ST2334 Probability and Statistics

Midterm Examination Helpsheet

AY2024/25 Semester 1 · Prepared by Tian Xiao @snoidetx

Basic Concepts of Probability 1

Terminology	Definition	Example
Statistical experiment	Procedure that produces data or observations	Rolling a dice
Sample space S	Set of all possible outcomes of a statistical experiment	$\{1, 2, 3, 4, 5, 6\}$
Sample point	An outcome in the sample space	1
Event	A subset of the sample space	An odd number facing up

The sample space itself is an event and called a *sure event*.
An event that contains no element is called a *null event* Ø.

Event: union $A \cup B$, intersection $A \cap B$, complement A'.

- Mutually exclusive/disjoint: $A \cap B = \emptyset$.
- ▷ P(A ∩ B) = 0 does not mean mutually exclusive (e.g., continuous)
 Contained: A ⊂ B.
 Equivalent: A ⊂ B and B ⊂ A ⇔ A = B.

 $A \cap A' = \emptyset$ $A \cap \emptyset = \emptyset$ $A \cup A' =$

 $(A_1 \cap A_2 \cap \dots \cap A_n)' = A'_1 \cup A'_2 \cup \dots \cup A'_n.$

Counting: Multiplication principle + Addition principle.

• Permutation: $P_r^n = \frac{n!}{r!(n-r)!}$

• Combination: $C_r^n = {n \choose r} = \frac{n!}{r!(n-r)!}$.

Probability: How likely event A occurs, P(A).

- Relative frequency: $f_A = \frac{n_A}{n} \to P(A)$ as $n \to \infty$.
 - $> 0 \le f_A \le 1;$ $> f_A = 1 \text{ if } A \text{ occurs in every repetition;}$ $> \text{ If } A \text{ and } B \text{ are mutually exclusive, then } f_{A \cup B} = f_A + f_B.$
 - Axioms of probability:
- (1) For any event A, $0 \le P(A) \le 1$;
 - (2) P(S) = 1;
 - (3) $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B).$

 - $P(\emptyset) = 0;$ $P(A_1, A_2, \dots, A_n \text{ are mutually exclusive events, then } P_{A_1 \cup A_2 \cup \dots A_n} = P(A_1) + P(A_2) + \dots + P(A_n).$ $P(A_1) = 1 P(A).$

 - ▷ For any events $A, B, P(A) = P(A \cap B) + P(A \cap B')$. ▷ For any events $A, B, P(A \cup B) = P(A) + P(B) P(A \cap B)$.
 - \triangleright If $A \subset B$, then $P(A) \leq P(B)$.
- Conditional probability: $P(B|A) = \frac{P(A \cap B)}{P(A)}$.
 - $\triangleright P(A \cap B) = P(A)P(B|A) = P(B)P(A|B) \text{ if } P(A), P(B) \neq 0.$ $\triangleright P(A|B) = \frac{P(A)P(B|A)}{P(B)}.$
- Independence: A and B are independent if and only if $P(A \cap B) =$ P(A)P(B). We denote this by $A \perp B$.

- $$\begin{split} P(A)P(B). & \text{We denote this by } A \perp B. \\ & \triangleright \text{ If } P(A) \neq 0, A \perp B \text{ if and only if } P(B|A) = P(B). \\ \bullet \text{ Law of total probability: Suppose } A_1, A_2, \cdots, A_n \text{ is a partition of } S. \\ & \text{Then, } P(B) = \sum_{i=1}^n P(B \cap A_i) = \sum_{i=1}^n P(A_i)P(B|A_i). \\ \bullet \text{ Bayes' theorem: Suppose } A_1, A_2, \cdots, A_n \text{ is a partition of } S. \\ & \text{Then, } P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum_{i=1}^n P(A_i)P(B|A_i)}. \end{split}$$

Random Variables 2

Random variable: A random variable $X : S \to \mathbb{R}$ assigns a real number to every $s \in S$.

- Range space: $R_X = \{x \mid x = X(s), s \in S\}$. Either finite or countable. • Discrete r.v.: $R_X = \{x_1, x_2, x_3, \dots \}.$
 - $\triangleright \text{ Probability (mass) function: } f(x) = \begin{cases} P(X = x) & \text{for } x \in R_X; \\ 0 & \text{for } x \notin R_X. \end{cases}$ ▷ Probability distribution: Collection of pairs $(x_i, f(x_i))$.
 ▷ Properties of p.m.f.:

 f(x_i) ≥ 0 for all $x_i \in R_X$;
 f(x_i) = 0 for all $x_i \notin R_X$; $\sum_{x_i \in R_X} f(x_i) = 1$.

