ST3131 Regression Analysis

AY2021/22 Semester 2

Multiple Linear Regression Model

- Simple Linear Regression Model
 - $Y = \beta_0 + \beta_1 X + \epsilon$

- $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$
- o ANOVA Table:

Source	d.f.	SS	MS	F
Regression	1	SSR	MSR	MSR/MSE
Error	n-2	SSE	MSE	
Total	n-1	SST		

 Coefficient of Determination: It explains how much of the variation in *Y* can be explained by *X*.

$$R^2 = \frac{SSR}{SST}$$

• Adjusted
$$R^2$$
: $R_a^2 = \frac{n-1}{n-p-1}R^2 - \frac{p}{n-p-1}$,
where *p* is the number of predictors
and equals 1 for simple LRM.

- Significance Test
 - Significance F-Test
 - 1. $H_0: \beta_1 = 0$ (no linear relationship)
 - $2. \quad H_1:\beta_1\neq 0$
 - 3. Test statistics: $F = \frac{MSR}{MSE}$
 - 4. Under H_0 , $F \sim F_{1,n-2}$.
 - 5. If $F > F_{1,n-2}(\alpha)$, H_0 is rejected at level α .
 - Two-sided Test for β_1
 - 1. $H_0:\beta_1=0$
 - $2. \quad H_1:\beta_1\neq 0$
 - 3. Test statistics: $T_{0\beta_1} = \frac{\beta_1}{s(\hat{\beta}_1)}$
 - 4. Under H_0 , $T_{0\beta_1} \sim t_{n-2}$.

5. If
$$\left|T_{0\beta_1}\right| > t_{n-2}\left(\frac{\alpha}{2}\right)$$
, reject H_0 .

- 6. p-value: $p = P(|t_{n-2}| > T_{0\beta_1})$. If $p < \alpha$, reject H_0 .
- One-sided Test for β_1
 - 1. $H_0: \beta_1 \leq 0$
 - 2. $H_1: \beta_1 > 0$
 - 3. Decision rule: $T_{0\beta_1} > t_{n-2}(\alpha)$
- Confidence Interval of β_1 : $[\hat{\beta}_1 - t_{n-2}\left(\frac{\alpha}{2}\right)s(\hat{\beta}_1), \hat{\beta}_1 + t_{n-2}\left(\frac{\alpha}{2}\right)s(\hat{\beta}_1)]$
- Significance test for β_0 is similar.
- R Codes

```
Make the variables available y=q1.dat (replace Y with the header name) x=q1.dat X
```

Plot a graph of Y against X
plot(x,y,xlabel="x",ylabel="y")

Fit a simple linear regression model to the data
q1.fit=lm(y~x)
summary(q1.fit)

Plot the fitted line in blue
abline(q1.fit,col="blue")

- $$\begin{split} Y &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon \\ \circ & \text{Observations: } y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i, \\ i &= 1, 2, \dots, n \text{ where } e_i \text{'s are i.i.d. } \sim N(0, \sigma^2). \end{split}$$
- *MLE* of $\boldsymbol{\beta}$: Same as *LSE*, $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$
- LSE of σ^2 : $\hat{\sigma}^2 = \frac{1}{n-p-1} \| \mathbf{y} \mathbf{X} \hat{\boldsymbol{\beta}} \|^2$

• MLE of
$$\sigma^2$$
: $\hat{\sigma}^2 = \frac{1}{r} \| \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \|^2 = \frac{n-p-1}{r} \hat{\sigma}_{LSE}^2$

ANOVA Table:

Source of Variation	SS	df	MS	F-statistic
Regression	SSR	p	$MSR = \frac{SSR}{p}$	MSR/MSE
Error	SSE	n-p-1	$MSE = \frac{SSE}{n-p-1}$	
Total	SST	n-1		

Coefficient of Determination:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \frac{SSR}{SST} = corr(\mathbf{y}, \hat{\mathbf{y}})^{2}$$

• Adjusted
$$R^2$$
: $R_a^2 = R^2 - \frac{p}{n-p-1}(1-R^2)$

o Significance Test

Simply divide by dimension of β or V

- Significance F-Test: Is there a linear relationship?
 - 1. $H_0: \beta_1 = \cdots = \beta_p = 0$
 - 2. $H_1: \neg H_0$
 - 3. Test statistics: $F = \frac{MSR}{MSE}$
 - 4. Under H_0 , $F \sim F_{p,n-p-1}$.
 - 5. If $F > F_{p,n-p-1}(\alpha)$, reject H_0 .
 - Wald Statistics

 $W = \widehat{\beta}^T \widehat{V}^{-1} \widehat{\beta}$

In Multiple LRM, $F = \frac{w}{p}$, where *p* is number of predictors (dimension of $\hat{\beta}$).

- Two-sided Individual *t*-test for β_j
 - 1. $H_0: \beta_j = 0$
 - 2. $H_1: \beta_j \neq 0$
 - 3. Test statistics: $t = \frac{\beta_j}{\hat{\sigma}_j}$
 - 4. Under H_0 , $t \sim t_{n-p-1}$.
 - 5. If $|t| \ge t_{n-p-1}\left(\frac{\alpha}{2}\right)$, reject H_0 .
 - General *t*-test:
 - 1. $H_0: \sum_{j=0}^p c_j \beta_j = d$
 - 2. $H_1: \neg H_0$
 - 3. Test statistics: $t = \frac{c^T \hat{\beta} d}{\sqrt{c^T \hat{\mu}_c}}$
 - 4. Under H_0 , $t \sim t_{n-p-1}$.
 - 5. If $|t| \ge t_{n-p-1}\left(\frac{\alpha}{2}\right)$, reject H_0 .
- Confidence Interval for β_j : $\left[\hat{\beta}_j - \hat{\sigma}_j t_{n-p-1}\left(\frac{\alpha}{2}\right), \hat{\beta}_j + \hat{\sigma}_j t_{n-p-1}\left(\frac{\alpha}{2}\right)\right]$

Input data into a dataframe
q1.dat=read.table("~/Downloads/",header=TRUE)

