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ST2131 Probability

AY2020/21 Semester 2

1. Combinatorial Analysis

1.1 Basic Principle of Counting

Suppose two experiments are to be performed:
Experiment 1 has m outcomes, Experiment 2 has n

outcomes, then together there are mn outcomes.
1.2 Permutation

Suppose there are n distinct objects, then total number

of permutations is n!.
Suppose there are n objects and n, of them are alike,

then total number of permutations is n"—']

Suppose there are n people sitting in a circle, then

total number of permutations is (n — 1)!.

1.3 Combination

Suppose there are n distinct objects, from which we

choose r as a group, then total number of

n!

combinations (Z) =

Fori<r<m, (?)=(n;1)+(2:i)

Binomial Theorem: (x + y)" = Y7_, (Z) xlynk,

ri(n-r)!’

£=0(2)=2".//x:y:1.

R (=1Dk (2) =0.//x=—-1,y=1.

(0)+ )+ (@) +-= (1) +()+(5) +
Suppose there are n distinct objects and we are to

divide them into r groups of size ny, n,, ..., n,, then total

n!

number of combinations (nl.nz. ___’nr) -

Multinomial Theorem: (x; + x, + -+ x,)" =

2 n ny _ny Ny
Nni+ny+-+ny=n nl’nz’".’nr e .

Suppose x; + x, + -+ + x,. = n, then total number of

different positive integer-valued vectors (xy, x5, ..., x3,)
.. m—-1

s ("2 1)

Suppose x; + x, + -+ + x,. = n, then total number of

different non-negative integer-valued vectors

(X1, Xp, ey Xp) iS (n :i; 1).

2. Axioms of Probability

2.1 Sample Spaced and Events

The sample space, S, is the set of all possible

outcomes of an experiment.
Any subset of S is an event.

2.2 Axioms of Probability

The probability, P, is a function satisfying:

(i) Forany event E, 0 < P(E) < 1;

(i) P(S) = 1;

(iii) For any sequence of mutually exclusive events
Ei, Ey, . P(US Ex) = X5, P(E).

Proposition 2.1: P(@) = 0.

Proposition 2.2: For any finite sequence of mutually
exclusive events E;, E,, ..., E,, P(UR=1 Ex) =
Lie=1 P(Ep).

Proposition 2.3: P(E€) =1 — P(E).
Proposition 2.4: If A c B, then P(A) < P(B).

Inclusion/Exclusion Principle: P(AU B) = P(4) +
P(B) — P(A N B). /[ what if there are n events?

2.3 Sample Spaces Having Equally Likely Outcomes

2.4 Probability as a Continuous Set Function

A sequence of events is increasing if E; c E, C -+

Proposition 2.6: P (lim En) = lim P(E,).
n—oo n—oo



3. Conditional Probability & Independence

3.1 Conditional Probability

The conditional probability of A given B, P(A|B) =

P(AB)
P(B) "

Multiplication Rule: P(AB) = P(A)P(B|A).

3.2 Bayes’ Formulas

P(B) = P(A)P(B|A) + P(A°)P(B|A®).

Bayes’ First Formula: Suppose 4,, 4,, ..., A, partition
S, then P(B) = Yi-, P(A)P(B|A).

Bayes’ Second Formula: Suppose 4;,4,, ..., A,

i, _ _ P(ApP(BIAY
partition S, then P(4;|B) = ST PP (Bl
P(4) _ PA

The odds of an event A4 is = .
P(AC) 1-P(A)

3.3 Independent Events

A and B are independent if P(AB) = P(A)P(B).

3,4 De Méré-Pascal Problem

3.5 Gambler’s Ruin Problem

3.6 Algebra of Conditional Probability

Proposition 3.4: Let A be an event such that P(4) >
0, then the following three conditions hold:

()0 < P(BlA) < 1;

(i) P(S1A) = 1;

(iii) For any sequence of mutually exclusive events
By, By, ..., P(UR-y By |A) = T5-, P(By|A).

4. Discrete Random Variable

4.1 Random Variable

A random variable, X, is a mapping from the sample

space to real numbers X:S — R.

4.2 Discrete Random Variable

A random variable is discrete if the range of X is either

finite or countably infinite.
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The probability mass function, py, is defined as

_(PX=x) ifx=2x,,xy..;
Px(x) = { 0 otherwise.

i pr () = 1.

The cumulative distribution function, Fy, is defined
as Fy(x) = P(X < x).

4.3 Expected Value

E(X) = Xy X px ().

4.4 Expected Value of a Function of a Random

Variable
E(g(X) = T g()px (%)
Corollary 4.2: E(aX + b) = aE(X) + b.