 (a) Even any $B \subset \mathbb{P}$, $P(X \in B) = \sum_{x_i \in R_X} f(x_i)$
- (4) For any $B \subset \mathbb{R}$, $P(X \in B) = \sum_{x_i \in B \cap R_X} f(x_i)$. • Continuous r.v.:

- Probability density function: (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for all $x \notin R_X$; (2) $\int_{R_X} f(x) \, \mathrm{d}x = 1;$
 - (3) $P(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x.$
- Cumulative distribution function: $F(x) = P(X \le x)$.
- P(a ≤ X ≤ b) = P(X ≤ b) = P(X ≤ a) = F(b) F(a-). ▷ Continuous: P(a ≤ X ≤ b) = P(a < X < b) = F(b) F(a).▷ Right continuous: $F(a) = \lim_{x \to a^+} F(x).$ ▷ Convergence to 0 and 1 in the limits: $\lim_{x \to -\infty} F(x) = 0;$
- $\lim_{x \to +\infty} F(x) = 1.$ Expectation:

- Discrete: $\mathbb{E}[X] = \mu_X = \sum_{x_i \in R_X} x_i f(x_i).$
- Continuous: $\mathbb{E}[X] = \mu_X = \int_{-\infty}^{\infty} xf(x) \, \mathrm{d}x = \int_{x \in R_X} xf(x) \, \mathrm{d}x.$
- $\mathbb{E}[aX+b] = a\mathbb{E}[X]+b.$
- $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y].$ Discrete: $\mathbb{E}[g(X)] = \sum_{x \in R_X} g(x)f(x)$; continuous: $\mathbb{E}[g(X)] =$ $\int_{R_X} g(x) f(x) \, \mathrm{d}x.$

Variance: $\sigma_X^2 = V(X) = \mathbb{E}[(X - \mu_X)^2].$

- Discrete: $V(X) = \sum_{x \in R_X} (x \mu_X)^2 f(x);$
- Continuous: $V(X) = d_{R_X} (x \mu_X)^2 f(x) dx.$
- $V(aX+b) = a^2 V(X).$
- $V(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- Standard deviation: $\sigma_X = \sqrt{V(X)}$.

Special Probability Distributions 3

Discrete Distributions

F

Discrete uniform distribution

$$P_{i}m.f.: f_{X}(x) = \begin{cases} \frac{1}{k}, x = \pi_{1}, \pi_{2}, ..., \pi_{k}; \\ 0, otherwise. \end{cases}$$

$$E[X] = \frac{1}{k}\sum_{i=1}^{k} \chi_{i} \quad V[X] = 6x = \frac{1}{k}\sum_{i=1}^{k} \chi_{i}^{2} - \mu_{x}^{2}.$$

Bernoulli Distribution: $X \sim \text{Bern}(p), 0 \le p \le 1$. $P.m.f.: f_{x}(x) = P(x=x) = \begin{cases} P & x=1 \\ I-P & x=0 \end{cases} = P^{x}(I-P)^{I-x}$ Mx=E(x)=P $6^{2} \times = V(X) = P(1-P) = PQ$

Binomial Distribution: No. of successes in n trails of Bernoulli processes; $X \sim Bin(n, p)$. $f_{X}(x) = P(X - x) = \binom{n}{n} x^{x}(1)$

$$f_X(x) = P(X = x) = \binom{x}{x} p^{-1} (1 - p)^{-1} \text{ for } x = 0, 1, \cdots, n$$
$$\mu_X = \mathbb{E}[X] = np; \sigma_X^2 = V(X) = np(1 - p).$$

Negative binomial distribution: No. of i.i.d. Bernoulli trials until first k successes. 12-12

$$f_{X}(x) = p(x = x) = \binom{x - i}{k - j} p^{k} (l - p)^{x - k} \quad f_{0}r \quad x = k, k + 1, \dots,$$

$$E[X] = \frac{k}{p} \cdot V(X) = \frac{(l - p)k}{p^{2}}.$$

Geometric distribution: No. of i.i.d. Bernoulli trials untail first success.

$$F_{x}(x) = P(x = x) = P(1-p)x-1.$$

$$E[x] = \frac{1}{p} \quad V(x) = \frac{1-p}{p^{>}}.$$

Poisson distribution: No. of events occuring in a fixed period of time/fixed region; $X \sim \text{Poisson}(\lambda)$.

$$\mathbb{E}[X] = \lambda \quad V(X) = \lambda$$

Poisson process: continent time process with Poisson (aT). rated. Poisson approximation to Binomial: Let Xn(n,p).

Suppose N=00, P=0 Sit. NP i3 constant, lim P(x=x)=e-nP(np) • Good when $n \ge 20; p \le 0.05$ or $n \ge 100; np \le 10$.