Final Examination Cheatsheet

Confidence Interval for
$$\boldsymbol{\beta}$$
:
 $\boldsymbol{c}^T \widehat{\boldsymbol{\beta}} - \sqrt{\boldsymbol{c}^T \widehat{\boldsymbol{V}} \boldsymbol{c}} \times t_{n-p-1} \left(\frac{\alpha}{2}\right), \boldsymbol{c}^T \widehat{\boldsymbol{\beta}} + \sqrt{\boldsymbol{c}^T \widehat{\boldsymbol{V}} \boldsymbol{c}} \times t_{n-p-1} \left(\frac{\alpha}{2}\right)$

- $100(1 \alpha)\%$ Confidence Upper Bound for β_i : $\beta_i \le \hat{\beta}_i + \hat{\sigma}_i t_{n-p-1}(\alpha)$
- $100(1 \alpha)\%$ Confidence Lower Bound for β_i : $\beta_i \ge \hat{\beta}_i - \hat{\sigma}_i t_{n-p-1}(\alpha)$
- R Codes

Fit a multiple linear regression model to the data q1.fit=lm($y \sim x1+x2$) summary(q1.fit)

Isolate an expression in the model I(...)

Extract fitted values, residues, estimated coefficients and covariance matrix yhat=q1.fit\$fitted r=q1.fit\$resid b=q1.fit\$coef V=vcov(q1.fit)

Compute squared Pearson's correlation coefficient between y and \hat{v} cor(y,yhat)^2

p-value of $P(t_{df} < x)$ and $P(t_{df} > x)$ pt(x,df) 1-pt(x,df)

Linear Regression Model for Analysis of Variance

Dummy Variables: If a factor has a levels, it can be represented by a - 1 dummy variables. $u_k = \begin{cases} 1 \text{, if level } k \\ 0 \text{, otherwise} \end{cases}$

Example: Considering the difference between 0 region 2 and 4, region 1 and 3 and region 1 and 4, then $c = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$

ANOVA Table:

Sourse	d.f.	SS	MS	F-test
А	a-1	SSA	MSA	MSA/MSE
В	b-1	SSB	MSB	MSB/MSE
AB	(a-1)(b-1)	SSAB	MSAB	MSAB/MSE
Error	n-ab	SSE	MSE	_
Total	n-1	SST	_	-

- n_{ERR} here is for interaction model. For main 0 effect model, add (a-1)(b-1).
- Main Effect Model (2 factors)

$$y_i = \beta_0 + \sum_{k=2}^{a} \alpha_k u_{ik} + \sum_{j=2}^{b} \beta_j v_{ij} + \epsilon_i$$
Adjusted Covariance Matrix:

 $\widehat{\boldsymbol{V}} = \frac{\sigma_l^2}{\sigma_u^2} \widetilde{\boldsymbol{V}}$

$$F_a = \frac{\sigma_M^2}{\sigma_l^2} \cdot F$$

Adjusted *t*-Statistics: 0

$$t_a = \frac{\sigma_M^2}{\sigma_I^2} \cdot$$

- When the cells are **imbalanced**, the F-statistics 0 in the ANOVA table are not all correct.
- Interaction Model (2 factors)

$$y_i = \beta_0 + \sum_{k=2}^{a} \alpha_k u_{ik} + \sum_{j=2}^{b} \beta_j v_{ij} + \sum_{k=2}^{a} \sum_{j=2}^{b} \gamma_{kj} u_{ik} v_{ij} + \epsilon_i$$

o Significance Test

Significance Test

- Overall Interaction Effect:
 - 1. $H_0: \gamma_{kj} = 0$ for all k, j2. $H_1: \neg H_0$

```
Wald Statistics: When
   dimension is 1,
```

```
W = \frac{\gamma^2}{V}
```

Wald Statistics: $W = \widehat{\gamma}^T \widehat{V}_{\gamma}^{-1} \widehat{\gamma}$ 3.

- 4. F-Statistics: $F = \frac{W}{(a-1)(b-1)}$
- 5. Under H_0 , $F \sim F_{(a-1)(b-1),n-ab}$.
- 6. If $F > F_{(a-1)(b-1),n-ab}(\alpha)$, reject H_0 .

Particular Interaction Effect

- 1. $H_0: \gamma_{kj} = 0$
- 2. $H_1: \gamma_{kj} \neq 0$
- 3. Test statistics: $T_c = \frac{c^T \gamma}{\sqrt{c^T v_{\gamma} c}}$. The choice of c and γ depends on
- the hypothesis (L3S38).

4. Under H_0 , $T_c \sim t_{n-ab}$.

```
R Codes
```

```
Fit an interaction model of y, x1, x2
int=lm(y\sim x1*x2,data=q2.dat)
summary(int)
anova(int)
```

```
Fit a main effect model of y, x1, x2 where x1 is before x2
main=lm(y \sim x1+x2, data=q2.dat)
summary(main)
anova(main)
```

Adjust the statistics in main effect model

```
sigma.m=summary(main)$sigma
sigma.i=summary(int)$sigma
b=main$coef
V=vcov(main)
V.a=V*sigma.i^2/sigma.m^2
round(V.a,4) (may not be necessary)
sd.b=sqrt(diag(V.a))
t=b/sd.b
p=1-pt(abs(t),28) (may need to adjust, note that the
degree of freedom follows that of interaction model)
```

```
Calculate Wald Statistics and F-Statistics
b=int$coeff
V=vcov(int)
b.x=b[6:9] (suppose only these entries are relevant, note that
             b[0] and V[0][0] corresponds to the intercept)
V.x=V[6:9][6:9]
W=t(b.x)%*%solve(v.x)%*%b.x
F=W/4 (suppose (a-1)(b-1) = 4)
```

