ST2334 Probability and Statistics

Final Examination Helpsheet

AY2024/25 Semester 1 · Prepared by Tian Xiao @snoidetx

1 Probability

Terminology	Definition	Example
Statistical experiment	Procedure that produces data or observations	Rolling a dice
Sample space S	Set of all possible outcomes of a statistical experiment	$\{1, 2, 3, 4, 5, 6\}$
Sample point	An outcome in the sample space	1
Event	A subset of the sample space	An odd number facing up
m	1 10 10 1	1 11 1 /

- The sample space itself is an event and called a *sure event*. • An event that contains no element is called a *null event* \emptyset .
- **Event**: union $A \cup B$, intersection $A \cap B$, complement A'.
 - Mutually exclusive/disjoint: $A \cap B = \emptyset$.
- Another the probability of the probability Distributions $P(A \cap B) = 0$ does not mean mutually exclusive (e.g., contingues) Special Probability Distributions Contained: $A \subset B$. Equivalent: $A \subset B$ and $B \subset A \Leftrightarrow A = B$. $A \cap A' = \emptyset$ $A \cap \emptyset = \emptyset$ $A \cup A' = S$ (A')' = A $A \cup (B \cap C) = (A \cup A \cap (B \cup C)) = (A \cap A \cup B = A \cup (B \cap A')|A = (A \cap B) \cup (A \cap B))$ $B) \cap (A \cup C)$ $B) \cup (A \cap C)$ $B' \cup (A \cap A') = A \cup (B \cap A')|A = (A \cap B) \cup (A \cap B)$ $B' \cap (A \cup C)$ $B' \cup (A \cap C)$ $B' \cup (A \cap A') = A \cup (B \cap A')|A = (A \cap B) \cup (A \cap B))$ Discrete uniform distribution: P.m.f.: $f_X(x) = \begin{cases} 1/k & x = x_1, x_2, \cdots, x_k; \\ 0 & \text{otherwise} \end{cases}$

 - De Morgan's law: $(A_1 \cup A_2 \cup \cdots \cup A_n)' = A'_1 \cap A'_2 \cap \cdots \cap A'_n;$ $(A_1 \cap A_2 \cap \cdots \cap A_n)' = A_1' \cup A_2' \cup \cdots \cup A_n'.$

Counting: Multiplication principle + Addition principle.

- Permutation: $P_r^n = \frac{n!}{r!(n-r)!}$.
- Combination: $C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$.
- **Probability**: How likely event A occurs, P(A).
 - Relative frequency: $f_A = \frac{n_A}{n} \to P(A)$ as $n \to \infty$.

 - $\begin{array}{l} \triangleright \ 0 \leq f_A \leq 1; \\ \triangleright \ f_A = 1 \ \text{if} \ A \ \text{occurs in every repetition;} \\ \flat \ \text{If} \ A \ \text{and} \ B \ \text{are mutually exclusive, then} \ f_{A \cup B} = f_A + f_B. \end{array}$
 - Axioms of probability:
 - (1) For any event $A, 0 \le P(A) \le 1$; (2) P(S) = 1;
 - (3) $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B).$
 - 3) $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B).$ $\Rightarrow P(\emptyset) = 0;$ $\Rightarrow \text{ If } A_1, A_2, \dots, A_n \text{ are mutually exclusive events, then } P_{A_1 \cup A_2 \cup \dots A_n} = \stackrel{\land}{\Rightarrow} \text{ Mean: } \lambda; \text{ var: } \lambda.$ $\Rightarrow P(A \cup B) = P(A) + P(B).$ $\Rightarrow \text{ Poisson: No. of occurrences in fixed time/region; } X \sim \text{Poisson}(\lambda).$ $\Rightarrow \text{ Mean: } \lambda; \text{ var: } \lambda.$ $\Rightarrow \text{ Poisson process: Continuous-time process with rate } \alpha: \text{ Poisson}(\alpha T).$ $P(A_1) + P(A_2) + \dots + P(A_n).$
 - \triangleright For any event A, P(A') = 1 P(A).

