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1. Combinatorial Analysis 

1.1 Basic Principle of Counting 

Suppose two experiments are to be performed: 

Experiment 1 has 𝑚 outcomes, Experiment 2 has 𝑛 

outcomes, then together there are 𝑚𝑛 outcomes. 

1.2 Permutation 

Suppose there are 𝑛 distinct objects, then total number 

of permutations is 𝑛!. 

Suppose there are 𝑛 objects and 𝑛𝑎 of them are alike, 

then total number of permutations is 
𝑛!

𝑛𝑎!
. 

Suppose there are 𝑛 people sitting in a circle, then 

total number of permutations is (𝑛 − 1)!. 

1.3 Combination 

Suppose there are 𝑛 distinct objects, from which we 

choose 𝑟 as a group, then total number of 

combinations (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
. 

For 1 ≤ 𝑟 ≤ 𝑛, (
𝑛
𝑟

) = (
𝑛 − 1

𝑟
) + (

𝑛 − 1
𝑟 − 1

). 

Binomial Theorem: (𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑘

) 𝑥𝑘𝑦𝑛−𝑘𝑛
𝑘=0 . 

∑ (
𝑛
𝑘

) = 2𝑛𝑛
𝑘=0 . // 𝑥 = 𝑦 = 1. 

∑ (−1)𝑘 (
𝑛
𝑘

) = 0𝑛
𝑘=0 . // 𝑥 = −1, 𝑦 = 1. 

(
𝑛
0

) + (
𝑛
2

) + (
𝑛
4

) + ⋯ = (
𝑛
1

) + (
𝑛
3

) + (
𝑛
5

) + ⋯. 

Suppose there are 𝑛 distinct objects and we are to 

divide them into 𝑟 groups of size 𝑛1, 𝑛2, … , 𝑛𝑟, then total 

number of combinations (
𝑛

𝑛1, 𝑛2, … , 𝑛𝑟
) =

𝑛!

𝑛1!𝑛2!…𝑛𝑟!
. 

Multinomial Theorem: (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑟)𝑛 =

∑ (
𝑛

𝑛1, 𝑛2, … , 𝑛𝑟
) 𝑥1

𝑛1𝑥2
𝑛2 … 𝑥𝑟

𝑛𝑟 
𝑛1+𝑛2+⋯+𝑛𝑟=𝑛 . 

Suppose 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑟 = 𝑛, then total number of 

different positive integer-valued vectors (𝑥1, 𝑥2, … , 𝑥𝑛) 

is (
𝑛 − 1
𝑟 − 1

). 

Suppose 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑟 = 𝑛, then total number of 

different non-negative integer-valued vectors 

(𝑥1, 𝑥2, … , 𝑥𝑛) is (
𝑛 + 𝑟 − 1

𝑟 − 1
). 

 

2. Axioms of Probability 

2,1 Sample Spaced and Events 

The sample space, 𝑆, is the set of all possible 

outcomes of an experiment. 

Any subset of 𝑆 is an event. 

2.2 Axioms of Probability 

The probability, 𝑃, is a function satisfying: 

(i) For any event 𝐸, 0 ≤ 𝑃(𝐸) ≤ 1; 

(ii) 𝑃(𝑆) = 1; 

(iii) For any sequence of mutually exclusive events 

𝐸1, 𝐸2, …, 𝑃(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝑃(𝐸𝑘)∞

𝑘=1 . 

Proposition 2.1: 𝑃(∅) = 0. 

Proposition 2.2: For any finite sequence of mutually 

exclusive events 𝐸1, 𝐸2, … , 𝐸𝑛, 𝑃(⋃ 𝐸𝑘
𝑛
𝑘=1 ) =

∑ 𝑃(𝐸𝑘)𝑛
𝑘=1 . 

Proposition 2.3: 𝑃(𝐸𝑐) = 1 − 𝑃(𝐸). 

Proposition 2.4: If 𝐴 ⊂ 𝐵, then 𝑃(𝐴) ≤ 𝑃(𝐵). 

Inclusion/Exclusion Principle: 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) +

𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵). // what if there are 𝑛 events? 