Adjusted F-Statistics: 0

Final Examination Cheatsheet

Multiple Comparisons

- Definition: Let C denote the set of all contrasts, then $P\left(\max_{\alpha \in C} |T_C| \ge c_{\alpha}\right) = \alpha$.
- A contrast is significant if its test statistics exceeds c_{α} .
- Studentized Range Statistics:

$$q_{a,n_{ERR}} = \sqrt{n} (\max \bar{Y}_i - \min \bar{Y}_i) / \hat{\sigma}$$

$$Q_{ij} = \begin{cases} \frac{\sqrt{n|\bar{Y}_i - \bar{Y}_j|}}{\hat{\sigma}} & \text{if } n_1 = \dots = n_a = n\\ \sqrt{\frac{2n_i n_j}{n_i + n_j} |\bar{Y}_i - \bar{Y}_j|} & \text{otherwise} \end{cases}$$

$$\bullet \quad |T_{ij}| = Q_{ij}/\sqrt{2} \end{cases}$$

$$T_{ij} = \begin{cases} \frac{\beta_i}{s.d(\hat{\beta}_i)} & \text{Read from model summary} \\ if j = 1 \\ \frac{\hat{\beta}_i - \hat{\beta}_j}{(Var(\hat{\beta}_i) + Var(\hat{\beta}_j) - 2Cov(\hat{\beta}_i, \hat{\beta}_j))^{\frac{1}{2}}} & \text{Use adjusted matrix} \\ \bullet & T\text{-Statistics needs to be compared} \end{cases}$$

- Tukey's Criterion: $\frac{q_{a,n_{ERR},\alpha}}{\sqrt{2}}$.
 - Definition: Let \mathcal{P} denote the set of all pairwise comparison, then $P\left(\max_{c \in \mathcal{C}} |T_c| \ge q_{\alpha}\right) \ge$ $P\left(\max_{c \in \mathcal{P}} |T_c| \ge q_{\alpha}\right) = \alpha.$
- Bonferroni's Criterion: $t_{n_{ERR}}\left(\frac{\alpha}{k}\right)$, where k is the number of prespecified contrasts. If two-sided, take $t_{n_{ERR}}\left(\frac{\alpha}{2k}\right)$.

with $\frac{q_{a,n_{ERR}}}{\sqrt{2}}$

- How to choose from the three criteria?
 - If it is only to control overall type I error rate, all three criteria can be used.
 - Bonferroni can be used if the given contrasts are the only concern.
 - Tukey can be used if the given contrasts are part of pairwise contrasts.
 - In general, Tukey is smaller than Scheffe. In consideration of efficiency, Scheffe is excluded.
 - Between Tukey and Bonferroni, the one with smaller value should be chosen.
- R Codes

Read Categorical Data z=factor(region) (region has 4 categories)

Fit a model of y, x1, x2, x3 with all the main effect terms and twovariable interaction terms

```
\label{eq:linear} \begin{array}{l} \texttt{fit=lm(y-x1+x2+x3+x1:x2+x1:x3+x2:x3,data=q3.dat)} \\ \texttt{summary(fit)} \end{array}
```

Variable Selection

Akaike's Information Criterion: $AIC = -2 \log L(\hat{\beta}_M, \hat{\sigma}_M^2) + 2j_M$, where $\hat{\beta}_M, \hat{\sigma}_M$ are **MLE** under model *M*, j_M is the number of predictors in *M*.

 $\circ \qquad \text{Under Multiple LRM, } AIC = n\log(\hat{\sigma}_M^2) + 2j_M + C,$ where $C = n(\ln 2\pi + 1).$

- Bayesian Information Criterion: $BIC = -2 \log L(\hat{\beta}_M, \hat{\sigma}_M^2) + j_M \ln n$.
 - Under Multiple LRM, $BIC = n \log(\hat{\sigma}_M^2) + C + j_M \ln n$, where $C = n(\ln 2\pi + 1)$.
- Cross-Validation (CV) Scores:
 - Leave-out-one CV Score:

$$CV = \frac{1}{n} \sum_{i=1}^{n} \left[y_i - \boldsymbol{x}_i^T \widehat{\boldsymbol{\beta}}^{-i} \right]^2$$

• For the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$, and *n* observations

$$(y_1, x_{11}, x_{12})$$
 ..., the Leave-out-one CV

$$CV = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0^{-i} - \hat{\beta}_1^{-i} x_{i1} - \hat{\beta}_2^{-i} x_{i2})^2$$

d-fold CV Score:

$$CV = \frac{1}{d} \sum_{j=1}^{d} \left\| \boldsymbol{y}_j - \boldsymbol{X}_j \widehat{\boldsymbol{\beta}}^{-j} \right\|^2$$

- Sequential Procedures
 - Forward Selection
 - o Backward Selection
 - Upwards Stepwise Selection
 - Downwards Stepwise Selection
 - Penalised Likelihood Approach o Least Absolute Shrinkage and Selection Operator (LASSO)
- R Codes

```
Calculate AIC, BIC, CV
library(boot)
M=glm(y~x1+x2+x3+x4+x5+x6,data=q4.dat)
AIC(M)
BIC(M)
cv.glm(q4.dat,M)$delta[2]
```

```
Carry out different selection procedures
library(MASS)
lower.m=lm(y~1,data=q4.dat)
upper.m=lm(y~x1+x2+x3+x4+x5+x6+x7,data=q4.dat)
```

```
# forward selection
forward=stepAIC(lower.m,scope=list(lower=~1,uppe
r=~x1+x2+x3+x4+x5+x6+x7),direction="forward")
summary(forward)
```

```
# backward selection
backward=stepAIC(upper.m,scope=list(upper=~x1+x2
+x3+x4+x5+x6+x7,lower=~1),direction="backward")
summary(backward)
```

```
# stepwise upward selection
stepUp=stepAIC(lower.m,scope=list(lower=~1,upper
=~x1+x2+x3+x4+x5+x6+x7),direction="both")
summary(stepUp)
```

```
# stepwise downward selection
stepDown=stepAIC(upper.m,scope=list(lower=~1,upp
er=~x1+x2+x3+x4+x5+x6+x7),direction="both")
summary(stepDown)
```

Model Diagnostics

- Checking Non-linearity
 - o Plot of Pearson's residual against fitted values
 - Plot of Pearson's residual against predictors
 - o Scatter plot of response against predictors
 - If any non-linear trend shows up, it is an indication of non-linearity.
- Checking Homogenity (constant variance)
 - o Plot of Pearson's residual against fitted values
 - o Plot of Pearson's residual against predictors
 - If variances are not constant, the vertical range of the residues will have obvious changes along the *x*-axis.
- Checking Independence
 - Plot of Pearson's residual against time/space where the observations are obtained
- Checking Normality

t-distribution

Areas in the upper tail are given along the top of the table. Critical t* values are given in the table.

table

- Distribution plot of Pearson's residual, such as box plot, histogram, etc.
- Normal probability plot of residual (Q-Q plot)
- If normality holds, the points of normal probability plot should roughly fall along a straight line.