 - ▷ For any events $A, B, P(A) = P(A \cap B) + P(A \cap B')$. ▷ For any events $A, B, P(A \cup B) = P(A) + P(B) P(A \cap B)$. \triangleright If $A \subset B$, then $P(A) \leq P(B)$.
 - Conditional probability: $P(B|A) = \frac{P(A \cap B)}{P(A)}$.
 - $\triangleright P(A \cap B) = P(A)P(B|A) = P(B)P(A|B) \text{ if } P(A), P(B) \neq 0.$
 - $\triangleright P(A|B) = \frac{P(A)P(B|A)}{P(B)}.$
 - Independence: A and B are independent if and only if $P(A \cap$
 - Independence: A and B are interpendent in and only if 2 (..., B) = P(A)P(B). We denote this by A ⊥ B.
 ▷ If P(A) ≠ 0, A ⊥ B if and only if P(B|A) = P(B).
 Law of total probability: Suppose A₁, A₂,..., A_n is a partition of S. Then, P(B) = ∑_{i=1}ⁿ P(B ∩ A_i) = ∑_{i=1}ⁿ P(A_i)P(B|A_i).
 Bayes' theorem: Suppose A₁, A₂,..., A_n is a partition of S. Then, P(A_k|B) = (P(A_k)P(B|A_k))/(∑_{i=1}ⁿ P(A_i)P(B|A_i).

Random Variables $\mathbf{2}$

Random variable: A random variable $X : S \to \mathbb{R}$ assigns a real number to every $s \in S$.

- Range space: $R_X = \{x \mid x = X(s), s \in S\}$. Either finite or countable. • Discrete r.v.: $R_X = \{x_1, x_2, x_3, \dots \}.$
 - $\triangleright \text{ Probability (mass) function: } f(x) = \begin{cases} P(X = x) & \text{for } x \in R_X; \\ 0 & \text{for } x \notin R_X. \end{cases}$ for $x \notin R_X$. ▷ Probability distribution: Collection of pairs (x_i, f(x_i)).
 ▷ Properties of p.m.f.:

 f(x_i) ≥ 0 for all x_i ∈ R_X;
 f(x_i) = 0 for all x_i ∉ R_X;
 ∑_{x_i∈R_X} f(x_i) = 1.
 For any B ⊂ ℝ, P(X ∈ B) = ∑_{x_i∈B∩R_X} f(x_i).
- Continuous r.v.:

 - ▷ Probability density function: (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for all $x \notin R_X$; (2) $\int_{R_X} f(x) \, \mathrm{d}x = 1;$
- $\begin{array}{l} \textcircled{(3)} P(a \leq X \leq b) = \int_{a}^{b} f(x) \, \mathrm{d}x. \\ \hline & \textcircled{(2)} P(a \leq X \leq b) = \int_{a}^{b} f(x) \, \mathrm{d}x. \\ \hline & \rule{0ex}{3ex} \mathsf{Cumulative distribution function:} F(x) = P(X \leq x). \\ & \rule{0ex}{3ex} \mathsf{P}(a \leq X \leq b) = P(X \leq b) P(X < a) = F(b) F(a-). \\ & \rule{0ex}{3ex} \mathsf{P}(a \leq X \leq b) = P(a < X < b) = F(b) F(a). \\ & \rule{0ex}{3ex} \mathsf{P}(a \leq X \leq b) = P(a < X < b) = F(b) F(a). \\ & \rule{0ex}{3ex} \mathsf{P}(a \leq X \leq b) = \lim_{x \to a^+} F(x). \end{array}$

 \triangleright Convergence to 0 and 1 in the limits: $\lim_{x\to -\infty} F(x) = 0$; $\lim_{x \to +\infty} F(x) = 1.$

Expectation:

- Discrete: $\mathbb{E}[X] = \mu_X = \sum_{x_i \in R_X} x_i f(x_i).$ Continuous: $\mathbb{E}[X] = \mu_X = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{x \in R_X} x f(x) \, dx.$

- Continuous: $\mathbb{E}[x] + h$. $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$. $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$. Discrete: $\mathbb{E}[g(X)] = \sum_{x \in R_X} g(x)f(x)$; continuous: $\mathbb{E}[g(X)] =$ $\int_{R_X} g(x) f(x) \, \mathrm{d}x.$

Variance: $\sigma_X^2 = V[X] = \mathbb{E}[(X - \mu_X)^2].$

- Discrete: $V[X] = \sum_{x \in R_X} (x \mu_X)^2 f(x);$
- Continuous: $V[X] = d_{R_X}(x \mu_X)^2 f(x) dx.$
- $V(aX+b) = a^2 V[X].$
- $V[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- Standard deviation: $\sigma_X = \sqrt{V[X]}$.