2.3 Sample Spaces Having Equally Likely Outcomes 

2.4 Probability as a Continuous Set Function 

A sequence of events is increasing if 𝐸1 ⊂ 𝐸2 ⊂ ⋯ 

Proposition 2.6: 𝑃 ( lim
𝑛→∞

𝐸𝑛) = lim
𝑛→∞

𝑃(𝐸𝑛). 
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3. Conditional Probability & Independence 

3.1 Conditional Probability 

The conditional probability of 𝐴 given 𝐵, 𝑃(𝐴|𝐵) =

𝑃(𝐴𝐵)

𝑃(𝐵)
. 

Multiplication Rule: 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴). 

3.2 Bayes’ Formulas 

𝑃(𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) + 𝑃(𝐴𝑐)𝑃(𝐵|𝐴𝑐). 

Bayes’ First Formula: Suppose 𝐴1, 𝐴2, … , 𝐴𝑛 partition 

𝑆, then 𝑃(𝐵) = ∑ 𝑃(𝐴𝑘)𝑃(𝐵|𝐴𝑘)𝑛
𝑘=1 . 

Bayes’ Second Formula: Suppose 𝐴1, 𝐴2, … , 𝐴𝑛 

partition 𝑆, then 𝑃(𝐴𝑖|𝐵) =
𝑃(𝐴𝑖)𝑃(𝐵|𝐴𝑖)

∑ 𝑃(𝐴𝑘)𝑃(𝐵|𝐴𝑘)𝑛
𝑘=1

. 

The odds of an event 𝐴 is 
𝑃(𝐴)

𝑃(𝐴𝑐)
=

𝑃(𝐴)

1−𝑃(𝐴)
. 

3.3 Independent Events 

𝐴 and 𝐵 are independent if 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵). 

3,4 De Méré-Pascal Problem 

3.5 Gambler’s Ruin Problem 

3.6 Algebra of Conditional Probability 

Proposition 3.4: Let 𝐴 be an event such that 𝑃(𝐴) >

0, then the following three conditions hold: 

(i) 0 ≤ 𝑃(𝐵|𝐴) ≤ 1; 

(ii) 𝑃(𝑆|𝐴) = 1; 

(iii) For any sequence of mutually exclusive events 

𝐵1, 𝐵2 , …, 𝑃(⋃ 𝐵𝑘
∞
𝑘=1 |𝐴) = ∑ 𝑃(𝐵𝑘|𝐴)∞

𝑘=1 . 

 

4. Discrete Random Variable 

4.1 Random Variable 

A random variable, 𝑋, is a mapping from the sample 

space to real numbers 𝑋: 𝑆 → ℝ. 

4.2 Discrete Random Variable 

A random variable is discrete if the range of 𝑋 is either 

finite or countably infinite. 

The probability mass function, 𝑝𝑋, is defined as 

𝑝𝑋(𝑥) = {
𝑃(𝑋 = 𝑥)

0
    

if 𝑥 = 𝑥1, 𝑥2, … ;
otherwise.          

 

∑ 𝑝𝑋(𝑥𝑘)∞
𝑘=1 = 1. 

The cumulative distribution function, 𝐹𝑋, is defined 

as 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). 

4.3 Expected Value 

𝐸(𝑋) = ∑ 𝑥 𝑝𝑋(𝑥)𝑥 . 

4.4 Expected Value of a Function of a Random 

Variable 

𝐸(𝑔(𝑋)) = ∑ 𝑔(𝑥)𝑝𝑋(𝑥)𝑥 . 

Corollary 4.2: 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. 

4.5 Variance and Standard Deviation 

𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 𝐸(𝑋2) − [𝐸(𝑋)]2.  

𝜎(𝑋) = √𝑉𝑎𝑟(𝑋). 

𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2𝑉𝑎𝑟(𝑋). 

𝜎(𝑎𝑋 + 𝑏) = |𝑎|𝜎(𝑋). 

4.6-4.8 Distributions of Discrete Random Variable 

𝐸(𝑋) 𝑉𝑎𝑟(𝑋) 

Bernoulli Distribution, 𝐵𝑒(𝑝): success or failure. 