4.5 Variance and Standard Deviation

Var(X) = E[(X — w)?] = E(X?) — [ECO]*.
o(X) = [Var(X).

Var(aX + b) = a*Var(X).

a(aX + b) = |alo(X).

4.6-4.8 Distributions of Discrete Random Variable

EX) Var(X)

Bernoulli Distribution, Be(p): success or failure.
P(X =1) =p;
PX=0)=1-p.

P p(1—-p)
Binomial Distribution, Bin(n, p): number of

successes in n trials.
n _
P(X=k) = ()P —p)".

np np(1—p)
Geometric Distribution, Geom(p): number of trials

required to obtain the first success.
P(X =k)=p(1—-p)*™
1 1-p
p P’
Negative Binomial Distribution, NB(r, p): number

of trails required to obtain r successes.

rx =k =(ET)ra-pr




r r(1-p)

p p?

Poisson Distribution, Po(1): number of events
occurring in a fixed interval if the events occur

independently with a constant mean rate.

e~k
Kk

P(X =k) =
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Tail Sum Formula: Suppose X is a non-negative
continuous random variable, then E(X) = f0°° P(X >

x)dx.

5.3-5.6 Distributions of Continuous Random Variable

A A

Hypergeometric Distribution, H(n, N,m): number
of red balls if we choose n balls from a set of m red
balls and N — m blue balls.

Pt = k) = D)

()

nm nm (n—1)(m—-1) nm
N N N-1 N

4.9 Distribution Functions and Probability Mass

Functions

Properties of Distribution Function:
(i) If a < b, then Fy(a) < Fx(b).

(i) l}im Fx(b) = 1; blir_n Fx(b) = 0.

(iii) lirlgl_ Fyx(x) always exists.

(iv) Xlirgl+ Fy(x) = Fx(b).

5. Continuous Random Variable

5.1 Continous Random Variable

pla<X<b)= f: fx(x)dx, where fy is called the
probability density function (p.d.f.) of X.

The distribution function of X, Fy(x) = P(X < x) =
I, fx@®dt.

5.2 Expectation and Variance

EX) = [~ x fy(x)dx.

Var(X) = [“ (x — ECO)’ fy(x)dx.

Proposition 5.1:

() Elg(0)] = [, 90 fx (x)dx.
(i) E(aX + b) = aE(X) + b.
(iii) Var(X) = E(X?) — [E(X)]>.

E(X) Var(X)
Uniform Distribution, U(a, b):
y y
1 fx(x)
b-al |
0 é é X
a+b
2

Normal Distribution, N(u, o%):

; _-w?

fX(x)zmae 20%

3-0 Rule: If an observation is taken from a normal
population with mean u and variance o2, then it is
very likely (99.74%) that it lies within 3 standard
deviation of the mean.

T o?

Standard Normal Distribution, Z~N(0,1):

72

f2(2) = p=e™2

Normalisation: If X~N(u, 02), then %~N(0,1).

0 1

Exponential Distribution, Exp(4):
(e, x>0

fx®) _{ 0, x<0
0, x<0

—e™™ x>0

B =1,

Memoryless Property of Exponential
Distribution: P(X > s+ t|X >t) = P(X > s).

1 1

2 2




Gamma Distribution, Gamma(a, 1): If events are
occurring independently with a constant mean rate,
then the amount of time one has to wait until a total
of n events has occurred is a random variable which
follows Gamma(n, A).

le _AX(Ax)a_l

fx(x) = I(a) ,
0, x<0

where I'(a) = fow e Yy*ldy.

,x=>0

Il Gamma(1,1) = Exp(A).

Il'if X~Gamma(g,§), then X~x?(n).

a a
2 2

Weibull Distribution, W (v, a, 8):

x-\B-1 _(xvyf
mm=ﬁhﬂ ) x>0
0, x<v

I W(0,1,1) = Exp(A).

aF(1+l) 2 2\ _ 1 2
P | ()= (r(eg)

Cauchy Distribution parametrised with 6 and positive a:

_ 1
fX(x) - mz[l+(%)2]

not exist not exist

Beta Distribution, Beta(a, b):
1

ﬁm=%wf

a1 —x)P"1 0<x <1
0, otherwise,

where B(a, b) = fol te (1 —t)bqdt.

/l Beta(1,1) = U(0,1).

a ab
a+b (a+b)2(a+b+1)

5.7 Approximations of Binomial Random Variables

Normal Approximation: Bin(n,p) = N(np,np(1 — p).
I/ good if np(1 — p) = 10.