- $\triangleright \text{ P.m.f.}: f_X(x) = \begin{cases} 1/k & , x = x_1, x_2, \cdots, x_k; \\ 0 & \text{otherwise.} \end{cases}$

- \triangleright Mean: p; var: p(1-p) = pq.
- Binomial: No. of successes in *n* Bernoulli trials; $X \sim Bin(n, p)$. ▷ P.m.f.: $f_X(x) = \binom{n}{x} p^x (1-p)^{1-x}$ for $x = 0, 1, \dots, n$.
- \triangleright Mean: np; var: np(1-p). \bullet Negative binomial: No. of i.i.d. Bernoulli trials until k successes. ▷ P.m.f.: $f_X(x) = \binom{x-1}{k-1} p^k (1-p)^{x-k}$ for $x = k, k+1, \cdots$.
- ▷ Mean: k/p; var: (1-p)k/p².
 Geometric: No. of Bernoulli trials until first success.
 ▷ P.m.f.: f_X(x) = p(1-p)^{x-1}.
 - \triangleright Mean: 1/p; var: $(1-p)/p^2$.
- - ▷ Poisson approximation to binomial: Let $X \sim Bin(n, p)$. Suppose $n \to \infty, p \to 0$ s.t. np constant, then Suppose n

$$\lim_{n \to \infty; p \to 0} \Pr[X = x] = \frac{e^{-np}(np)^x}{x!}.$$

* Good when
$$n \ge 20, p \le 0.05$$
 or $n \ge 100, np \le 10$.

Continuous distributions

- Continuous uniform: $X \sim U(a,b)$ P.d.f.: $f_{x}(x) = \begin{cases} \frac{1}{b-a} & a \in x \neq b \\ 0 & o \end{cases}$, otherwise. 1 , x>b > Mean: Atb ; variance: (b-a) 2 • Exponential: $\chi \sim Exp(\lambda)$. • P.d.f.: $f_{\chi}(\chi) = \begin{cases} \lambda e^{\lambda \chi}, \chi \neq 0 \\ 0, \chi \neq 0 \end{cases}$ ▷ c.d.f.: $F_X(x) = \begin{cases} 1 - e^{-\lambda x}, x > 0 \\ 0, x < 0 \end{cases}$ ▶ Muon: $\frac{1}{\lambda}$; variance: $\frac{1}{\lambda^2}$. ▶ Alternative form: Parameter $M = \frac{1}{\lambda}$. $f_X(x) = \begin{cases} \frac{1}{M}e^{-\frac{x}{M}}, & x > 0 \end{cases}$. ▶ Theorem = $\Pr[X > s + t] | X > s] = \Pr[X > t]$. paral: $X \sim A((A, S^2))$. • Normal: $X \sim \mathcal{N}(\mu, \delta^{\perp})$. ('memoryless") • p.d. f.: $f_{\mathcal{X}}(\mathcal{X}) = \frac{1}{\sqrt{2\pi}} e^{-(\mathcal{X} \subset \mathcal{M})^{2}/(2\delta^{\perp})}, -\infty < \mathcal{X} < +\infty$. D Mean: M; Variance: 62. $b \text{ Let } \overline{Z} = \frac{X - \mu}{6} , \text{ then } \overline{Z} \sim \mu(0, 1).$ $f_{\overline{Z}}(\overline{z}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\overline{Z}^2}{2}}$ Pr[270]=Pr[z=0]=更(0)= 0.5. ▷ $\overline{\mathbf{D}}(\overline{\mathbf{z}}) = P_{\mathbf{r}}[\overline{\mathbf{z}} \in \overline{\mathbf{z}}] = P_{\mathbf{r}}[\overline{\mathbf{z}} = -\overline{\mathbf{z}}] = |-\overline{\mathbf{D}}(-\overline{\mathbf{z}}).$ > If Z~N(0,1), then - Z~N(0,1).
 - > If Z~N(0,1), then 62+M~N(W, 62).
 - D X-npper quantile: Pr[Z==Z]=X.
 - * 70.05 = 1.645 ; 70.01 = 2.326.
 - > Normal approximation to binomial = let X~ Bin(n,p) st. [Etx]=np, W[x]=np(1-p).

$$\infty, \ \mathcal{F} = \frac{X - \mathbb{E}[\mathcal{F}]}{\sqrt{\mathbb{N}[\mathcal{F}]}} = \frac{X - nP}{\sqrt{nP[\mathcal{F}]}} \rightarrow \sim \mathcal{N}(0, 1).$$