𝑃(𝑋 = 1) = 𝑝; 

𝑃(𝑋 = 0) = 1 − 𝑝. 

𝑝 𝑝(1 − 𝑝) 

Binomial Distribution, 𝐵𝑖𝑛(𝑛, 𝑝): number of 

successes in 𝑛 trials. 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘. 

𝑛𝑝 𝑛𝑝(1 − 𝑝) 

Geometric Distribution, 𝐺𝑒𝑜𝑚(𝑝): number of trials 

required to obtain the first success. 

𝑃(𝑋 = 𝑘) = 𝑝(1 − 𝑝)𝑘−1. 

1

𝑝
 

1 − 𝑝

𝑝2
 

Negative Binomial Distribution, 𝑁𝐵(𝑟, 𝑝): number 

of trails required to obtain 𝑟 successes. 

𝑃(𝑋 = 𝑘) = (
𝑘 − 1
𝑟 − 1

) 𝑝𝑟(1 − 𝑝)𝑘−𝑟. 
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𝑟

𝑝
 

𝑟(1 − 𝑝)

𝑝2
 

Poisson Distribution, 𝑃𝑜(𝜆): number of events 

occurring in a fixed interval if the events occur 

independently with a constant mean rate. 

𝑃(𝑋 = 𝑘) =
𝑒−𝜆𝜆𝑘

𝑘!
. 

𝜆 𝜆 

Hypergeometric Distribution, 𝐻(𝑛, 𝑁, 𝑚): number 

of red balls if we choose 𝑛 balls from a set of 𝑚 red 

balls and 𝑁 − 𝑚 blue balls. 

𝑃(𝑋 = 𝑘) =
(

𝑚
𝑥

)(
𝑁−𝑚
𝑛−𝑥

)

(
𝑁
𝑛

)
. 

𝑛𝑚

𝑁
 

𝑛𝑚

𝑁
[
(𝑛 − 1)(𝑚 − 1)

𝑁 − 1
+ 1 −

𝑛𝑚

𝑁
] 

4.9 Distribution Functions and Probability Mass 

Functions 

Properties of Distribution Function: 

(i) If 𝑎 < 𝑏, then 𝐹𝑋(𝑎) ≤ 𝐹𝑋(𝑏). 

(ii) lim
𝑏→∞

𝐹𝑋(𝑏) = 1; lim
𝑏→−∞

𝐹𝑋(𝑏) = 0. 

(iii) lim
𝑥→𝑏−

𝐹𝑋(𝑥) always exists. 

(iv) lim
𝑥→𝑏+

𝐹𝑋(𝑥) = 𝐹𝑋(𝑏).  

 

5. Continuous Random Variable 

5.1 Continous Random Variable 

𝑝(𝑎 < 𝑋 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎
, where 𝑓𝑋 is called the 

probability density function (p.d.f.) of 𝑋. 

The distribution function of 𝑋, 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =

∫ 𝑓𝑋(𝑡)𝑑𝑡
𝑥

−∞
. 

5.2 Expectation and Variance 

𝐸(𝑋) = ∫ 𝑥 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
. 

𝑉𝑎𝑟(𝑋) = ∫ (𝑥 − 𝐸(𝑋))
2

𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
. 

Proposition 5.1:  

(i) 𝐸[𝑔(𝑥)] = ∫ 𝑔(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
. 

(ii) 𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. 

(iii) 𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2. 

Tail Sum Formula: Suppose 𝑋 is a non-negative 

continuous random variable, then 𝐸(𝑋) = ∫ 𝑃(𝑋 >
∞

0

𝑥)𝑑𝑥. 

5.3-5.6 Distributions of Continuous Random Variable 

𝐸(𝑋) 𝑉𝑎𝑟(𝑋) 

Uniform Distribution, 𝑈(𝑎, 𝑏): 

 

𝑎 + 𝑏

2
 

(𝑏 − 𝑎)2

12
 

Normal Distribution, 𝑁(𝜇, 𝜎2): 

𝑓𝑋(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 . 

 

3-𝝈 Rule: If an observation is taken from a normal 

population with mean 𝜇 and variance 𝜎2, then it is 

very likely (99.74%) that it lies within 3 standard 

deviation of the mean. 