- Checking Missing Predictors
 - Plot of Residuals against other predictors not included in the model
- R Codes

```
Prepare raw materials
yhat=model.fit$fitted.values
r=residuals(model.fit,type="pearson")
h=hatvalues(model.fit,type="diagonal")
infl=influence(model.fit,do.coef=FALSE)
rsta=rstandard(model.fit,infl,type="pearson")
rstu=rstudent(model.fit,infl,type="pearson")
cook=cooks.distance(model.fit,infl,res=infl$pear
.res,dispersion=summary(model.fit)$dispersion,ha
t=infl$hat)
```

Fit a model of y, x1, x2, x3 with all the main effect terms and two-variable interaction terms fit=lm($y \sim x1+x2+x3+x1:x2+x1:x3+x2:x3$, data=q3.dat) summary(fit)

df		0.1	0.05	0.025	0.02	0.01	0.005
	1	3.078	6.314	12.706	15.895	31.821	63.657
	2	1.886	2.920	4.303	4.849	6.965	9.925
	3	1.638	2.353	3.182	3.482	4.541	5.84
	4	1.533	2.132	2.776	2.999	3.747	4.604
	5	1.476	2.015	2.571	2.757	3.365	4.032
	6	1.440	1.943	2.447	2.612	3.143	3.707
	7	1.415	1.895	2.365	2.517	2.998	3.495
	8	1.397	1.860	2.306	2.449	2.896	3.355
	9	1.383	1.833	2.262	2.398	2.821	3.250
	10	1.372	1.812	2.228	2.359	2.764	3.165
	11	1.363	1.796	2.201	2.328	2.718	3.106
	12	1.356	1.782	2.179	2.303	2.681	3.055
	13	1.350	1.771	2.160	2.282	2.650	3.012
	14	1.345	1.761	2.145	2.264	2.624	2.977
	15	1.341	1.753	2.131	2.249	2.602	2.947
	16	1.337	1.746	2.120	2.235	2.583	2.921
	17	1.333	1.740	2.110	2.224	2.567	2.898
	18	1.330	1.734	2.101	2.214	2.552	2.878
	19	1.328	1.729	2.093	2.205	2.539	2.861
	20	1.325	1.725	2.086	2.197	2.528	2.845
	21	1.323	1.721	2.080	2.189	2.518	2.831
	22	1.321	1.717	2.074	2.183	2.508	2.819
	23	1.319	1.714	2.069	2.177	2.500	2.807
	24	1.318	1.711	2.064	2.172	2.492	2.797
	25	1.316	1.708	2.060	2.167	2.485	2.787
	26	1.315	1.706	2.056	2.162	2.479	2.775
	27	1.314	1.703	2.052	2.158	2.473	2.77
	28	1.313	1.701	2.048	2,154	2.467	2,763
	29	1.311	1.699	2.045	2.150	2.462	2.756
	30	1.310	1.697	2.042	2,147	2,457	2,750
	31	1.309	1.696	2.040	2,144	2,453	2.744
	32	1.309	1.694	2.037	2.141	2.449	2.738
	33	1.308	1.692	2.035	2,138	2.445	2.733
	34	1.307	1.691	2.032	2,136	2.441	2.728
	35	1.306	1.690	2.030	2,133	2.438	2.724
	36	1.306	1.688	2.028	2.131	2.434	2.719
	37	1,305	1.687	2.026	2,129	2.431	2,715
	38	1.304	1.686	2.024	2.127	2,429	2.712
	39	1.304	1.685	2.023	2.125	2.426	2,708
	40	1.303	1.684	2.021	2.123	2.423	2.704
	41	1.303	1.683	2.020	2,121	2.421	2,701
	42	1.302	1.682	2.018	2.120	2.418	2.698
	43	1.302	1.681	2.017	2.118	2.416	2.695
	44	1.301	1.680	2.015	2.116	2.414	2.692
	45	1.301	1.679	2.014	2,115	2,412	2.690
	46	1,300	1.679	2.013	2,114	2.410	2.687
	47	1.300	1.678	2.012	2,112	2,408	2.685
	48	1,299	1.677	2.011	2,111	2,407	2.682
	49	1299	1677	2.010	2,110	2,405	2.680
	50	1299	1676	2 009	2 109	2 403	2.678
	201	1.200		2.000	2.000	2.400	6.010

df		0.1	0.05	0.025	0.02	0.01	0.005
	51	1.298	1.675	2.008	2.108	2.402	2.676
	52	1.298	1.675	2.007	2.107	2.400	2.674
	53	1.298	1.674	2.006	2.106	2.399	2.672
	54	1.297	1.674	2.005	2.105	2.397	2.670
	55	1.297	1.673	2.004	2.104	2.396	2.668
	56	1.297	1.673	2.003	2.103	2.395	2.667
	57	1.297	1.672	2.002	2.102	2.394	2.665
	58	1.296	1.672	2.002	2.101	2.392	2.663
	59	1.296	1.671	2.001	2.100	2.391	2.662
	60	1.296	1.671	2.000	2.099	2.390	2.660
	61	1.296	1.670	2.000	2.099	2.389	2.659
	62	1.295	1.670	1.999	2.098	2.388	2.657
	63	1.295	1.669	1.998	2.097	2.387	2.656
	64	1.295	1.669	1.998	2.096	2.386	2.655
	65	1.295	1.669	1.997	2.096	2.385	2.654
	66	1.295	1.668	1.997	2.095	2.384	2.652
	67	1.294	1.668	1.996	2.095	2.383	2.651
	68	1.294	1.668	1.995	2.094	2.382	2.650
	69	1.294	1.667	1.995	2.093	2.382	2.649
	70	1.294	1.667	1.994	2.093	2.381	2.648
	71	1.294	1.667	1.994	2.092	2.380	2.647
	72	1.293	1.666	1.993	2.092	2.379	2.646
	73	1.293	1.666	1.993	2.091	2.379	2.645
	74	1.293	1.666	1.993	2.091	2.378	2.644
	75	1.293	1.665	1.992	2.090	2.377	2.643
	76	1.293	1.665	1.992	2.090	2.376	2.642
	77	1.293	1.665	1.991	2.089	2.376	2.641
	78	1.292	1.665	1.991	2.089	2.375	2.640
	79	1.292	1.664	1.990	2.088	2.374	2.640
	80	1.292	1.664	1.990	2.088	2.374	2.639
	81	1.292	1.664	1.990	2.087	2.373	2.638
	82	1.292	1.664	1.989	2.087	2.373	2.637
	83	1.292	1.663	1.989	2.087	2.372	2.636
	84	1.292	1.663	1.989	2.086	2.372	2.636
	85	1.292	1.663	1.988	2.086	2.371	2.635
	86	1.291	1.663	1.988	2.085	2.370	2.634
	87	1.291	1.663	1.988	2.085	2.370	2.634
	88	1.291	1.662	1.987	2.085	2.369	2.633
	89	1.291	1.662	1.987	2.084	2.369	2.632
	90	1.291	1.662	1.987	2.084	2.368	2.632
	91	1.291	1.662	1.986	2.084	2.368	2.631
	92	1.291	1.662	1.986	2.083	2.368	2.630
	93	1.291	1.661	1.986	2.083	2.367	2.630
	94	1.291	1.661	1.986	2.083	2.367	2.629
	95	1.291	1.661	1.985	2.082	2.366	2.629
	96	1.290	1.661	1.985	2.082	2.366	2.628
	97	1.290	1.661	1.985	2.082	2.365	2.627
	98	1.290	1.661	1.984	2.081	2.365	2.627
	99	1.290	1.660	1.984	2.081	2.365	2.626
1	00	1.290	1.660	1.984	2.081	2.364	2.626

