows at each move; AND
- (5) the payoffs for each combination of moves.
- Payoff functions:  $u_i(a_1, a_2, \dots, a_m)$ , where  $a_1, a_2, \dots, a_m$  are a sequence of actions.

 $\bigcirc$ 

- ▷ Complete information: Payoffs are common knowledge.
- Strategy: A complete plan of actions  $s = (s_1, s_2, \cdots, s_n)$ .  $\triangleright$  Actions specified by s:  $(a_1(s), a_2(s), \cdots, a_m(s))$ .
- $\triangleright$  Payoff received by playing s:  $\tilde{u} = u(a_1(s), a_2(s), \cdots, a_m(s)).$ • Nash equilibrium: Obtained from the normal-form representation of strategies.

Information set for a player: A collection of decision nodes s.t.

- (i) the player needs to move at every node in the information set; AND
- when the play of the game reaches a node in the information set, the (2) player with the move does not know which node in the set has (or has not) been reached.
  - ▷ The set of feasible actions at each decision node must be same.
- Perfect information: All previous moves are observed before next move is chosen.
- Imperfect information: Some information sets are non-singleton.

# **Backwards induction:**