𝜇 𝜎2 

Standard Normal Distribution, 𝑍~𝑁(0,1): 

𝑓𝑍(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2 . 

Normalisation: If 𝑋~𝑁(𝜇, 𝜎2), then 
𝑋−𝜇

𝜎
~𝑁(0,1). 

0 1 

Exponential Distribution, 𝐸𝑥𝑝(𝜆): 

𝑓𝑋(𝑥) = {
𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0

0, 𝑥 < 0
. 

𝐹𝑋(𝑥) = {
0, 𝑥 ≤ 0

1 − 𝑒−𝜆𝑥, 𝑥 > 0
. 

Memoryless Property of Exponential 

Distribution: 𝑃(𝑋 > 𝑠 + 𝑡|𝑋 > 𝑡) = 𝑃(𝑋 > 𝑠). 

1

𝜆
 

1

𝜆2
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Gamma Distribution, 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜆): If events are 

occurring independently with a constant mean rate, 

then the amount of time one has to wait until a total 

of 𝑛 events has occurred is a random variable which 

follows 𝐺𝑎𝑚𝑚𝑎(𝑛, 𝜆). 

𝑓𝑋(𝑥) = {
𝜆𝑒−𝜆𝑥(𝜆𝑥)𝛼−1

Γ(𝛼)
, 𝑥 ≥ 0

0, 𝑥 < 0
,  

where Γ(𝛼) = ∫ 𝑒−𝑦𝑦𝛼−1𝑑𝑦
∞

0
. 

// 𝐺𝑎𝑚𝑚𝑎(1, 𝜆) = 𝐸𝑥𝑝(𝜆). 

// if 𝑋~𝐺𝑎𝑚𝑚𝑎(
𝑛

2
,

1

2
), then 𝑋~𝜒2(𝑛). 

𝛼

𝜆
 

𝛼

𝜆2
 

Weibull Distribution, 𝑊(𝑣, 𝛼, 𝛽): 

𝑓𝑋(𝑥) = {
𝛽

𝛼
(

𝑥−𝑣

𝛼
)

𝛽−1

𝑒−(
𝑥−𝑣

𝛼
)

𝛽

, 𝑥 > 𝑣

0, 𝑥 ≤ 𝑣
. 

// 𝑊(0,1, 𝜆) = 𝐸𝑥𝑝(𝜆). 

𝑎Γ(1 +
1

𝛽
) 

𝛼2[Γ (1 +
2

𝛽
) − (Γ (1 +

1

𝛽 
))

2

] 

Cauchy Distribution parametrised with 𝜃 and positive 𝛼: 

𝑓𝑋(𝑥) =
1

𝜋𝛼[1+(
𝑥−𝜃

𝛼
)

2
]
  

not exist not exist 

Beta Distribution, 𝐵𝑒𝑡𝑎(𝑎, 𝑏): 

𝑓𝑋(𝑥) = {

1

𝐵(𝑎,𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1, 0 < 𝑥 < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

where 𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡
1

0
. 

// 𝐵𝑒𝑡𝑎(1,1) = 𝑈(0,1). 

𝑎

𝑎 + 𝑏
 

𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 

5.7 Approximations of Binomial Random Variables 

Normal Approximation: 𝐵𝑖𝑛(𝑛, 𝑝) ≈ 𝑁(𝑛𝑝, 𝑛𝑝(1 − 𝑝). 

// good if 𝑛𝑝(1 − 𝑝) ≥ 10. 

Continuity Correction: Suppose 𝑋~𝐵𝑖𝑛(𝑛, 𝑝) and is 

approximated as 𝑋~𝑁(𝑛𝑝, 𝑛𝑝(1 − 𝑝)), then: 

𝑃(𝑋 = 𝑘) = 𝑃(𝑘 −
1

2
< 𝑋 < 𝑘 +

1

2
); 

𝑃(𝑋 ≥ 𝑘) = 𝑃(𝑋 ≥ 𝑘 −
1

2
); 

𝑃(𝑋 ≤ 𝑘) = 𝑃(𝑋 ≤ 𝑘 +
1

2
). 