Table of critical values for the F distribution (for use with ANOVA):

How to use this table:

There are two tables here. The first one gives critical values of F at the p = 0.05 level of significance. The second table gives critical values of F at the p = 0.01 level of significance.

1. Obtain your F-ratio. This has (x,y) degrees of freedom associated with it.

2. Go along x columns, and down y rows. The point of intersection is your critical F-ratio.

3. If your obtained value of F is equal to or larger than this critical F-value, then your result is significant at that level of probability.

An example: I obtain an F ratio of 3.96 with (2, 24) degrees of freedom.

I go along 2 columns and down 24 rows. The critical value of F is 3.40. My obtained F-ratio is larger than this, and so I conclude that my obtained F-ratio is likely to occur by chance with a p<.05.

Critical values of F for the 0.05 significance level:

	1	2	3	4	5	6	7	8	9	10
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.39	19.40
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
10	4.97	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
11	4.84	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
17	4.45	3.59	3.20	2.97	2.81	2.70	2.61	2.55	2.49	2.45
<mark>18</mark>	4.41	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
21	4.33	3.47	3.07	2.84	2.69	2.57	2.49	2.42	2.37	2.32
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.38	2.32	2.28
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.26
25	4.24	3.39	2.99	2.76	2.60	2.49	2.41	2.34	2.28	2.24
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.17
31	4.16	3.31	2.91	2.68	2.52	2.41	2.32	2.26	2.20	2.15
32	4.15	3.30	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14
33	4.14	3.29	2.89	2.66	2.50	2.39	2.30	2.24	2.18	2.13
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11

	1									
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.15	2.10
38	4.10	3.25	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08
40	4.09	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
41	4.08	3.23	2.83	2.60	2.44	2.33	2.24	2.17	2.12	2.07
42	4.07	3.22	2.83	2.59	2.44	2.32	2.24	2.17	2.11	2.07
43	4.07	3.21	2.82	2.59	2.43	2.32	2.23	2.16	2.11	2.06
44	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05
45	4.06	3.20	2.81	2.58	2.42	2.31	2.22	2.15	2.10	2.05
46	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.15	2.09	2.04
47	4.05	3.20	2.80	2.57	2.41	2.30	2.21	2.14	2.09	2.04
48	4.04	3.19	2.80	2.57	2.41	2.30	2.21	2.14	2.08	2.04
49	4.04	3.19	2.79	2.56	2.40	2.29	2.20	2.13	2.08	2.03
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03
51	4.03	3.18	2.79	2.55	2.40	2.28	2.20	2.13	2.07	2.02
52	4.03	3.18	2.78	2.55	2.39	2.28	2.19	2.12	2.07	2.02
53	4.02	3.17	2.78	2.55	2.39	2.28	2.19	2.12	2.06	2.02
54	4.02	3.17	2.78	2.54	2.39	2.27	2.19	2.12	2.06	2.01
55	4.02	3.17	2.77	2.54	2.38	2.27	2.18	2.11	2.06	2.01
56	4.01	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.05	2.01
57	4.01	3.16	2.77	2.53	2.38	2.26	2.18	2.11	2.05	2.00
58	4.01	3.16	2.76	2.53	2.37	2.26	2.17	2.10	2.05	2.00
59	4.00	3.15	2.76	2.53	2.37	2.26	2.17	2.10	2.04	2.00
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
61	4.00	3.15	2.76	2.52	2.37	2.25	2.16	2.09	2.04	1.99
62	4.00	3.15	2.75	2.52	2.36	2.25	2.16	2.09	2.04	1.99
63	3.99	3.14	2.75	2.52	2.36	2.25	2.16	2.09	2.03	1.99
64	3.99	3.14	2.75	2.52	2.36	2.24	2.16	2.09	2.03	1.98
65	3.99	3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.03	1.98
66	3.99	3.14	2.74	2.51	2.35	2.24	2.15	2.08	2.03	1.98
67	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.98
68	3.98	3.13	2.74	2.51	2.35	2.24	2.15	2.08	2.02	1.97
69	3.98	3.13	2.74	2.51	2.35	2.23	2.15	2.08	2.02	1.97
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97
71	3.98	3.13	2.73	2.50	2.34	2.23	2.14	2.07	2.02	1.97
72	3.97	3.12	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.97
73	3.97	3.12	2.73	2.50	2.34	2.23	2.14	2.07	2.01	1.96
74	3.97	3.12	2.73	2.50	2.34	2.22	2.14	2.07	2.01	1.96
75	3.97	3.12	2.73	2.49	2.34	2.22	2.13	2.06	2.01	1.96
76	3.97	3.12	2.73	2.49	2.34	2.22	2.13	2.06	2.01	1.96
77	3.97	3.12	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.96
78	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95
79	3.96	3.11	2.72	2.49	2.33	2.22	2.13	2.06	2.00	1.95
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95
81	3.96	3.11	2.72	2.48	2.33	2.21	2.13	2.06	2.00	1.95
82	3.96	3.11	2.72	2.48	2.33	2.21	2.12	2.05	2.00	1.95
83	3.96	3.11	2.72	2.48	2.32	2.21	2.12	2.05	2.00	1.95
84	3.96	3.11	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.95
85	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94