As n->

Pr[X=k] ~ Pr[k- 2 < X < k+ 2] Pr[a=x=b]=Pr[a-2 = x = b+2] Pr [a<X=b]≈Pr [a+ 2 < X < b+ 2] $\Pr\left[A \leq \chi < b\right] = \Pr\left[A - \frac{1}{2} < \chi < b - \frac{1}{2}\right]$ Pr[a < x < b] = Pr[a+2 < X < b-2] $\Pr[X \in C] = \Pr[O \in X \leq C] \approx \Pr[-\frac{1}{2} \leq X < (+\frac{1}{2})]$ Pr[x>c] = Pr[C< X=n] Pr[C+ 1 < x < n+2]

D Continuity correction=

Sampling and Sampling Distributions 4

Population: The totality of all possible outcomes or observations.

• Population can be finite or infinite.

- Sample: Any subset of a population.
 - Simple random sample (SRS): Every subset of n observations of the population has the same probability of being selected.
 SRS from infinite population: (X₁, X₂, ..., X_n) independent
 - r.v.'s ▷ Joint p.f.: $f_{X_1, \dots, X_n}(x_1, \dots, x_n) = f_{X_1}(x_1) \cdots f_{X_n}(x_n)$.
- **Statistic**: A function of (X_1, \dots, X_n) .

 - Sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. \triangleright Realization: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$. \triangleright Realization: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$.

Sampling distribution: The probability distribution of a statistic.

Distribution of \overline{X} : $\mu_{\overline{X}} = \mathbb{E}[\overline{X}] = \mu_X$; $\sigma_{\overline{X}}^2 = \mathbb{V}[\overline{X}] = \frac{\sigma_{\overline{X}}^2}{n}$.

- Standard error: $\sigma_{\overline{X}},$ spread of sampling distribution.
- Law of large numbers: Pr[|X̄ μ| > ε] → 0 as n → ∞.
 Central limit theorem: X̄ → N(μ, σ²/n) as n → ∞. Equivalently, $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to Z \sim \mathcal{N}(0, 1).$
- ▷ Population is symmetric with no outlier: 15 ~ 20;
 ▷ Population is moderately skewed such as exponential or χ²: 30 ~ 50;
 - \triangleright Population is extremely skewed: $\gg 1000$.

 χ^2 -distribution: A r.v. with same distribution as i.i.d. $Z_1^2 + \cdots + Z_n^2$ is called a χ^2 r.v. with *n* degrees of freedom, denoted as $\chi^2(n)$.

- If $Y \sim \chi^2(n)$, then $\mathbb{E}[Y] = n$ and $\mathbb{V}[Y] = 2n$.
- For large $n, \chi^2(n)$ is approximately $\mathcal{N}(n, 2n)$.
- If Y_1 and Y_2 are independent χ^2 r.v.'s with m and n degress of freedom respectively, then $Y_1 + Y_2$ is a χ^2 r.v. with m + ndegrees of freedom.
- All χ^2 p.d.f.'s have a long right tail.

• Define
$$\chi^2(n; \alpha)$$
 s.t. for $Y \sim \chi^2(n)$, $\Pr[Y > \chi^2(n; \alpha)] = \alpha$

Distribution of $(n-1)S^2/\sigma^2$: $\chi^2(n-1)$.

t-distribution: Suppose $Z \sim \mathcal{N}(0, 1)$ and $U \sim \chi^2(n)$. If Z and U are independent, then $T = \frac{Z}{\sqrt{U/n}}$ follows the (Student's) *t*-distribution with n degrees of freedom, denoted as t(n).

- If $T \sim t(n)$, then $\mathbb{E}[T] = 0$ and $\mathbb{V}[T] = \frac{n}{n-2}$ for n > 2.
- t(n) → N(0, 1) as n → ∞. When n ≥ 30, replace it by N(0, 1).
 Its graph is symmetric.
 Define t_{n;α} s.t. for T ~ t(n), Pr[T > t_{n;α}] = α.

- If X_1, \cdot, X_n are i.i.d. normal r.v. $\sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{\overline{X} \mu}{S/\sqrt{n}}$ follows a t-distribution with n-1 degrees of freedom.