Poisson Approximation: 𝐵𝑖𝑛(𝑛, 𝑝) ≈ 𝑃𝑜(𝑛𝑝). 

// working rule: if 𝑝 < 0.1, put 𝜆 = 𝑛𝑝; if 𝑝 > 0.9, put 𝜆 =

𝑛(1 − 𝑝) and work in terms of “failure”. 

5.8 Distribution of a Function of a Random Variable 

Suppose 𝑔(𝑥) is a strictly monotonic, differentiable 

function of 𝑋. Then the probability density function of 

𝑌 = 𝑔(𝑋) is given by 𝑓𝑌(𝑦) =

{
𝑓𝑋(𝑔−1(𝑦)) |

𝑑

𝑑𝑦
𝑔−1(𝑦)| , if 𝑦 = 𝑔(𝑥) for some 𝑥

0,   if 𝑦 ≠ 𝑔(𝑥) for all 𝑥
. 

 

6. Jointly Distributed Random Variables 

6.1 Joint Distribution Function 

The joint distribution function of 𝑋 and 𝑌, 

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦). 

The marginal distribution function of 𝑋, 

 𝐹𝑋(𝑥) = lim
𝑦→∞

𝐹𝑋,𝑌(𝑥, 𝑦). 

𝑃(𝑋 > 𝑎, 𝑌 > 𝑏) = 1 − 𝐹𝑋(𝑎) − 𝐹𝑌(𝑏) + 𝐹𝑋,𝑌(𝑎, 𝑏). 

𝑃(𝑎1 < 𝑋 ≤ 𝑎2, 𝑏1 < 𝑌 ≤ 𝑏2) = 𝐹𝑋,𝑌(𝑎1, 𝑏1) +

𝐹𝑋,𝑌(𝑎2, 𝑏2) − 𝐹𝑋,𝑌(𝑎1, 𝑏2) − 𝐹𝑋,𝑌(𝑎2, 𝑏1). 

The jointly probability mass function of 𝑋 and 𝑌, 

𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦). 

The marginal probability mass function of 𝑋, 

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥) = ∑ 𝑝𝑋,𝑌(𝑥, 𝑦)𝑦∈ℝ . 

The joint probability density function of 𝑋 and 𝑌 is 

𝑓𝑋,𝑌(𝑥, 𝑦), where 𝑃((𝑋, 𝑌) ∈ 𝐶) = ∬ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

(𝑥,𝑦)∈𝐶
. 

The marginal probability density function of 𝑋 and 

𝑌, 𝑓𝑋(𝑥) = ∫ 𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦
∞

−∞ 
. 

6.2 Independent Random Variables 

Proposition 6.1: The following statements are 

equivalent for discrete random variables: 

(i) Random variables 𝑋 and 𝑌 are independent. 

(ii) For all 𝑥 and 𝑦, 𝑝𝑋,𝑌(𝑥, 𝑦) = 𝑝𝑋(𝑥)𝑝𝑌(𝑦). 

(iii) For all 𝑥 and 𝑦, 𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦). 

Proposition 6.2: The following statements are 

equivalent for continuous random variables: 

(i) Random variables 𝑋 and 𝑌 are independent. 

(ii) For all 𝑥 and 𝑦, 𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦). 

(iii) For all 𝑥 and 𝑦, 𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦). 
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Proposition 6.3: Random variables 𝑋 and 𝑌 are 

independent if and only if there exist functions 

𝑔, ℎ: ℝ → ℝ such that for all 𝑥, 𝑦 ∈ ℝ we have 

𝑓𝑋,𝑌(𝑥, 𝑦) = ℎ(𝑥)𝑔(𝑦). 

6.3 Sum of Independent Random Variables 

𝐹𝑋+𝑌(𝑎) = 𝑃(𝑋 + 𝑌 ≤ 𝑎) = ∫ 𝐹𝑋(𝑎 − 𝑦)𝑓𝑌(𝑦)𝑑𝑦
∞

−∞
=

∫ 𝐹𝑌(𝑎 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
. Here, 𝐹𝑋+𝑌 is called the 

convolution of 𝐹𝑋 and 𝐹𝑌. 