Final Examination Cheatsheet

Produced by Tian Xiao

86	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94
87	3.95	3.10	2.71	2.48	2.32	2.21	2.12	2.05	1.99	1.94
88	3.95	3.10	2.71	2.48	2.32	2.20	2.12	2.05	1.99	1.94
89	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
91	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.98	1.94
92	3.95	3.10	2.70	2.47	2.31	2.20	2.11	2.04	1.98	1.94
93	3.94	3.09	2.70	2.47	2.31	2.20	2.11	2.04	1.98	1.93
94	3.94	3.09	2.70	2.47	2.31	2.20	2.11	2.04	1.98	1.93
95	3.94	3.09	2.70	2.47	2.31	2.20	2.11	2.04	1.98	1.93
96	3.94	3.09	2.70	2.47	2.31	2.20	2.11	2.04	1.98	1.93
97	3.94	3.09	2.70	2.47	2.31	2.19	2.11	2.04	1.98	1.93
98	3.94	3.09	2.70	2.47	2.31	2.19	2.10	2.03	1.98	1.93
99	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.98	1.93
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.98	1.93

Critical values of F for the 0.01 significance level:

	1	2	3	4	5	6	7	8	9	10
1	4052.19	4999.52	5403.34	5624.62	5763.65	5858.97	5928.33	5981.10	6022.50	6055.85
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
6	13.75	10.93	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
14	8.86	6.52	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.90	3.81
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
17	8.40	6.11	5.19	4.67	4.34	4.10	3.93	3.79	3.68	3.59
18	8.29	6.01	5.09	4.58	4.25	4.02	3.84	3.71	3.60	3.51
19	8.19	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26
23	7.88	5.66	4.77	4.26	3.94	3.71	3.54	3.41	3.30	3.21
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
25	7.77	5.57	4.68	4.18	3.86	3.63	3.46	3.32	3.22	3.13
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
27	7.68	5.49	4.60	4.11	3.79	3.56	3.39	3.26	3.15	3.06
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
29	7.60	5.42	4.54	4.05	3.73	3.50	3.33	3.20	3.09	3.01
30	7.56	5.39	4.51	4.02	3.70	3.47	3.31	3.17	3.07	2.98
31	7.53	5.36	4.48	3.99	3.68	3.45	3.28	3.15	3.04	2.96
32	7.50	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02	2.93

33	7.47	5.31	4.44	3.95	3.63	3.41	3.24	3.11	3.00	2.91
34	7.44	5.29	4.42	3.93	3.61	3.39	3.22	3.09	2.98	2.89
35	7.42	5.27	4.40	3.91	3.59	3.37	3.20	3.07	2.96	2.88
36	7.40	5.25	4.38	3.89	3.57	3.35	3.18	3.05	2.95	2.86
37	7.37	5.23	4.36	3.87	3.56	3.33	3.17	3.04	2.93	2.84
38	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.92	2.83
39	7.33	5.19	4.33	3.84	3.53	3.31	3.14	3.01	2.90	2.81
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80
41	7.30	5.16	4.30	3.82	3.50	3.28	3.11	2.98	2.88	2.79
42	7.28	5.15	4.29	3.80	3.49	3.27	3.10	2.97	2.86	2.78
43	7.26	5.14	4.27	3.79	3.48	3.25	3.09	2.96	2.85	2.76
44	7.25	5.12	4.26	3.78	3.47	3.24	3.08	2.95	2.84	2.75
45	7.23	5.11	4.25	3.77	3.45	3.23	3.07	2.94	2.83	2.74
46	7.22	5.10	4.24	3.76	3.44	3.22	3.06	2.93	2.82	2.73
47	7.21	5.09	4.23	3.75	3.43	3.21	3.05	2.92	2.81	2.72
48	7.19	5.08	4.22	3.74	3.43	3.20	3.04	2.91	2.80	2.72
49	7.18	5.07	4.21	3.73	3.42	3.20	3.03	2.90	2.79	2.71
50	7 17	5.06	4 20	3 72	3 41	3 19	3.02	2.89	2 79	2 70
51	7.16	5.05	4 19	3.71	3.40	3.18	3.01	2.88	2 78	2.69
52	7.10	5.00	4.18	3 70	3.39	3.17	3.01	2.00	2.70	2.68
53	7 14	5.03	4 17	3 70	3.38	3.16	3.00	2.87	2 76	2.68
54	7.13	5.02	4 17	3.69	3.38	3.16	2 99	2.86	2 76	2.67
55	7.10	5.01	4 16	3.68	3.37	3 15	2.98	2.85	2 75	2.66
56	7.12	5.01	4.10	3.67	3.36	3 14	2.00	2.00	2.75	2.00
57	7.11	5.00	4.15	3.67	3 36	3 14	2.00	2.00	2.74	2.00
58	7.10	4 99	4.10	3.66	3.35	3 13	2.37	2.04	2.74	2.00
59	7.00	4.00	1 13	3.66	3 35	3 12	2.07	2.04	2.70	2.04
60	7.00	4.00	4.13	3.65	3 34	3.12	2.00	2.00	2.72	2.63
61	7.00	4.00	4.10	3.64	3 33	3.12	2.00	2.02	2.72	2.00
62	7.07	4.07	4.1 <u>2</u>	3.64	3 33	3 11	2.00	2.02	2.71	2.00
63	7.00	4.96	4.11 1/11	3.63	3 32	3 10	2.04	2.01	2.71	2.02
64	7.00	4.50	4.11	3.63	3 32	3.10	2.34	2.01	2.70	2.02
65	7.03	4.55	4.10	3.62	3 31	3.10	2.33	2.00	2.70	2.01
66	7.04	4.55	1.10	3.62	3 31	3.00	2.00	2.00	2.00	2.01
67	7.04	4.04	4.00	3.61	3 30	3.08	2.02	2.70	2.00	2.00
68	7.00	4 93	4.08	3.61	3.30	3.08	2.02	2.70	2.68	2.00
69	7.02	4.00	4.00	3.60	3.30	3.08	2.01	2.78	2.68	2.50
70	7.02	4.00	4.00	3.60	3 20	3.00	2.01	2.70	2.00	2.50
71	7.01	4.92	4.07	3.60	3.29	3.07	2.90	2.70	2.07	2.55
72	7.01	4.02	4.07	3 59	3.28	3.06	2.00	2.77	2.66	2.58
73	7.00	4.01	4.06	3 59	3.28	3.06	2.00	2.77	2.00	2.50
74	6.99	4.90	4.00	3 58	3.28	3.00	2.30	2.77	2.00	2.57
75	6.99	4.00	4.00	3.58	3.20	3.00	2.00	2.70	2.00	2.57
76	6.98	4.50	4.05	3.50	3.27	3.05	2.03	2.70	2.05	2.57
77	6.98	4.30	4.05	3.50	3.27	3.05	2.00	2.70	2.05	2.50
79	6.97	4.09	4.05	3.57	3.27	3.05	2.00	2.75	2.05	2.50
70	6.97	4.09	4.04	3.57	3.20	3.04	2.00	2.75	2.04	2.50
80	6.96	1.00	4.04	3 56	3.20	3.04	2.07	2.75	2.04	2.00
81	6.06	-+.00 ∕IΩΩ	1 02	3 56	3.20	3.04	2.07	2.74	2.04	2.00
82	6.90	4.00	4.03	3.50	3.25	3.03	2.07	2.74	2.00	2.00
02	0.90	4.0/	4.03	0.00	0.20	3.03	2.0/	2.14	2.03	2.00