Continuous Distributions

Continuous uniform distribution:
$$X \sim U(a, b)$$
.
 $f_{X}(X) = \begin{cases} \frac{1}{b-a}, a \leq X \leq b \\ D, otherwise \end{cases}$
 $\mathbb{E}[X] = \frac{a+b}{2} \quad V(X) = \frac{(b-a)^2}{12}$.
 $c.d.f.: F_{X}(X) = \begin{cases} D, X \leq a \\ \frac{X-a}{b-a}, a \leq X \leq b \\ 1, X = b \end{cases}$.

Exponential distribution:
$$X \sim \text{Exp}(\lambda)$$
.
 $f_X(\chi) = \begin{cases} \lambda e^{-\lambda \chi} & \chi \neq 0 \\ 0 & \chi < 0 \end{cases}$
 $[E[X]] = \frac{1}{\lambda} \quad Var[Y] = \frac{1}{\lambda^2}$.
 $c.d.f. \quad f_X(\chi) = \begin{cases} 1 - e^{-\lambda \chi} & \chi \neq 0 \\ 0 & \chi < 0 \end{cases}$
Atternative form: $M = \frac{1}{\lambda} \quad f_X(\chi) = \begin{cases} \frac{1}{\mu} e^{-\frac{\chi}{\mu}} & \chi \neq 0 \\ 0 & \chi < 0 \end{cases}$
 $heorem. \quad P(X > s + t \mid X > s) = P(X > t)$. ("memoryless")
Normal distribution: $X \sim N(\mu, \sigma^2)$.
 $f_X(\chi) = \frac{1}{\sqrt{2\pi}} \frac{1}{6} e^{-(\chi - M)^2/(26^2)}, - \cos(\chi < 9)$
 $E[\chi] = M, \quad Var[\chi] = 6^2$.
 $let Z = \frac{\chi - M}{6}$. Then $Z \sim N(0, n)$
 $f_Z(Z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{Z^2}{2}}$.
 $P(Z = 0) = P(Z = 0) = \Phi(0) = 0.5$

$$\begin{array}{l} \label{eq:hermite} \begin{array}{l} \label{eq:hermite} H = 7 \sim N(0,1), \ then \quad -7 \sim N(0,1) \end{array} \\ \label{eq:hermite} H = P(X = X_{d}) = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} definition \quad P(Z = Z_{d}) = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \right\} = d \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array} \\ \\ \label{eq:hermite} \left\{ \begin{array}{l} 2 \sim X_{d} \end{array}$$

 $\overline{\Phi}(\overline{z})=p(\overline{z}\in\overline{z})=p(\overline{z}\overline{z}-\overline{z})=|-\underline{\Phi}(-\overline{z}).$

Appendix:	Table	of Normal	Distribution
-----------	-------	-----------	--------------

Z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5 ADI	6	7	8	9
												_							
0.0	0.5000			0.5120		0.5199			0.5319		4	8	12		20		28		
0.1	0.5398		0.5478			0.5596		0.5675	0.5714		4	8	12		20		28		
0.2	0.5793		0.5871			0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12		19		27		
0.3	0.6179	0.6217		0.6293		0.6368	0.6406	0.6443	0.6480		4	7	11		19		26		-
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	14	18	22	25	29	32
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10	14	17	20	24	27	31
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10	13	16	19	23	26	29
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9	12	15	18	21	24	27
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	3	5	8	11	14	16	19	22	25
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	10	13	15	18	20	23
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	2	5	7	9	12	14	16	19	21
1.1	0.8643	0.8665	0.8686			0.8749			0.8810		2	4	6	8	10	12		16	
1.2	0.8849	0.8869		0.8907		0.8944			0.8997	0.9015	$\overline{2}$	4	6	7		11		15	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	2	3	5	6	8	10	11	13	14
1.4	0.9192	0.9207		0.9236		0.9265			0.9306		1	3	4	6	7	8		11	
1.5	0.9332	0.9345	0.0257	0.9370	0.0292	0.9394	0.0406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
	0.9352	0.9343		0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2 2	4	4	6 5	6	8	10	9
1.6 1.7	0.9452	0.9403			0.9493	0.9505	0.9515		0.9555	0.9545	1 1	2	3	4	4	5	6	0 7	9
	0.9554	0.9504		0.9582	0.9591	0.9599	0.9608	0.9610	0.9623	0.9033	1	2 1	2	3	4	4	5	6	。 6
1.8 1.9	0.9641	0.9649	0.9636		0.9671	0.9678				0.9700	1	1	2	$\begin{vmatrix} 3\\2 \end{vmatrix}$	4	4	4	5	5
1.9	0.9715	0.9/19	0.9720	0.9752	0.9738	0.9/44	0.9730	0.9750	0.9701	0.9767	1	1	2		3	4	4	3	3
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	0	0	1	1	1	1	1	2	2
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960		0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977		0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982			0.9984		0.9985	0.9986		0	0	0	0	0	0	0	0	0