6.4 Conditional Distributions (Discrete) 

The conditional probability mass function of 𝑋 

given that 𝑌 = 𝑦 is given by 𝑝(𝑋|𝑌)(𝑥|𝑦) =
𝑝𝑋,𝑌(𝑥,𝑦)

𝑝𝑌(𝑦)
. 

The conditional distribution function of 𝑋 given that 

𝑌 = 𝑦 is given by 𝐹(𝑋|𝑌)(𝑥|𝑦) = 𝑃(𝑋 ≤ 𝑥|𝑌 = 𝑦) =

∑ 𝑝(𝑋|𝑌)(𝑎|𝑦)𝑎≤𝑥 . 

Proposition 6.6: If 𝑋 is independent of 𝑌, then 

𝑝(𝑋|𝑌)(𝑥, 𝑦) = 𝑝𝑥(𝑋). 

6.5 Conditional Distributions (Continuous) 

The conditional probability density function of 𝑋 

given that 𝑌 = 𝑦 is given by 𝑓(𝑋|𝑌)(𝑥|𝑦) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
. 

The conditional distribution function of 𝑋 given that 

𝑌 = 𝑦 is given by 𝐹(𝑋|𝑌)(𝑥|𝑦) = 𝑃(𝑋 ≤ 𝑥|𝑌 = 𝑦) =

∫ 𝑓(𝑋|𝑌)(𝑡|𝑦)𝑑𝑡
𝑥

−∞
. 

Proposition 6.7: If 𝑋 is independent of 𝑌, then 

𝑓(𝑋|𝑌)(𝑥, 𝑦) = 𝑓𝑥(𝑋). 

6.6 Joint Probability Distribution Function of Functions 

of Random Variables 

Proposition 6.8: Assume that the following conditions 

are satisfied: 

(i) Let 𝑋 and 𝑌 be jointly continuously distributed 

random variables with known joint probability density 

function; 

(ii) Let 𝑈 and 𝑉 be functions of 𝑋 and 𝑌 in the form 𝑈 =

𝑔(𝑋, 𝑌), 𝑉 = ℎ(𝑋, 𝑌), and we can uniquely solve 𝑋 and 

𝑌 in terms of 𝑈 and 𝑉, say 𝑥 = 𝑎(𝑢, 𝑣) and 𝑦 = 𝑏(𝑢, 𝑣); 

(iii) The functions 𝑔 and ℎ have continuous partial 

derivatives at all points (𝑥, 𝑦) and 𝐽(𝑥, 𝑦) = |

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

| ≠ 0 

at all points (𝑥, 𝑦); 

Then the joint probability density function of  𝑈 and 

𝑉 is given by 𝑓𝑈,𝑉(𝑢, 𝑣) = 𝑓𝑋,𝑌(𝑥, 𝑦)|𝐽(𝑥, 𝑦)|−1, where 

𝑥 = 𝑎(𝑢, 𝑣) and 𝑦 = 𝑏(𝑢, 𝑣).  

// what about there are more variables? 

6.7 Jointly Distributed Random Variables: 𝑛 ≥ 3 

Rather same. 

 

7. Properties of Expectation 

7.1 Expectation of Sums of Random Variables 

𝐸[𝑔(𝑋, 𝑌)] = ∑ ∑ 𝑔(𝑥, 𝑦)𝑝𝑋,𝑌(𝑥, 𝑦)𝑥𝑦 . 

𝐸[𝑔(𝑋, 𝑌)] = ∫ ∫ 𝑔(𝑥, 𝑦)𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
. 

Monotone Property: If 𝑋 < 𝑌, then 𝐸(𝑋) < 𝐸(𝑌). 

𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌). 

7.2 Covariance, Variance of Sums, and Correlation 

The covariance of 𝑋 and 𝑌, 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 −

𝜇𝑋)(𝑌 − 𝜇𝑌)] = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌). 

If 𝐶𝑜𝑣(𝑋, 𝑌) = 0, then 𝑋 and 𝑌 are uncorrelated. 

Proposition 7.2: If 𝑋 and 𝑌 are independent, then for 

any functions 𝑔, ℎ, 𝐸[𝑔(𝑋)ℎ(𝑌)] = 𝐸[𝑔(𝑋)]𝐸[ℎ(𝑌)]. 