F-distribution: Suppose $U \sim \chi^2(m)$ and $V \sim \chi^2(n)$ are independent. Then the distribution of $F = \frac{U/m}{V/n}$ is called a *F*-distribution with (m, n) degrees of freedom, denoted as F(m, n).

- If $X \sim F(m,n)$, then $\mathbb{E}[X] = \frac{n}{n-2}$ for n > 2 and $\mathbb{V}[X] =$ $\begin{array}{l} \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)} \text{ for } n > 4.\\ \bullet \text{ if } F \sim F(m,n). \text{ then } 1/F \sim F(n,m).\\ \bullet \text{ Define } F(m,n;\alpha) \text{ s.t. for } F \sim F(m,n), \Pr[F > F(m,n;\alpha)] = \alpha. \end{array}$

- $F(m, n; 1 \alpha) = 1/F(m, n; \alpha).$

5 **Estimation of Population Parameters**

Point estimation: Estimate population parameter as a single number

- Estimator: An *estimator* is a rule, usually expressed as a formula, that tells us how to calculate an *estimate* based on information in the sample.
- Unbiased estimator: If $\mathbb{E}[\hat{\Theta}] = \theta$.
- \triangleright S^2 is an unbiased estimator of σ^2 .
- Maximum error of estimate: $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.
- Minimum sample size: $n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$.

	Population	σ	n	Statistic	E	n given E_0 & α
Ι	normal	known	any	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2}\cdot \tfrac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2}\cdot\sigma}{E_0}\right)^2$
II	any	known	large	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2}\cdot\sigma}{E_0}\right)^2$
III	normal	unknown	small	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2}\cdot \tfrac{s}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2} \cdot s}{E_0}\right)^2$
IV	any	unknown	large	$Z = \frac{\overline{X} - \mu}{s / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{\frac{z_{\alpha/2} \cdot s}{E_0}}{E_0}\right)^2$

Interval estimation: A rule for calculating from the sample an interval (a, b) which you are fairly certain population parameter lies in.

• Confidence interval (CI): If $\Pr[a < \mu < b] = 1 - \alpha$, then (a, b) is called the $(1 - \alpha)$ confidence interval. $(1 - \alpha)$ is confidence level. CI for the mean:

	Population	σ	n	Confidence interval
Ι	normal	known	$_{\mathrm{any}}$	$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
II	any	known	large	$\frac{\alpha/2}{\sqrt{n}}$
III	normal	unknown	small	$\overline{x} \pm t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$
IV	any	unknown	large	$\overline{x} \pm z_{lpha/2} \cdot rac{s}{\sqrt{n}}$

• Interpretation: If we take a sample and compute a different CI many times, about $(1 - \alpha)$ of them contain μ . "Confidence" many times, about $(1 - \alpha)$ of them contain μ . refers to a confidence in the method used.

Comparing two populations: Make inference on $\mu_1 - \mu_2$.

- Pooled estimator: $S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$. We can roughly assume equal variance if $1/2 \le S_1/S_2 \le 2$.

Sample	Confidence interval		
 Independent samples of sizes n₁ and n₂; Pop. vars are known and unequal: σ₁² ≠ σ₂²; Both pop. normal/both samples large (≥ 30). 	$(\overline{x} - \overline{y}) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		
 Independent samples of sizes n₁ and n₂; Pop. vars are unknown and unequal: σ₁² ≠ σ₂²; Both samples large (≥ 30). 	$(\overline{x} - \overline{y}) \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		
 Independent samples of sizes n₁ and n₂; Pop. vars are unknown and equal: σ₁² = σ₂² = σ²; Both samples small (< 30). 	$(\overline{x} - \overline{y}) \pm t_{n_1 + n_2 - 2; \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		
 Independent samples of sizes n₁ and n₂; Pop. vars are unknown and equal: σ₁² = σ₂² = σ²; Both samples large (≥ 30). 	$(\overline{x} - \overline{y}) \pm z_{\alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		
• Independent pairs $(X_1, Y_1), \dots, (X_n, Y_n);$ • X_i and Y_i are dependent; • Define $D_i = X_i - Y_i, \mu_D = \mu_1 - \mu_2;$ • Treat D_1, \dots, D_n as from a pop. with mean μ_D and variance σ_D^2 .	$ \begin{array}{c} n \text{ small and pop. normal:} \\ \overline{d} \pm t_{n-1;\alpha/2} \cdot \frac{S_D}{\sqrt{n}} \\ n \text{ large:} \\ \overline{d} \pm z_{\alpha/2} \cdot \frac{S_D}{\sqrt{n}} \end{array} $		