83	6.95	4.87	4.03	3.55	3.25	3.03	2.86	2.73	2.63	2.54
84	6.95	4.87	4.02	3.55	3.24	3.03	2.86	2.73	2.63	2.54
85	6.94	4.86	4.02	3.55	3.24	3.02	2.86	2.73	2.62	2.54
86	6.94	4.86	4.02	3.55	3.24	3.02	2.85	2.73	2.62	2.53
87	6.94	4.86	4.02	3.54	3.24	3.02	2.85	2.72	2.62	2.53
88	6.93	4.86	4.01	3.54	3.23	3.01	2.85	2.72	2.62	2.53
89	6.93	4.85	4.01	3.54	3.23	3.01	2.85	2.72	2.61	2.53
90	6.93	4.85	4.01	3.54	3.23	3.01	2.85	2.72	2.61	2.52
91	6.92	4.85	4.00	3.53	3.23	3.01	2.84	2.71	2.61	2.52
92	6.92	4.84	4.00	3.53	3.22	3.00	2.84	2.71	2.61	2.52
93	6.92	4.84	4.00	3.53	3.22	3.00	2.84	2.71	2.60	2.52
94	6.91	4.84	4.00	3.53	3.22	3.00	2.84	2.71	2.60	2.52
95	6.91	4.84	4.00	3.52	3.22	3.00	2.83	2.70	2.60	2.51
96	6.91	4.83	3.99	3.52	3.21	3.00	2.83	2.70	2.60	2.51
97	6.90	4.83	3.99	3.52	3.21	2.99	2.83	2.70	2.60	2.51
98	6.90	4.83	3.99	3.52	3.21	2.99	2.83	2.70	2.59	2.51
99	6.90	4.83	3.99	3.52	3.21	2.99	2.83	2.70	2.59	2.51
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50

Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.

Denominator			Number	of Groups	(a.k.a. Tro	eatments)		
DF	3	4	5	6	7	8	9	10
1	26.976	32.819	37.081	40.407	43.118	45.397	47.356	49.070
2	8.331	9.798	10.881	11.734	12.434	13.027	13.538	13.987
3	5.910	6.825	7.502	8.037	8.478	8.852	9.177	9.462
4	5.040	5.757	6.287	6.706	7.053	7.347	7.602	7.826
5	4.602	5.218	5.673	6.033	6.330	6.582	6.801	6.995
6	4.339	4.896	5.305	5.629	5.895	6.122	6.319	6.493
7	4.165	4.681	5.060	5.359	5.606	5.815	5.997	6.158
8	4.041	4.529	4.886	5.167	5.399	5.596	5.767	5.918
9	3.948	4.415	4.755	5.024	5.244	5.432	5.595	5.738
10	3.877	4.327	4.654	4.912	5.124	5.304	5.460	5.598
11	3.820	4.256	4.574	4.823	5.028	5.202	5.353	5.486
12	3.773	4.199	4.508	4.748	4.947	5.116	5.262	5.395
13	3.734	4.151	4.453	4.690	4.884	5.049	5.192	5.318
14	3.701	4.111	4.407	4.639	4.829	4.990	5.130	5.253
15	3.673	4.076	4.367	4.595	4.782	4.940	5.077	5.198
16	3.649	4.046	4.333	4.557	4.741	4.896	5.031	5.150
17	3.628	4.020	4.303	4.524	4.705	4.858	4.991	5.108
18	3.609	3.997	4.276	4.494	4.673	4.824	4.955	5.071
19	3.593	3.977	4.253	4.468	4.645	4.794	4.924	5.037
20	3.578	3.958	4.232	4.445	4.620	4.768	4.895	5.008
21	3.565	3.942	4.213	4.424	4.597	4.743	4.870	4.981
22	3.553	3.927	4.196	4.405	4.577	4.722	4.847	4.957
23	3.542	3.914	4.180	4.388	4.558	4.702	4.826	4.935
24	3.532	3.901	4.166	4.373	4.541	4.684	4.807	4.915
25	3.523	3.890	4.153	4.358	4.526	4.667	4.789	4.897
26	3.514	3.880	4.141	4.345	4.511	4.652	4.773	4.880
27	3.506	3.870	4.130	4.333	4.498	4.638	4.758	4.864
28	3.499	3.861	4.120	4.322	4.486	4.625	4.745	4.850
29	3.493	3.853	4.111	4.311	4.475	4.613	4.732	4.837
30	3.487	3.845	4.102	4.301	4.464	4.601	4.720	4.824
31	3.481	3.838	4.094	4.292	4.454	4.591	4.709	4.813
32	3.475	3.832	4.086	4.284	4.445	4.581	4.698	4.802
33	3.470	3.825	4.079	4.276	4.436	4.572	4.689	4.791
34	3.465	3.820	4.072	4.268	4.428	4.563	4.680	4.782
35	3.461	3.814	4.066	4.261	4.421	4.555	4.671	4.773
36	3.457	3.809	4.060	4.255	4.414	4.547	4.663	4.764
37	3.453	3.804	4.054	4.249	4.407	4.540	4.655	4.756
38	3.449	3.799	4.049	4.243	4.400	4.533	4.648	4.749
39	3.445	3.795	4.044	4.237	4.394	4.527	4.641	4.741
40	3.442	3.791	4.039	4.232	4.388	4.521	4.634	4.735
41	3.439	3.787	4.035	4.227	4.383	4.515	4.628	4.728
42	3.436	3.783	4.030	4.222	4.378	4.509	4.622	4.722
43	3.433	3.779	4.026	4.217	4.373	4.504	4.617	4.716
44	3.430	3.776	4.022	4.213	4.368	4.499	4.611	4.710
45	3.428	3.773	4.018	4.209	4.364	4.494	4.606	4.705
46	3.425	3.770	4.015	4.205	4.359	4.489	4.601	4.700
47	3.423	3.767	4.011	4.201	4.355	4.485	4.597	4.695
48	3.420	3.764	4.008	4.197	4.351	4.481	4.592	4.690
49	3.418	3.761	4.005	4.194	4.347	4.477	4.588	4.686
50	3.416	3.758	4.002	4.190	4.344	4.473	4.584	4.681
				-				