Corollary 7.3: If 𝑋 and 𝑌 are independent, then 

𝐶𝑜𝑣(𝑋, 𝑌) = 0. 

𝑉𝑎𝑟(𝑋) = 𝐶𝑜𝑣(𝑋, 𝑋). 

𝐶𝑜𝑣(𝑋, 𝑋) = 𝐶𝑜𝑣(𝑌, 𝑋). 

Variance of a Sum: 𝑉𝑎𝑟(∑ 𝑋𝑘
𝑛
𝑘=1 ) = ∑ 𝑉𝑎𝑟(𝑋𝑘)𝑛

𝑘=1 +

2 ∑ 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)1≤𝑖<𝑗≤𝑛 . 

Under independence, variance of sum = sum of 

variances. 

The correlation (coefficient) of 𝑋 and 𝑌, 𝜌(𝑋, 𝑌) =

𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑦)
. 
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−1 ≤ 𝜌(𝑋, 𝑌) ≤ 1. 

|𝜌(𝑋, 𝑌)| near 1 implied linearity. 

If 𝑋 and 𝑌 are independent, then 𝜌(𝑋, 𝑌) = 0. 

7.3 Conditional Expectation 

𝐸[𝑋|𝑌 = 𝑦] = ∑ 𝑥 𝑝(𝑋|𝑌)(𝑥|𝑦)𝑥 . 

𝐸[𝑋|𝑌 = 𝑦] = ∫ 𝑥 𝑓(𝑋|𝑌)(𝑥|𝑦)𝑑𝑥
∞

−∞
. 

𝐸[𝑔(𝑋)|𝑌 = 𝑦] = ∑ 𝑔(𝑥)𝑝(𝑋|𝑌)(𝑥|𝑦)𝑥 . 

𝐸[𝑔(𝑋)|𝑌 = 𝑦] = ∫ 𝑔(𝑥) 𝑓(𝑋|𝑌)(𝑥|𝑦)𝑑𝑥
∞

−∞
. 

𝐸[∑ 𝑋𝑘|𝑌 = 𝑦𝑛
𝑘=1 ] = ∑ 𝐸[𝑋𝑘|𝑌 = 𝑦]𝑛

𝑘=1 . 

Proposition 7.4: 𝐸[𝑋] = 𝐸[𝐸[𝑋|𝑌]]. 

7.4 Moment Generating Functions 

The moment generating function of 𝑋, 𝑀𝑋(𝑡) =

𝐸[𝑒𝑡𝑋] = {
∑ 𝑒𝑡𝑥𝑝𝑋(𝑥)𝑥  (discrete)

∫ 𝑒𝑡𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
 (continuous)

. 

𝐸(𝑋𝑛) = 𝑀𝑥
𝑛(0), where 𝑀𝑥

𝑛(0) =
𝑑𝑛

𝑑𝑡𝑛 𝑀𝑥(𝑡)|𝑡=0. 

Multiplicative Property: 𝑀𝑋+𝑌(𝑡) = 𝑀𝑥(𝑡)𝑀𝑌(𝑡). 

Uniqueness Property: If 𝑀𝑋(𝑡) ≡ 𝑀𝑌(𝑡), then 𝑋 ≡ 𝑌. 

Moment generating of function of various distributions: 

Distribution M.G.F. 

𝑋~𝐵𝑒(𝑝) 𝑀𝑋(𝑡) = 1 − 𝑝 + 𝑝𝑒𝑡 

𝑋~𝐵𝑖𝑛(𝑛, 𝑝) 𝑀𝑋(𝑡) = (1 − 𝑝 + 𝑝𝑒𝑡)𝑛 

𝑋~𝐺𝑒𝑜𝑚(𝑝) 
𝑀𝑋(𝑡) =

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡
 

𝑋~𝑃𝑜(𝜆) 𝑀𝑋(𝑡) = 𝑒𝜆(𝑒𝑡−1) 