Hypothesis Tests 6

- 1 Null Hypothesis vs. Alternative Hypothesis:
 We either reject or fail to reject the null hypothesis.
 Two-sided test: H₀: μ = μ₀ vs. H₁: μ ≠ μ₀.
 One-sided test: H₀: μ = μ₀ vs. H₁: μ > μ₀.

```
<sup>(2)</sup> Level of Significance:
```

	Do not reject H_0	Reject H_0
H_0 is true	correct decision	Type I error
H_0 is false	Type II error	correct decision

- Level of significance: α = Pr[Type I] = Pr[Reject H₀|H₀ true].
 ▷ α is usually set to be 0.05 or 0.01.
 Power of test: 1-β = 1-Pr[Type II] = Pr[Reject H₀|H₀ false].
- (a) Test Statistic, Distribution and Reject Region:
 (b) Test statistic quantifies how unlikely it is to observe the sample assuming H₀ is true.
 (c) Based on α, a decision rule divides possible values of test
 - statistic into one rejection/critical region and one acceptance region.
- (4) Compute the Observed Test Statistic Value: (5) Conclusion:
- - If the computed test statistic is within our reection region, then our sample is too improbable assuming H_0 is true, hence we reject H_0 ; • Otherwise, we fail to reject H_0 .

Testing mean:

Case	Test statistic	Rejection region		
 Known σ²; Pop. normal/n large; H₀ : μ = μ₀. 	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$	$ \begin{array}{c} H_1: \mu \neq \mu_0 \Rightarrow \\ z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2} \\ H_1: \mu < \mu_0 \Rightarrow z < -z_{\alpha} \\ H_1: \mu > \mu_0 \Rightarrow z > z_{\alpha} \end{array} $		
 Unknown σ²; Pop. normal; H₀ : μ = μ₀. 	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$	$ \begin{array}{c} H_1: \mu \neq \mu_0 \Rightarrow \\ t < -t_{n-1;\alpha/2} \text{ or } t > t_{n-1;\alpha/2} \\ H_1: \mu < \mu_0 \Rightarrow t < -t_{n-1;\alpha} \\ H_1: \mu > \mu_0 \Rightarrow t > t_{n-1;\alpha} \\ h_1: \mu > \mu_0 \Rightarrow t > t_{n-1;\alpha} \\ n \ge 30 \Rightarrow \text{ use } Z \end{array} $		

- Alternatively, we can use the *p*-value approach: \triangleright Two-sided: *p*-value = $\Pr[|Z| > |z|] = 2\Pr[Z > |z|]$. \triangleright $H_1 : \mu < \mu_0$: *p*-value = $\Pr[Z < -|z|]$. \triangleright $H_1 : \mu > \mu_0$: *p*-value = $\Pr[Z > |z|]$. \triangleright If *p*-value $< \alpha$, reject H_0 ; else, do not reject H_0 . For two-sided test, if CI contains μ_0 , then H_0 will not be rejected at level α at level α .

Testing comparing mean:

Case	Test statistic Rejection reg		gion	
• Known σ_1^2, σ_2^2 ; • Pop. normal/n large; • $H_0: \mu_1 - \mu_2 = \delta_0$. • Unknown $\sigma_1^2 = \sigma_2^2$;	$Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}(0, 1)$ $Z = \frac{(\overline{X} - \overline{Y}) - \delta_0}{(\overline{X} - \overline{Y}) - \delta_0}$	H_1	Rejection $z > z_{\alpha/2}$	<i>p</i> -value
• Pop. normal/n small; • $H_0: \mu_1 - \mu_2 = \delta_0.$	$S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sim t_{n_1} + t_{n_2} - 2$	$\mu_1 - \mu_2 > \delta_0$	or $z < -z_{\alpha/2}$ $z > z_{\alpha}$	$\frac{2\Pr[Z < z]}{\Pr[Z > z]}$
 Paired data; H₀ : μ_D = μ_{D0}. 	$T = \frac{\overline{D} - \mu_{D_0}}{S_D / \sqrt{n}} \sim t_{n-1}$ if <i>n</i> small & pop. normal $T \sim \mathcal{N}(0, 1) \text{ if } n \text{ large}$	$\mu_1 - \mu_2 < \delta_0$	$z < -z_{\alpha}$	$\Pr[Z < - z]$