<u>Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.</u>

Denominator	Number of Groups (a.k.a. Treatments)							
DF	3	4	5	6	7	8	9	10
51	3.414	3.756	3.999	4.187	4.340	4.469	4.580	4.677
52	3.412	3.753	3.996	4.184	4.337	4.465	4.576	4.673
53	3.410	3.751	3.994	4.181	4.334	4.462	4.572	4.669
54	3.408	3.749	3.991	4.178	4.331	4.459	4.569	4.666
55	3.406	3.747	3.989	4.176	4.328	4.455	4.566	4.662
56	3.405	3.745	3.986	4.173	4.325	4.452	4.562	4.659
57	3.403	3.743	3.984	4.170	4.322	4.449	4.559	4.656
58	3.402	3.741	3.982	4.168	4.319	4.447	4.556	4.652
59	3.400	3.739	3.979	4.165	4.317	4.444	4.553	4.649
60	3.399	3.737	3.977	4.163	4.314	4.441	4.550	4.646
61	3.397	3.735	3.975	4.161	4.312	4.439	4.548	4.643
62	3.396	3.734	3.973	4.159	4.309	4.436	4.545	4.641
63	3.395	3.732	3.972	4.157	4.307	4.434	4.542	4.638
64	3.393	3.730	3.970	4.155	4.305	4.431	4.540	4.635
65	3.392	3.729	3.968	4.153	4.303	4.429	4.538	4.633
66	3.391	3.727	3.966	4.151	4.301	4.427	4.535	4.630
67	3.390	3.726	3.965	4.149	4.299	4.425	4.533	4.628
68	3.389	3.725	3.963	4.147	4.297	4.423	4.531	4.626
69	3.387	3.723	3.962	4.146	4.295	4.421	4.529	4.624
70	3.386	3.722	3.960	4.144	4.293	4.419	4.527	4.621
71	3.385	3.721	3.959	4.142	4.291	4.417	4.525	4.619
72	3.384	3.719	3.957	4.141	4.290	4.415	4.523	4.617
73	3.383	3.718	3.956	4.139	4.288	4.413	4.521	4.615
74	3.382	3.717	3.954	4.138	4.286	4.411	4.519	4.613
75	3.382	3.716	3.953	4.136	4.285	4.410	4.517	4.611
76	3.381	3.715	3.952	4.135	4.283	4.408	4.515	4.610
77	3.380	3.714	3.951	4.133	4.282	4.406	4.514	4.608
78	3.379	3.713	3.949	4.132	4.280	4.405	4.512	4.606
79	3.378	3.712	3.948	4.131	4.279	4.403	4.511	4.604
80	3.377	3.711	3.947	4.129	4.278	4.402	4.509	4.603
81	3.377	3.710	3.946	4.128	4.276	4.400	4.507	4.601
82	3.376	3.709	3.945	4.127	4.275	4.399	4.506	4.600
83	3.375	3.708	3.944	4.126	4.274	4.398	4.504	4.598
84	3.374	3.707	3.943	4.125	4.272	4.396	4.503	4.597
85	3.374	3.706	3.942	4.123	4.271	4.395	4.502	4.595
86	3.373	3.705	3.941	4.122	4.270	4.394	4.500	4.594
87	3.372	3.704	3.940	4.121	4.269	4.392	4.499	4.592
88	3.372	3.704	3.939	4.120	4.268	4.391	4.498	4.591
89	3.371	3.703	3.938	4.119	4.266	4.390	4.496	4.590
90	3.370	3.702	3.937	4.118	4.265	4.389	4.495	4.588
91	3.370	3.701	3.936	4.117	4.264	4.388	4.494	4.587
92	3.369	3.700	3.935	4.116	4.263	4.387	4.493	4.586
93	3.368	3.700	3.934	4.115	4.262	4.386	4.492	4.585
94	3.368	3.699	3.934	4.114	4.261	4.384	4.491	4.583
95	3.367	3.698	3.933	4.114	4.260	4.383	4.489	4.582
96	3.367	3.698	3.932	4.113	4.259	4.382	4.488	4.581
97	3.366	3.697	3.931	4.112	4.258	4.381	4.487	4.580
98	3.366	3.696	3.930	4.111	4.257	4.380	4.486	4.579
99	3.365	3.696	3.930	4.110	4.257	4.379	4.485	4.578
100	3.365	3.695	3.929	4.109	4.256	4.379	4.484	4.577