𝑋~𝑈(𝛼, 𝛽) 
𝑀𝑋(𝑡) =

𝑒𝛽𝑡 − 𝑒𝛼𝑡

(𝛽 − 𝛼)𝑡
 

𝑋~𝐸𝑥𝑝(𝜆) 
𝑀𝑋(𝑡) =

𝜆

𝜆 − 𝑡
 

𝑋~𝑁(𝜇, 𝜎2) 
𝑀𝑥(𝑡) = 𝑒𝜇𝑡+

𝜎2𝑡2

2  

7.5 Joint Moment Generating Functions 

The joint moment generating function 

𝑀𝑋1,𝑋2,…,𝑋𝑛
(𝑡1, 𝑡2, … , 𝑡𝑛) = 𝐸[𝑒𝑡1𝑋1+𝑡2𝑋2+⋯+𝑡𝑛𝑋𝑛]. 

It also has uniqueness property. 

𝑋1, 𝑋2, … , 𝑋𝑛 are independent if and only if 

𝑀𝑋1,𝑋2,…,𝑋𝑛
(𝑡1, 𝑡2, … , 𝑡𝑛) = 𝑀𝑋1

(𝑡1)𝑀𝑋2
(𝑡2) … 𝑀𝑋𝑛

(𝑡𝑛). 

Proposition 7.8: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and 

identically distributed normal random variables with 

mean 𝜇 and variance 𝜎2, then the sample mean 𝑋̅ and 

sample variance 𝑆2 are independent. 𝑋̅~𝑁(𝜇,
𝜎2

𝑛
) and 

(𝑛−1)𝑆2

𝜎2 ~𝜒2(𝑛 − 1). 

 

8. Limit Theorems 

8.1 Introduction 

8.2 Chebyshev’s Inequality and the Weak Law of 

Large Numbers 

Markov’s Inequality: Let 𝑋 be a non-negative random 

variable. For 𝑎 > 0, we have 𝑃[𝑋 ≥ 𝑎] ≤
𝐸[𝑋]

𝑎
. 

Chebyshev’s Inequality: Let 𝑋 be a random variable 

with mean 𝜇, then for 𝑎 > 0, 𝑃[|𝑋 − 𝜇| ≥ 𝑎] ≤
𝑉𝑎𝑟(𝑋)

𝑎2 . 

If 𝑉𝑎𝑟(𝑋) = 0, then 𝑋 is constant. 

The Weak Law of Large Numbers: Let 𝑋1, 𝑋2, … be a 

sequence of independent and identically distributed 

random variables, with common mean 𝜇. Then for any 

𝜖 > 0, 𝑃 (|
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
− 𝜇| ≥ 𝜖) → 0 as 𝑛 → ∞. 

8.3 Central Limit Theorem 

lim
𝑛→∞

𝑃 (
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 − 𝑛𝜇

𝜎√𝑛
≤ 𝑥) =

1

√2𝜋
∫ 𝑒−𝑡2/2𝑑𝑡

𝑥

−∞

 

Normal Approximation: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 

independent and identically distributed random 

variables, each having mean 𝜇 and variance 𝜎2. Then, 

for large 𝑛, the distribution of 
𝑋1+𝑋2+⋯+𝑋𝑛−𝑛𝜇

𝜎√𝑛
 is 

approximately standard normal. 

8.4 The Strong Law of Large Numbers 

The Strong Law of Large Numbers: Let 𝑋1, 𝑋2, … be a 

sequence of independent and identically distributed 

random variables, each having a finite mean 𝜇 =
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𝐸(𝑋𝑖). Then with probability 1, 
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
→ 𝜇 as 𝑛 →

∞. 

8.5 Other Inequalities 

One-sided Chebyshev’s Inequality: 𝑋 is a random 

variable with mean 0 and finite variance 𝜎2, then for 

any 𝑎 > 0, 𝑃(𝑋 ≥ 𝑎) ≤
𝜎2

𝜎2+𝑎2. 

Jensen’s Inequality: If 𝑔(𝑥) is a convex function, then 

𝐸[𝑔(𝑋)] ≥ 𝑔(𝐸[𝑋]) provided that the expectations exist 

and are finite. 
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Annex I: Cumulative Probability for Standard Normal Distribution, 𝑷(𝒁 < 𝒛) 

 