Continuity Correction: Suppose X~Bin(n,p) and is

approximated as X~N(np,np(1 — p)), then:
P(X =k)=P(k—3< X <k+3);

P(X 2 k) =P(X = k—2);

P(X<k)=P(X <k+>).

Poisson Approximation: Bin(n,p) = Po(np).

/l working rule: if p < 0.1, put A = np; if p > 0.9, put 1 =

n(1 — p) and work in terms of “failure”.

5.8 Distribution of a Function of a Random Variable
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Suppose g(x) is a strictly monotonic, differentiable

function of X. Then the probability density function of
Y =g(X)is given by f,(y) =

f(9720)) |5972 )|, ify = g(x) for some x
0, ify # g(x) for all x

6. Jointly Distributed Random Variables

6.1 Joint Distribution Function

The joint distribution function of X and Y,
Fyy(x,y) =P(X <x,Y <y).

The marginal distribution function of X,
Fy(x) = yll_f{)lo Fxy(x,y).
P(X > a,Y > b) =1 _Fx(a) _Fy(b) +FX’Y(a,b).

P(a1 < X S az,bl < Y S bz) == FX'y(al,bl) +
Fyy(ay, by) — Fyy(aq, by) — Fxy(ay, by).

The jointly probability mass function of X and Y,

pxy(0,y) =PX =x,Y =y).

The marginal probability mass function of X,

px(x) =P(X =x) = Zyemgpx,y(x'y)-

The joint probability density function of X and Y is
fxy(x,¥), where P((X,Y) € C) = ff(x,y)ecfX.Y(x' y)dxdy.

The marginal probability density function of X and

Y, fx () = [0, frorCy)dy.

6.2 Independent Random Variables

Proposition 6.1: The following statements are
equivalent for discrete random variables:

(i) Random variables X and Y are independent.
(ii) For all x and y, px vy (x,y) = px(X)py (¥).

(iii) For all x and y, Fxy(x,y) = Fx(x)Fy ().

Proposition 6.2: The following statements are
equivalent for continuous random variables:

(i) Random variables X and Y are independent.
(i) Forall x and y, fxy(x,¥) = fx () fy ().

(iii) For all x and y, Fxy(x,y) = Fx(x)Fy ().



Proposition 6.3: Random variables X and Y are
independent if and only if there exist functions

g,h: R = R such that for all x,y € R we have
fxy(x,y) = h(x)g ().

6.3 Sum of Independent Random Variables

Fyoy(@) =PX+Y<a)=[" Fxla—y)f)dy =
JZ Fy(a— x)fx(x)dx. Here, Fy,y is called the

convolution of Fy and Fy.

6.4 Conditional Distributions (Discrete)

The conditional probability mass function of X

pxy(xy)

given that Y = y is given by p(x|y(xly) = 22275,

The conditional distribution function of X given that
Y =y is given by F(X|y)(x|y) =PX<x|Y=y)=
LasxP(X|Y)(@ly).

Proposition 6.6: If X is independent of Y, then

Py y) = px(X).

6.5 Conditional Distributions (Continuous)

The conditional probability density function of X

fxy(xy)

given that Y = y is given by f(xy)(xly) = = "=

The conditional distribution function of X given that

Y = yis given by Fixy)(xly) = P(X < x|y =y) =
o FxiryEly)ae.

Proposition 6.7: If X is independent of Y, then
fxy) = f(X).

6.6 Joint Probability Distribution Function of Functions

of Random Variables

Proposition 6.8: Assume that the following conditions
are satisfied:

(i) Let X and Y be jointly continuously distributed
random variables with known joint probability density
function;

(i) Let U and V be functions of X and Y in the form U =
gX,Y),V =h(X,Y), and we can uniquely solve X and

Yinterms of U and V, say x = a(u,v) and y = b(u, v);
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(iii) The functions g and h have continuous partial

dg 9g
ox 0dy
dh 0Oh

ox dy

derivatives at all points (x,y) and J(x,y) = =0

at all points (x, y);

Then the joint probability density function of U and
V is given by fy,, (u,v) = fiy (6, ) (x,y)| 7", where

x =a(u,v)and y = b(u,v).

/I what about there are more variables?

6.7 Jointly Distributed Random Variables: n > 3

Rather same.

7. Properties of Expectation

7.1 Expectation of Sums of Random Variables

ElgX, V)] =Xy Xx g(x, ¥)xy(x,¥).

ElgX, N1 = 2, [7, 9Gy) fey G, y)dxdy.
Monotone Property: If X <Y, then E(X) < E(Y).
EX+Y)=EX)+EQ).

7.2 Covariance, Variance of Sums, and Correlation

The covariance of X and Y, Cov(X,Y) = E[(X —
px)(Y — py)] = E(XY) — E(X)E(Y).

If Cov(X,Y) =0, then X and Y are uncorrelated.

Proposition 7.2: If X and Y are independent, then for
any functions g, h, E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Corollary 7.3: If X and Y are independent, then
Cov(X,Y) =0.

Var(X) = Cov(X, X).
Cov(X,X) = Cov(Y,X).

Variance of a Sum: Var(Q -, X)) = Yr=q Var(X,) +

2 Y 1<icjen Cov(X;, X)),

Under independence, variance of sum = sum of

variances.

The correlation (coefficient) of X and Y, p(X,Y) =

Cov(X)Y)

JvarX)var(y)’



-1<pXY)<1.
[o(X,Y)| near 1 implied linearity.
If X and Y are independent, then p(X,Y) = 0.

7.3 Conditional Expectation

E[X|Y = y] =Xy x pixy)(x1y)-

EIX|Y =yl = [2, x fx)yy(x]y)dx.
E[g@OIY = y] = Xx 9()px)7)*¥).
ElgOlY =yl = [2, 9(0) fx)y)(xly)dx.

E[Xk=1 XY = y] = Xkt E[XklY = y].
Proposition 7.4: E[X] = E[E[X]|Y]].

7.4 Moment Generating Functions

The moment generating function of X, My (t) =

X1 _ Yxe¥px(x) (discrete)
Fletl= {fooooetxfx(x)dx (continuous)’

E(X™) = M}(0), where M2 (0) = <o M, ()] <o.
Multiplicative Property: My, (t) = M, (t)M,(t).

Uniqueness Property: If My(t) = My(t),then X =Y.

Moment generating of function of various distributions:

Distribution M.G.F.
X~Be(p) My(t) =1—p+ pet
X~Bin(n,p) My(t) = (1 —p +pe)"

X~Geom(p) pet
My(t) = 1= (1—pet 1 —pyet
X~Po(}) My (t) = eAe =D
X~U(a, ) eft — et
My(t) = 7(3 Y
X~Exp(1) A
Mx(t) = 1-1
~ 2 o2t?
X~N(u,0°) M,(t) = eut+Tt

7.5 Joint Moment Generating Functions

The joint moment generating function

My, x,,..x, (1, 2y ey £) = E[et1X1+tzXot+tnin]

It also has uniqueness property.
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Xy, X,, ..., X, are independent if and only if

Mxl,xz,...,xn(tp o stn) = Mx1 (tl)sz (t2) ... Mxn(tn)-

Proposition 7.8: Let X,, X,, ..., X,, be independent and
identically distributed normal random variables with

mean p and variance o2, then the sample mean X and

_ 2
sample variance S? are independent. X~N(u, %) and

(n-1)s2
2

~x*(n—1).

8. Limit Theorems

8.1 Introduction

8.2 ChebysheVv’s Inequality and the Weak Law of
Large Numbers

Markov’s Inequality: Let X be a non-negative random

E[X]

a

variable. For a > 0, we have P[X > a] <

Chebyshev’s Inequality: Let X be a random variable

Var(X)
az '

with mean p, thenfora > 0, P[|[X —u| = a] <

If Var(X) = 0, then X is constant.

The Weak Law of Large Numbers: Let X;,X,, ... be a
sequence of independent and identically distributed

random variables, with common mean p. Then for any

X1+Xo++Xp

E>0,P(

—H|26)—>033n—>00.

8.3 Central Limit Theorem

Xy 4 Xy 4+ Xy — 1 1~
lim P( 12 r MSx>=—J et?/2q¢
n-oo aVvn V21 ) o

Normal Approximation: Let X;, X,, ..., X,, be

independent and identically distributed random

variables, each having mean p and variance a2. Then,

for large n, the distribution of 22X *Xn=n ;o
oVn

approximately standard normal.

8.4 The Strong Law of Large Numbers

The Strong Law of Large Numbers: Let X;, X,, ... be a
sequence of independent and identically distributed

random variables, each having a finite mean y =



E(X;). Then with probability 1, M —suasn-

00,

8.5 Other Inequalities

One-sided Chebyshev’s Inequality: X is a random

variable with mean 0 and finite variance o2, then for

o2

anya>0,PX=a)<

o2+a?’
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Jensen’s Inequality: If g(x) is a convex function, then

E[g(X)] = g(E[X]) provided that the expectations exist

and are finite.
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Annex I: Cumulative Probability for Standard Normal Distribution, P(Z < z)
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